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1. In first approximation, the Pauli paramagnetic susceptibility is temperature-independent
and is given by
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where n is the electron density and TF the Fermi temperature. Show that for a metal at
T ≪ TF the first temperature-dependent correction to the Pauli magnetic susceptibility
is
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and estimate the size of this correction for a typical metal at room temperature.
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and the fact that for small T the chemical potential is related to the Fermi energy by

µ ≈ EF
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2. When the temperature increases the chemical potential has to decrease to conserve the
total number of electrons, so it becomes more relevant the contribution from the high
energy tale (E − µ) ≫ kBT where the Fermi-Dirac distribution is well approximated by
f(E) ≈ e−(E−µ)/kBT . Show that in this regime the chemical potential can be approximated
as
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Show that in this regime the Pauli susceptibility is well approximated by

χP =
nµ0µ
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Hint Impose that the total number of electrons is conserved.
Use the integral
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Figure 1: Pauli paramagnetic susceptibility at T ≪ TF for a metal with TF = 104K. The blue
curve is computed via numerical integration of the Fermi-Dirac distribution, the orange and
yellow curves show respectively the temperature independent χP0 and temperature dependent

χP0
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Figure 2: Pauli paramagnetic susceptibility at T ≥ TF for a metal with TF = 104K. The blue
curve is computed via numerical integration of the Fermi-Dirac distribution, the orange one

shows χP =
nµ0µ2
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