
Magnetism in materials
Solutions - Week 02

1. Spin-orbit coupling originates from the interaction between the inherent magnetic moment
(spin) of an electron and the magnetic field created by its motion. For a single electron,
this interaction is effectively expressed as AL · S. Show that [L · S, Lx] = iℏ(L × S)x.
Does L · S commute with L and S? What about L2 and S2? Is the total angular
momentum operator J = L + S a conserved quantity? Based on the above perspective
about conserved quantities, show that the eigenvalues of the spin-orbit Hamiltonian are
∝ j(j + 1)− l(l + 1)− s(s+ 1).

solution

[L · S, Lx] = [LxSx + LySy + LzSz, Lx]

= [LxSx, Lx] + [LySy, Lx] + [LzSz, Lx]

= 0− iℏLzSy + iℏLySz

= iℏ(L× S)x

Similarly, [L ·S, Ly] = iℏ(L×S)y and [L ·S, Lz] = iℏ(L×S)z. As, L ·S does not commute
with the individual components of L, [L · S,L] ̸= 0.

Now,

[L · S,L2] = [L · S,L · L]
= [L · S,L] · L+ L · [L · S,L]
= iℏ(L× S) · L+ iℏL · (L× S)

= 0

The analysis remain same with S with L → S. For example,

[L · S, Sx] = [LxSx + LySy + LzSz, Sx]

= [LxSx, Sx] + [LySy, Sx] + [LzSz, Sx]

= 0− iℏLySz + iℏLzSy.

Now,

[L · S, Lx + Sx] = [L · S, Lx] + [L · S, Sx]

= −iℏLzSy + iℏLySz − iℏLySz + iℏLzSy.

= 0.

Therefore, [L · S,J] = [L · S,L+ S] = 0.
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Use J2 = (L+ S)2 to write

L · S =
1

2

(
J2 − L2 − S2

)
.

As we have proved that J2, L2, and S2 are all conserved quantities of L ·S, the right-hand
side can be replaced by a pure number j(j + 1)− l(l + 1)− s(s+ 1).

2. The Brillouin function depends on the angular momentum J and on the variable x which
is proportional to B/T .

BJ(x) =
2J + 1

2J
coth

(
2J + 1

2J
x

)
− 1

2J
coth

( x

2J

)
(1)

Use the Jupiter notebook Ex1.ipynb to plot the function and observe how it changes when
you vary J. What is the limit of the function for J −→ ∞ ?
For small x the function is well approximated by a linear trend, find the expression for
this line.

solution In the limit J −→ ∞ the Brillouin function becomes

B∞(x) = coth(x)− lim
J−→∞

1

2J

ex/2J + e−x/2J

ex/2J − e−x/2J
(2)

= coth(x)− lim
J−→∞

1

2J

2 + o(x/2J)

x/J + o(x/2J)
(3)

= coth(x)− 1

x
(4)

The Maclaurin expantion of coth(x) is

coth(x) =
∞∑
n=0

22nB2nx
2n−1

(2n)!
(5)

with Bn the Bernoulli numbers defined as B0 = 1 and Bn = −
∑n−1

k=0

((
n
k

))
Bk

n+1−k
for

n > 0. So

BJ(x) =
2J + 1

2J

∞∑
n=0

22nB2nx
2n−1

(2n)!

(
2J + 1

2J

)2n−1

− 1

2J

∞∑
n=0

22nB2nx
2n−1

(2n)!

(
1

2J

)2n−1

(6)

The therms in sums with n = 0 that diverges at x = 0 cancels each other and the terms
for n = 1 gives the linear approximation of the Brillouin function for small x

BJ,lin(x) =
2J + 1

2J

22B2x

2!

2J + 1

2J
− 1

2J

22B2x

2!

1

2J
(7)

= 2B2x

[
(2J + 1)2 − 1

4J2

]
(8)

= 2B2x
4J(J + 1)

4J2
=

(J + 1)

3J
x (9)

since B2 =
1
6
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3. In the regime in which the Brillouin function can be approximated with linear function
the magnetic susceptibility χ follows the Curie law

1

χ
=

T

C
(10)

Use the Jupiter notebook Ex2.ipynb to plot 1/χ vs T and determine when the Curie law
is a good approximation. Use the slider to see the effect of the application of a magnetic
field B, what deviations from the Curie law can you observe when the field is applied?
Explain why when a finite field B is applied and T −→ 0 the susceptibility does not diverge
as predicted by the Curie law.

Solution The Curie Law is a good approximation at high temperature and in the
absence of magnetic fields. At low temperature, when a magnetic field is applied, the
susceptibility is smaller than what is predicted by the Curie law, in particular, the curve
become almost flat below a certain temperature and the susceptibility does not diverge
for T=0. This is because all the spins align to the field and the magnetization saturates
to a maximum value.

4. For this exercise, we simulate a measurement of χ at different T and fit the data with the
formula

χ(T ) =
C

T
+ χ0 (11)

where χ0 accounts for Van-Vleck paramagnetism. Use the Jupiter notebook Ex3.ipynb
to generate the data and fit them. Based on what you observed in the previous exercises
choose for the fit temperatures range [Tstart, Tstop] in which this expression gives a good
approximation. Compare the results you get from the fit with the values of C and χ0

that you can set through the parameters at the beginning of the script for generating the
data. With the last part of the script, you can see how the results of the fit vary when the
lower limit of the fitting range is changed keeping constant the upper limit at the highest
measured Temperature.

solution The Curie constant is given by

C =
nµ0µ

2
eff

3kB
(12)

with
µeff = gJµB

√
J(J + 1) (13)

and the Landé factor is

gJ =
3

2
+

S(S + 1)− L(L+ 1)

2J(J + 1)
(14)

So the value computed from the parameters set in the simulation is C ≈ 4.71× 10−6K.

5. Many Uranium compounds are of great current interest as heavy fermion or mixed valent
systems. The first thing you want to know is the valence state of uranium and, sur-
prisingly, it is quite difficult to decide whether it is U3+ or U4+. You might think that
measuring the high-temperature susceptibility which shows a Curie-type behavior, should
clinch the point. Let us assume that measurement tells us that the effective moment is
µeff = 3.6µB, with 1% accuracy. Can you decide whether the valence state is U3+ or U4+

?
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Hint The orbital configuration for U3+ and U4+ are respectively 5f3 and 5f2. The
effective moment µeff is such that we can rewrite the Curie law :

χ =
nµ0µ

2
eff

3kBT

Solution The definition of the effective moment and the Landé g factor are :

gJ =
3

2
+

S(S + 1)− L(L+ 1)

2J(J + 1)

µeff = gJµ0

√
J(J + 1)

According to Hund’s rules, for U3+, we have :

(S, L, J) =

(
3

2
, 6,

9

2

)
gJ = 0.7273
µeff

µB

= 3.6181

For U4+, we have :

(S, L, J) = (1, 5, 4)

gJ = 0.8
µeff

µB

= 3.578

It is then impossible to choose between those two valence states with the 1% accuracy.

6. SmB6 is a mixed valent material, containing about 60% trivalent and 40% divalent samar-
ium. Let us assume that only the Sm 4f-electrons contribute to the magnetic susceptibility,
,and that the Sm-ions can be treated as independent (it is a good approximation from
T ≈ 100K upwards). The Van-Vleck susceptibility is given in this case by :

χV V =
nµ02(L+ 1)Sµ2

B

3(J + 1)∆

With ∆ = E0
J+1 −E0

J equal to ∆/kB ≈ 410K for Sm2+ ion and ∆/kB ≈ 1450K for Sm3+

ion. Sm3+ and Sm2+ have electronic configuration [Xe]4f 5 and [Xe]4f 6 respectively.
What is the relative importance of the Curie and Van-Vleck terms at room temperature?

Solution Using the Curie’s Law and the given Van-Vleck susceptibility :

χV V

χC

=
nµ02(L+ 1)Sµ2

B

3(J + 1)∆

3kBT

nµ0g2Jµ
2
BJ(J + 1)

=
2(L+ 1)SkBT

g2JJ(J + 1)2∆

According to Hund’s rules, for Sm3+, we have :

(S, L, J) =

(
5

2
, 5,

5

2

)
gJ = 0.2857

χV V

χC

= 2.4828
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For Sm2+, we have :

(S, L, J) = (3, 3, 0)

J = 0 ⇒ χC = 0

χV V (Sm
2+)

χV V (Sm3+)
= 9.9024

The total relative importance is then :

0.6χV V (Sm
2+) + 0.4χV V (Sm

3+)

0.6χC(Sm2+) + 0.4χC(Sm3+)
=

(
0.6 + 0.4χV V (Sm2+)

χV V (Sm3+)

)
0.6

χV V (Sm
3+)

χC(Sm3+)
≈ 18.9

7. Oxygen molecules present molecular orbitals as shown in figure 1. Indicates how these
orbitals are filled in the ground state. What consequences does this have on the magnetic
behaviour of O2 ?

Figure 1:

solution Hund’s rules implies that the ground state is the triplet state in which the
two electrons in the π∗ orbitals have parallel spins. In this state the total spin moment is
S=1, so the molecule has non zero magnetic moment and oxygen results paramagnetic.
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