Magnetism in materials

Solutions - Week 01

1. Calculate the magnetic moment of a free electron (with g = 2). What is the Larmor
precession frequency of this electron in a magnetic field of flux density 0.3 T? What is
the difference in energy of the electron if its spin points parallel or antiparallel to the
magnetic field? Convert this energy into a frequency.

Solution Using the classical gyromagnetic ratio for an electron, the g-factor and the
angular momentum linked to a spin :

e
7= 2m,
k = ge = 2
1= vgehimg = pipgems = 9.274 - 107%*Am?
wr f)/eB
=== = 8.4H
/ 2m 27 “

E=uB = uggemsB
AFE = 2uggemsB = 5.56 - 107%4]

Using the relation between the photon frequency and his energy :

E_(,UL

/= h 2r
2. Let’s suppose that we have a magnetic moment g in a magnetic B field. The magnetic
B field is only along the z axis (B = Bé,) and the magnetic moment g is initially at an

angle of # to B and in the xz plane. Found the time dependant expression for g and the
Larmor frequency (wr,).

Solution The torque applied on the magnetic moment can be written as :

dL
=uxB=—
TTH dt
And using the gyromagnetic constant :
n =L
dp
— = x B
di TH



Which can be written component by component :

o = ’YBluy
:uy = _'VBMx
fr. =0

Using the initial condition, the solution is then :

fe = —psin O cos(wyt)
fy = prsin @ sin(wt)
[, = pcost

With the Larmor frequency wy = vB.

. Using the definition of spin operators :

1[0 1
S"”‘ﬁ(l 0)
o 1[0 —i
Sy_ﬁ(z 0)
~ 1(1 0
Szﬁ(o —1>

to prove that :
(82,8, ] = is.
With all the cyclic permutation (z,y, z) and the two following :
§°.5.] =0
8"y =2 )

~9 ~ N ~
With S” = 52 4 57 4 57 and |¢) an arbitrary state.

Solution By simple matrix multiplications, it is possible to prove the identity. We
can remark that the matrix S; = %@ with ¢ = z,y, 2z and &; the corresponding Pauli’s
matrices. It is then clear that :

~

=1

=] =

With I the identity matrix.
. Prove that :
[S;, S_} =28,
5.5+ 5.8, 252+ 52)
With §+ and S_ the raising and lowering operator.
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Solution

fsus) il
_ (—ZSZ) —i (zS)
— 28,
8.5 188, = (5. +18) (8- i8) + (8. —18,) (3. +18,)
—2(82+52)
5. Using the previous exercise and the following commutation rules
8%.5.] =0

[Ssi] =+5.

prove that

S419,8.) =+/S(S+1)—S.(S.+1)]5,5. +1)

Where |5, S,) represents a state with total spin angular momentum #2S(S + 1) and z
component of spin angular momentum AS, which is equivalent to say :

§%15,5.) = S(S+1)]S,8.)
S.18,8.) = 8.8, S.)

. . -2
Solution At first, we prove that S |S,.S.) is a eigenstate of S, and S™ and then compute
the relative eigenvalue.

Since §2 and Si commute :
§°5.15,5.) = 8.8°15, 5.)
= 5(S4+1)5.]8,5.)
Using the commutation rule between S, and Sy :
S.5.1S,8.) = <gigz + §¢> 1S, Sz)
=(S.£1)54S,5.)

All what is left now is to proceed to the normalization of the state. For this we use the
previous exercise that lead us to :

4.8, =8 &1 g
Then the normalization go as follow :
||’§:F |Sv SZ> ||2 = <S7 Sz|‘§’:t‘§:F|Sv Sz)

—(S,5.18" — 82 £ 5|5, S.)
— S(S+1)—S.(S, £1)

6. Indicating with o = (6,,,,0,) the Pauli matrices, show that for any r such that |r| =1

exp{iar - o} = 1ycosa +ir - osina
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solution we start by showing that (r-0)? = 1,

Where {-,-} denotes the anticommutator ans we used the propriety {5;,6;} = 26; ;15. So
we get

exp{iar - o} = Z iar - o)"

= (iar-0)?" XK (iar - o)

N ; * nz (2n +1)!
%S (_Unagn ) . 0 (_1)na2n+1

_ A A
; 2n! 2“; I

=1ycosa +1ir-osina

7. Using the basis (|11), |T¢) I4T) S |44)), it is possible to construct matrix representations

of operators such as s S remembering that, for example, an operator such as Sa only
operates on the part of the wave function connected with the first spin. Thus we have

10 0 0

‘w101 0 0

52_5 00 —1 0
00 0 -1
1 0 0 0

o 110 =1 0 0

b—_

Sz_z 0 0 1 0
0 0 0 —1

Construct similar representations for S’;, 5'3, 5'; and 5’5 and hence show that

1 0 0 0
a b 110 -1 2 0
“2l0 2 -1 0
00 0 1

Find the eigenvalues and eigenvectors of this operator.
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Solution

0010

v 1[0 00 1

S:”_§1000
0100
0100

. 111 0 0 0

b—_

Sx_z 0001
0010
00 —i 0

o 110 0 0 —i

b—_

Sy_zz'oo 0
0 i 0
0 —i 0

o 114 0 0 0

b—_

Sy_QOOO—z'
0 0 ¢ 0

Eigenstates || |11) m>}2|“> 1)) i \;%H)
1 0 0 0
1 O 1 1 0 1 1
Figenvectors 0 7| 0 v R
0 0 1 0
Eigenvalues : I I 3

8. Show that the operator

Sp.p = sin 6 cos ¢S, + sin O sin ¢S, + cos 63,

which represents the spin operator for the component of spin along a direction determined
by the spherical polar angles # and ¢,has eigenvalue i% and eigenstates of the form

(252
02

show further that

with 1, the 222 identity matrix.



Solution In the base of S, eigenstates

g 1 cos 0 sin f(cos ¢ — isin @)
60 = 5 \ sin(cos ¢ + i sin ¢) —cosf

So the zeros of its characteristic polynomial are found from

cos 6 cos 6 sin*(0) s i
( ) —A) (‘T‘A)_Te ¢"=0

M — ;1(0032 0 +sin”6) = 0

1
A=+-
2

with a direct calculation we can verify that

S 1) _l cosf)  sinfe cosf/2
601177 5 \sinfe® —cosh ) \sinf/2e
1 cosfcosf/2 + sinfsin /2
2 \sinf cos0/2¢* — cos fsin 0/2¢™
1 (cos0/2° —81n0/2 Ycosf/2 + 2sin*0/2 cos 0/2
2 \e®[2sin0/2 cos 0/2° — (cos? 0/2 — sin®0/2) sin /2]
_ 1 cos6/2(cos? 0/2 + sin” 0/2)
2 \sin0/2¢**(cos?0/2 + sin® §/2)
_ 1/ cos/2 _ 1 )
~ 2 \sinf/2e ) T 2
and a similar calculation shows Sgg ||) = —211).

Calculating S'§¢

& 1 ( cos sinfe 2
9 = 4 \sinfe® —cosb

1 cos? 6 + sin® 0 cos 0 sin Qe ¢ — cos 0 sin Qe ¢
4 \ cos@sinfe’® — cos 6 sin fe® sin? 0 + cos? 6

_1(1o
T4 \0 1

9. If the magnetic field B is uniform in space, show that this is consistent with writing
A= %B x r and show that V- A = 0. Are there other choices of A that would produce
the same B?
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solution Without loss of generality we can assume that B = Bz, so that

A= 1B X T
2
1 0 x
= 5 0 X Yy
B z
—yB
_ | <&
2
0
Calculating V x A
0yA, — 0. A, 0
VxA=[10A,-0A. =10
0 A, — 0,A,; B

And V-A=0

V-A=0,4,+0,A +0.A, =0+0+0=0

For the Gauge freedom, any A’ = A + V¢(r), with ¢(r) a derivable function, will give
the same B.

Using the propriety of the Pauli matrices o = (6,,6,,05.)

(0-a)(c-b)=a-b+ic-(axb)

with a, b vectors, show that the kinetic energy operator for an electron % can be rewritten
as

(0-p)°

If a magnetic field is applied one must replace p by p + eA show that this replacement
substituted into the previous result leads to kinetic energy of the form

where the g-factor in this case is ¢ = 2. (Note: p s an operator and will not commute
with A)



11.

solution using the commutation relations

[pomﬁﬁ] =0 aaﬂ € {9573/72}
{6:,6:} = 25i,ji2 i,j €11,2,3}

One can calculate

(0 - D)% = (61 + 6oy + G3p.)?
= ‘3%]5323 + 53155 + 63153 + {61, 02} D2y + {01, 03} D> + +{02,5}p.D,y

Py + 0y + P = P’

replacing p by p + €A

[0 (P +eA)]
2m

= (2m)~ (o - p)* +e(c - P)(o - A) +e(0 - A)(o - p) +e*(0 - A)]

=2m) PP+ A%+ ep-A+eA-ptieo- (pxA)+ier- (A xP)]

= (2m) "' [(p + eA)® +iea(A x p+ P x A)]

To show that the second term correspond to the Zeeman term consider its action on a
wave function

ie . he
%U-(Axp—l—pXA)w—%a-[Awi—i—VX (Av)]

= p11BgS - [A x Vi 4+ (V x A)p — A x V]

= jupgS - By
with g = 2; S = 0/2 and we used the identity V x (A1) = (V x A)ih — A x V.

An electron in a magnetic field aligned along the z-direction has a Hamiltonian (energy)
operator

H = g,uBBgz

The time-dependent Schrodinger equation states that

A . %
Hip(t) = ih o

So that

U(t) = exp{—iHt/h}(0)
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Using the result from ex. 6 show that v (¢) written as a spinor is

_ (exp{—igupBt/2h} 0
() = ( 0 exp{iguBBt/Qh}) ¥(0)

and using the results from ex. 8 show that this corresponds to the evolution of the spin
state in such a way that the expected value of 6 is conserved but ¢ rotates with an
angular frequency given by geB/2m. This demonstrates that the phenomenon of Larmor
precession can also be derived from a quantum mechanical treatment.

solution Using the identity exp{iad.} = 1ycosa + i6,sina, and writing the initial
condition in the form

R ECN

one gets

W (t) = exp{—iHt/h}(0)
= exp{—igupBt/2h.}(0)

— [15 cos (gupBt/2h) + i6. sin (gupBt/21)]¥(0)

cos (gupBt/2h) + isin (gupBt/2h) 0 )
0 cos (gupBt/2h) — isin (gupBt/2h)
exp{—igupBt/2h} 0
= ¥(0)
0 exp{igupBt/2h}

e~ 9B B2 cog(0, /2)

sin(f/2)ei®ot+ignnBt/2h

Adjusting the phase so that the first component is real

cos(0y/2)

sin(f/2)ei®o+ignsBt/h

As shown in ex. 8 this correspond to the +% eigenstate of the spin operator pointing in
the direction with polar angles 6y and ¢ + gupBt/h. So the expectation value of the
spin along the field direction is conserved while the expectation value of the component
in the orthogonal plane rotates with angular frequency gugB/h = geB/2m,



