
Magnetism in materials
Solutions - Week 01

1. Calculate the magnetic moment of a free electron (with g = 2). What is the Larmor
precession frequency of this electron in a magnetic field of flux density 0.3 T? What is
the difference in energy of the electron if its spin points parallel or antiparallel to the
magnetic field? Convert this energy into a frequency.

Solution Using the classical gyromagnetic ratio for an electron, the g-factor and the
angular momentum linked to a spin :

γ =
e

2me
γe
γ

= ge = 2

µ = γgeℏms = µBgems = 9.274 · 10−24Am2

f =
ωL

2π
=
γeB

2π
= 8.4Hz

E = µB = µBgemsB

∆E = 2µBgemsB = 5.56 · 10−24J

Using the relation between the photon frequency and his energy :

f =
E

h
=
ωL

2π

2. Let’s suppose that we have a magnetic moment µ in a magnetic B field. The magnetic
B field is only along the z axis (B = Bêz) and the magnetic moment µ is initially at an
angle of θ to B and in the xz plane. Found the time dependant expression for µ and the
Larmor frequency (ωL).

Solution The torque applied on the magnetic moment can be written as :

τ = µ×B =
dL

dt

And using the gyromagnetic constant :

µ = γL

dµ

dt
= γµ×B
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Which can be written component by component :

µ̇x = γBµy

µ̇y = −γBµx

µ̇z = 0

Using the initial condition, the solution is then :

µx = −µ sin θ cos(ωLt)

µy = µ sin θ sin(ωLt)

µz = µ cos θ

With the Larmor frequency ωL = γB.

3. Using the definition of spin operators :

Ŝx =
1

2

(
0 1
1 0

)
Ŝy =

1

2

(
0 −i
i 0

)
Ŝz =

1

2

(
1 0
0 −1

)
to prove that : [

Ŝx, Ŝy

]
= iŜz

With all the cyclic permutation (x, y, z) and the two following :[
Ŝ
2
, Ŝz

]
= 0

Ŝ
2
|ψ⟩ = 3

4
|ψ⟩

With Ŝ
2
= Ŝ2

x + Ŝ2
y + Ŝ2

z and |ψ⟩ an arbitrary state.

Solution By simple matrix multiplications, it is possible to prove the identity. We
can remark that the matrix Ŝi =

1
2
σ̂i with i = x, y, z and σ̂i the corresponding Pauli’s

matrices. It is then clear that :

Ŝ2
i =

1

4
Î

With Î the identity matrix.

4. Prove that : [
Ŝ+, Ŝ−

]
= 2Ŝz

Ŝ+Ŝ− + Ŝ−Ŝ+ = 2
(
Ŝ2
x + Ŝ2

y

)
With Ŝ+ and Ŝ− the raising and lowering operator.
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Solution [
Ŝ+, Ŝ−

]
=

(
Ŝx + iŜy

)(
Ŝx − iŜy

)
−
(
Ŝx − iŜy

)(
Ŝx + iŜy

)
= i

[
Ŝy, Ŝx

]
− i

[
Ŝx, Ŝy

]
= i

(
−iŜz

)
− i

(
iŜz

)
= 2Ŝz

Ŝ+Ŝ− + Ŝ−Ŝ+ =
(
Ŝx + iŜy

)(
Ŝx − iŜy

)
+
(
Ŝx − iŜy

)(
Ŝx + iŜy

)
= 2

(
Ŝ2
x + Ŝ2

y

)
5. Using the previous exercise and the following commutation rules[

Ŝ
2
, Ŝ±

]
= 0[

Ŝz, Ŝ±

]
= ±Ŝ±

prove that
Ŝ± |S, Sz⟩ =

√
S(S + 1)− Sz(Sz ± 1) |S, Sz ± 1⟩

Where |S, Sz⟩ represents a state with total spin angular momentum ℏ2S(S + 1) and z
component of spin angular momentum ℏSz which is equivalent to say :

Ŝ
2
|S, Sz⟩ = S(S + 1) |S, Sz⟩

Ŝz |S, Sz⟩ = Sz |S, Sz⟩

Solution At first, we prove that Ŝ± |S, Sz⟩ is a eigenstate of Ŝz and Ŝ
2
and then compute

the relative eigenvalue.

Since Ŝ
2
and Ŝ± commute :

Ŝ
2
Ŝ± |S, Sz⟩ = Ŝ±Ŝ

2
|S, Sz⟩

= S(S + 1)Ŝ± |S, Sz⟩

Using the commutation rule between Ŝz and Ŝ± :

ŜzŜ± |S, Sz⟩ =
(
Ŝ±Ŝz ± Ŝ±

)
|S, Sz⟩

= (Sz ± 1) Ŝ± |S, Sz⟩

All what is left now is to proceed to the normalization of the state. For this we use the
previous exercise that lead us to :

Ŝ±Ŝ∓ = Ŝ
2
− Ŝ2

z ± Ŝz

Then the normalization go as follow :

∥Ŝ∓ |S, Sz⟩ ∥2 = ⟨S, Sz|Ŝ±Ŝ∓|S, Sz⟩

= ⟨S, Sz|Ŝ
2
− Ŝ2

z ± Ŝz|S, Sz⟩
= S(S + 1)− Sz(Sz ± 1)

6. Indicating with σ = (σ̂x, σ̂y, σ̂z) the Pauli matrices, show that for any r such that |r| = 1

exp{iαr · σ} = 1̂2 cosα + ir · σ sinα
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solution we start by showing that (r · σ)2 = 1̂2

(r · σ)2 = r2xσ̂
2
1 + r2yσ̂

2
2 + r2z σ̂

2
3 + rxry{σ̂1, σ̂2}+ rxrz{σ̂1, σ̂3}+ rzry{σ̂3, σ̂2}

= (r2x + r2y + r2z)1̂2 = 1̂2

Where {·, ·} denotes the anticommutator ans we used the propriety {σ̂i, σ̂j} = 2δi,j1̂2. So
we get

exp{iαr · σ} =
∞∑
n=0

(iαr · σ)n

n!

=
∞∑
n=0

(iαr · σ)2n

2n!
+

∞∑
n=0

(iαr · σ)2n+1

(2n+ 1)!

=
∞∑
n=0

(−1)nα2n

2n!
1̂2 + i

∞∑
n=0

(−1)nα2n+1

(2n+ 1)!
r · σ

= 1̂2 cosα + ir · σ sinα

7. Using the basis (|↑↑⟩ , |↑↓⟩ , |↓↑⟩ , |↓↓⟩), it is possible to construct matrix representations

of operators such as Ŝ
a
· Ŝ

b
remembering that, for example, an operator such as Ŝa

z only
operates on the part of the wave function connected with the first spin. Thus we have

Ŝa
z =

1

2


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1



Ŝb
z =

1

2


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1



Construct similar representations for Ŝa
x, Ŝ

b
x, Ŝ

a
y and Ŝb

y and hence show that

Ŝ
a
· Ŝ

b
=

1

4


1 0 0 0
0 −1 2 0
0 2 −1 0
0 0 0 1


Find the eigenvalues and eigenvectors of this operator.
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Solution

Ŝa
x =

1

2


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0



Ŝb
x =

1

2


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0



Ŝb
y =

1

2


0 0 −i 0
0 0 0 −i
i 0 0 0
0 i 0 0



Ŝb
y =

1

2


0 −i 0 0
i 0 0 0
0 0 0 −i
0 0 i 0



Eigenstates |↑↑⟩ |↑↓⟩+|↓↑⟩√
2

|↓↓⟩ |↑↓⟩−|↓↑⟩√
2

Eigenvectors


1
0
0
0

 1√
2


0
1
1
0



0
0
0
1

 1√
2


0
1
−1
0


Eigenvalues 1

4
1
4

1
4

−3
4

8. Show that the operator

Ŝθ,ϕ = sin θ cosϕŜx + sin θ sinϕŜy + cos θŜz

which represents the spin operator for the component of spin along a direction determined
by the spherical polar angles θ and ϕ,has eigenvalue ±1

2
and eigenstates of the form

|↑⟩ =
(

cos θ/2
sin θ/2eiϕ

)
|↓⟩ =

(
sin θ/2

− cos θ/2eiϕ

)

show further that

Ŝ2
θϕ =

1

4
1̂2

with 1̂2 the 2x2 identity matrix.
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Solution In the base of Ŝz eigenstates

Ŝθ,ϕ =
1

2

(
cos θ sin θ(cosϕ− i sinϕ)

sin θ(cosϕ+ i sinϕ) − cos θ

)
So the zeros of its characteristic polynomial are found from

(
cos θ

2
− λ

)(
−cos θ

2
− λ

)
− sin2(θ)

4
eiϕe−iϕ = 0

λ2 − 1

4
(cos2 θ + sin2 θ) = 0

λ = ±1

2

with a direct calculation we can verify that

Ŝθϕ |↑⟩ =
1

2

(
cos θ sin θe−iϕ

sin θeiϕ − cos θ

)(
cos θ/2

sin θ/2eiϕ

)

=
1

2

(
cos θ cos θ/2 + sin θ sin θ/2

sin θ cos θ/2eiϕ − cos θ sin θ/2eiϕ

)

=
1

2

(
(cos θ/22 − sin θ/22) cos θ/2 + 2 sin2 θ/2 cos θ/2

eiϕ[2 sin θ/2 cos θ/22 − (cos2 θ/2− sin2 θ/2) sin θ/2]

)

=
1

2

(
cos θ/2(cos2 θ/2 + sin2 θ/2)

sin θ/2eiϕ(cos2 θ/2 + sin2 θ/2)

)

=
1

2

(
cos θ/2

sin θ/2eiϕ

)
=

1

2
|↑⟩

and a similar calculation shows Ŝθϕ |↓⟩ = −1
2
|↓⟩.

Calculating Ŝ2
θϕ

Ŝ2
θϕ =

1

4

(
cos θ sin θe−iϕ

sin θeiϕ − cos θ

)2

=
1

4

(
cos2 θ + sin2 θ cos θ sin θe−iϕ − cos θ sin θe−iϕ

cos θ sin θeiϕ − cos θ sin θeiϕ sin2 θ + cos2 θ

)

=
1

4

(
1 0
0 1

)

9. If the magnetic field B is uniform in space, show that this is consistent with writing
A = 1

2
B× r and show that ∇ ·A = 0. Are there other choices of A that would produce

the same B?
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solution Without loss of generality we can assume that B = Bẑ, so that

A =
1

2
B× r

=
1

2

 0
0
B

×

xy
z



=

−yB
2
xB
2

0


Calculating ∇×A

∇×A =

∂yAz − ∂zAx

∂zAx − ∂xAz

∂xAy − ∂yAx

 =

 0
0
B


And ∇ ·A = 0

∇ ·A = ∂xAx + ∂yAy + ∂zAz = 0 + 0 + 0 = 0

For the Gauge freedom, any A′ = A + ∇ϕ(r), with ϕ(r) a derivable function, will give
the same B.

10. Using the propriety of the Pauli matrices σ = (σ̂x, σ̂y, σ̂z)

(σ · a)(σ · b) = a · b+ iσ · (a× b)

with a,b vectors, show that the kinetic energy operator for an electron p̂2

2m
can be rewritten

as

(σ · p̂)2

2m

If a magnetic field is applied one must replace p̂ by p̂ + eA show that this replacement
substituted into the previous result leads to kinetic energy of the form

(p̂+ eA)2

2m
+ gµBB · Ŝ

where the g-factor in this case is g = 2. (Note: p̂ s an operator and will not commute
with A)
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solution using the commutation relations

[p̂α, p̂β] = 0 α, β ∈ {x, y, z}
{σ̂i, σ̂i} = 2δi,j1̂2 i, j ∈ {1, 2, 3}

One can calculate

(σ · p̂)2 = (σ̂1p̂x + σ̂2p̂y + σ̂3p̂z)
2

= σ̂2
1 p̂

2
x + σ̂2

2 p̂
2
y + σ̂2

3 p̂
2
z + {σ̂1, σ̂2}p̂xp̂y + {σ̂1, σ̂3}p̂xp̂z ++{σ̂2, σ̂3}p̂zp̂y

= p̂2x + p̂2y + p̂2z = p̂2

replacing p̂ by p̂+ eA

[σ · (p̂+ eA)]2

2m
= (2m)−1[(σ · p̂)2 + e(σ · p̂)(σ ·A) + e(σ ·A)(σ · p̂) + e2(σ ·A)2]

= (2m)−1[p̂2 +A2 + ep̂ ·A+ eA · p̂+ ieσ · (p̂×A) + ieσ · (A× p̂)]

= (2m)−1[(p̂+ eA)2 + ieσ(A× p̂+ p̂×A)]

To show that the second term correspond to the Zeeman term consider its action on a
wave function ψ

ie

2m
σ · (A× p̂+ p̂×A)ψ =

ℏe
2m

σ · [A×∇ψ +∇× (Aψ)]

= µBgŜ · [A×∇ψ + (∇×A)ψ −A×∇ψ]
= µBgŜ ·Bψ

with g = 2; Ŝ = σ/2 and we used the identity ∇× (Aψ) = (∇×A)ψ −A×∇ψ.

11. An electron in a magnetic field aligned along the z-direction has a Hamiltonian (energy)
operator

Ĥ = gµBBŜz

The time-dependent Schrödinger equation states that

Ĥψ(t) = iℏ
dψ

dt

So that

ψ(t) = exp{−iĤt/ℏ}ψ(0)
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Using the result from ex. 6 show that ψ(t) written as a spinor is

ψ(t) =

(
exp{−igµBBt/2ℏ} 0

0 exp{igµBBt/2ℏ}

)
ψ(0)

and using the results from ex. 8 show that this corresponds to the evolution of the spin
state in such a way that the expected value of θ is conserved but ϕ rotates with an
angular frequency given by geB/2m. This demonstrates that the phenomenon of Larmor
precession can also be derived from a quantum mechanical treatment.

solution Using the identity exp{iασ̂z} = 1̂2 cosα + iσ̂z sinα, and writing the initial
condition in the form

ψ(0) =

(
cos(θ0/2)

sin(θ0/2)e
iϕ0

)
one gets

ψ(t) = exp{−iĤt/ℏ}ψ(0)

= exp{−igµBBt/2ℏσ̂z}ψ(0)

= [1̂2 cos (gµBBt/2ℏ) + iσ̂z sin (gµBBt/2ℏ)]ψ(0)

=

cos (gµBBt/2ℏ) + i sin (gµBBt/2ℏ) 0

0 cos (gµBBt/2ℏ)− i sin (gµBBt/2ℏ)

ψ(0)

=

exp{−igµBBt/2ℏ} 0

0 exp{igµBBt/2ℏ}

ψ(0)

=

 e−igµBBt/2ℏ cos(θ0/2)

sin(θ0/2)e
iϕ0+igµBBt/2ℏ


Adjusting the phase so that the first component is real

ψ(t) =

 cos(θ0/2)

sin(θ0/2)e
iϕ0+igµBBt/ℏ


As shown in ex. 8 this correspond to the +1

2
eigenstate of the spin operator pointing in

the direction with polar angles θ0 and ϕ0 + gµBBt/ℏ. So the expectation value of the
spin along the field direction is conserved while the expectation value of the component
in the orthogonal plane rotates with angular frequency gµBB/ℏ = geB/2me
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