

Magnetism in materials

Solutions - Week 03

1. Let's assume that we have a 3d metal in a thetrahedral crystal.

- (a) Between the e_g orbitals and the t_{2g} orbitals, which one would have the highest energy due to the crystal field effect ?
- (b) Find the spin number S for all the 3d metal ($3d^0$ to $3d^{10}$) in the high spin and low spin case.

Solutions

- (a) The t_{2g} orbitals are closer to ligand, so their energy are higher then the orbitals e_g .
- (b) The spin distribution is as followed :

	d^0 $Sc^{2+}/Ti^{4+}/V^{2+}$	d^1 $Sc^{2+}/Ti^{3+}/V^{4+}/Cr^{3+}$	d^2 $Ti^{2+}/V^{3+}/Cr^{4+}$	d^3 $V^{2+}/Cr^{3+}/Mn^{3+}$	d^4 Cr^{2+}/Mn^{2+}	d^5 Mn^{2+}/Fe^{3+}	d^6 Fe^{2+}/Co^{3+}	d^7 Co^{2+}	d^8 Ni^{2+}	d^9 Cu^{2+}	d^{10} Zn^{2+}
High Spin	$S = 0$ ---	$S = 1/2$ ---	$S = 1$ ---	$S = 3/2$ +	$S = 2$ ++	$S = 5/2$ +++	$S = 2$ ++	$S = 3/2$ ++	$S = 1$ ++	$S = 1/2$ ++	$S = 0$ ++
Low Spin	$S = 0$ ---	$S = 1/2$ ---	$S = 1$ ---	$S = 1/2$ ++	$S = 0$ ++	$S = 1/2$ ++	$S = 1$ ++	$S = 3/2$ ++	$S = 1$ ++	$S = 1/2$ ++	$S = 0$ ++

Figure 1: Spin repartition for 3d metal in an thetrahedral crystal

2. Using the spin distribution for a octahedral crystal discussed in course (for a 3d metal), determine in which situation the geometry will change due to the Jahn-Teller effect.

Solutions The configuration with Jahn-Teller effect are mark with 'J-T' in Fig.2

- 3. A Sc^{2+} ion has one electron in the 3d shell. It is in an anisotropic crystal and the crystal field can be written as a potential acting on the 3d electron as $E = AL_z^2$. What are the lowest orbital states of the SC ion if $A > 0$ and $A < 0$?
The spin-orbit coupling λ is much smaller than the crystal field. When this is included, what are the approximate ground states of the ion, for $A > 0$ and $A < 0$?

d^0	d^1	d^2	d^3	d^4	d^5	d^6	d^7	d^8	d^9	d^{10}
$Sc^{3+}/Ti^{4+}/V^{5+}$	$Sc^{2+}/Ti^{3+}/V^{4+}/Cr^{5+}$	$Ti^{2+}/V^{2+}/Cr^{4+}$	$V^{3+}/Cr^{3+}/Mn^{4+}$	Cr^{2+}/Mn^{3+}	Mn^{2+}/Fe^{3+}	Fe^{2+}/Co^{3+}	Co^{2+}	Ni^{2+}	Cu^{2+}	Zn^{2+}
$S = 0$ J-T	$S = \frac{1}{2}$ J-T	$S = 1$ J-T	$S = 3/2$	$S = 2$ J-T	$S = 5/2$	$S = 2$ J-T	$S = 3/2$ J-T	$S = 1$	$S = \frac{1}{2}$ J-T	$S = 0$
---	---	---	---	+	+	+	+	+	+	+
---	+	+	+	+	+	+	+	+	+	+
				$S = 1$ J-T	$S = \frac{1}{2}$ J-T	$S = 0$	$S = \frac{1}{2}$ J-T			
				---	---	---	+	+	+	+
				+	+	+	+	+	+	+

Figure 2: Spin repartition for 3d metal in an octahedral crystal

Solution Sc^{2+} has one 3d electron($L=2, S = 1/2$) and has 5 orbital states characterized by $L_z = -2, -1, 0, 1, 2$. The corresponding energy level are then $E(L_z) = 4A, A, 0, A, 4A$. We will write a state with $|L_z, S_z\rangle$.

If $A > 0$ the lowest orbital states are $|0, \pm\frac{1}{2}\rangle$.

If $A < 0$ the lowest orbital states are $|2, \pm\frac{1}{2}\rangle$ and $|-2, \pm\frac{1}{2}\rangle$.

Now the spin-orbit energy is taken in account.

If $A > 0$ the ground states are $|0, \pm\frac{1}{2}\rangle$ since $\lambda L_z S_z = 0$ for both states.

If $A < 0$ the ground states are $|2, -\frac{1}{2}\rangle$ and $|-2, \frac{1}{2}\rangle$.

4. Vesta is a software used to visualized crystal structure. We will in this exercise use it to analyse $Ca_3Co_2O_6$ crystal. Download link, file and articles are all on moodle :

- Download and install [Vesta](#).
- Load the structure of $Ca_3Co_2O_6$.
- Determine the environment of Co ions and discuss possible arrangements of d-orbital.
- Compare the results obtained by measurements of susceptibility, magnetization and neutron diffraction.[1][2]

5. Let us consider a compound ML_6 where six ligands (L) occupy the vertices of an octahedron, and the metal ion (M) resides at the center. We establish a global right-handed coordinate system aligned with the diagonals of the tetrahedron.

One of the normal modes of vibration associated with ML_6 is the *symmetric stretching*, depicted in (a) where ligands move along the green arrows. The normal coordinate for this mode is given by:

$$Q_1 = \frac{1}{\sqrt{6}}(X_2 - X_5 + Y_3 - Y_6 + Z_1 - Z_4)$$

where (X_i, Y_i, Z_i) represent deviations of the ligands from their equilibrium positions. Q_1 equals zero when all ligands are in equilibrium, Q_1 is positive when ligands move outward, and negative when ligands move inward.

In (b) and (c), two additional normal modes termed *asymmetric stretching* are depicted. The green arrows illustrate ligand motion for these modes. Find the normal coordinates for them.

Solution For (b), the normal coordinate is given by

$$Q_2 = \frac{1}{2\sqrt{3}}(-X_2 + X_5 - Y_3 + Y_6 + 2Z_1 - 2Z_4).$$

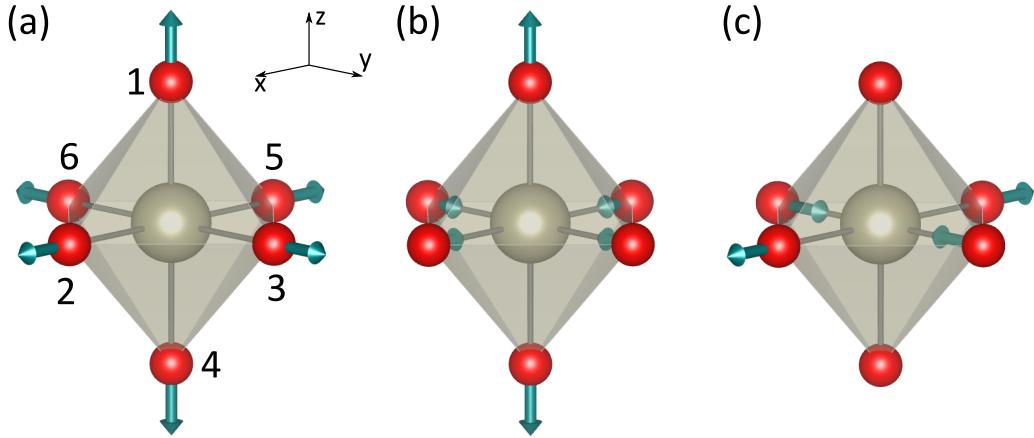


Figure 3: Normal modes of atoms in an octahedral complex ML_6 .

When ligands 2, 5, 3, 6 move inward (outward), and 1, 4 move outward (inward), $Q_2 > 0$ ($Q_2 < 0$).

The normal coordinate for (c) is given by

$$Q_3 = \frac{1}{\sqrt{6}}(X_2 - X_5 - Y_3 + Y_6).$$

In this case, ligands 1, 4 do not move. When ligands 3, 6 move inward (outward), and 2, 5 move outward (inward), $Q_3 > 0$ ($Q_3 < 0$).

Note: Generally, electronic states can couple to multiple normal modes or their linear combinations. To visualize this phenomenon, we can utilize the data and simulations provided in the file `Jahn_Teller.ipynb`. Specifically, we aim to depict the Mexican hat energy surface depicting the coupling between electronic states and the vibrational modes Q_2 and Q_3 , as introduced in the previous exercise, in the case of linear Jahn–Teller effect within the harmonic approximation.

References

- [1] A. Maignan, C. Michel, A. C. Masset, C. Martin, and B. Raveau. Single crystal study of the one dimensional $Ca_3Co_2O_6$ compound: five stable configurations for the ising triangular lattice. *The European Physical Journal B - Condensed Matter and Complex Systems*, 15(4):657–663, Jun 2000.
- [2] B. Haubackb S. Aasland, H. Fjellvag. Magnetic properties of the one-dimensional $Ca_3Co_2O_6$. *Solid State Communications*, 101(3):187–192, 1997.