
Magnetism in materials
solutions Week 08

1. The dependence of the resistivity (ρ) on temperature (T ), including the Kondo effect, is
written as:

ρ(T ) = ρ0 − µ ln(T ) + aT 5

where ρ0 is the residual resistivity, a is a constant independent of temperature, and
µ is proportional to the concentration of magnetic impurities. It has been found that
the electrical resistivity of dilute magnetic alloys shows a minimum at a characteristic
temperature. Use the above formula to find how the minimum of the electrical resistivity
behaves as a function of impurity concentration.

The following figure depicts the variation of resistivity of Cu diluted by Fe (the numbers
next to the plots show the impurity concentration). Can you qualitatively see if the
minimum of the resistivity shows the same behavior as you have found out?

Figure 1: Electrical resistivity of Cu with Fe as solute. The nominal atomic concentration of
Fe is indicated on each curve. (D.K.C. MacDonald, Thermoelectricity, Dover, 2006).

Solution The resistivity minimum can be determined by setting the derivative of resis-
tivity with respect to temperature equal to zero:

dρ(T )

dT
= −µ

T
+ 5aT 4 = 0

which leads to:
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Tmin =
( µ
5a

) 1
5
.

The temperature at which the electrical resistivity reaches a minimum varies as the one-
fifth power of the concentration of magnetic impurities. This observation aligns with
experimental findings, where qualitatively, Tmin decreases as the impurity concentration
decreases.

2. Consider a system composed of 2 ions and 2 electrons, described by the Hubbard model:

Ĥ = −t
∑
σ=↑,↓

(c†1σc2σ + c†2σc1σ) + U
∑
i=1,2

n̂i↑n̂i↓

where c†iσ denotes the electron creation operator at site i, and n̂iσ = c†iσciσ represents the
number operator. Determine the ground state energy and wavefunction of the system.
Discuss the behavior of the ground state energy as U/t→ 0 and U/t→ ∞.

Hint: Assume that ((due to some symmetry reasons) the ground state is symmetric with
one spin-up and one spin-down electron on each site, leading to a wavefunction of the
form:

|ψ⟩ = a(c†1↑c
†
1↓ + c†2↑c

†
2↓)|0⟩+ b(c†1↑c

†
2↓ + c†2↑c

†
1↓)|0⟩

Solution Using the ground state wavefunction form:

|ψ⟩ = a(c†1↑c
†
1↓ + c†2↑c

†
2↓)|0⟩+ b(c†1↑c

†
2↓ + c†2↑c

†
1↓)|0⟩

and asserting Ĥ|ψ⟩ = E|ψ⟩ leads to two equations:

(E − U)a+ 2tb = 0

and

2ta+ Eb = 0

Solving for E, we obtain two solutions for energy, with the lower energy representing the
ground state energy:

E0 =
1

2
(U −

√
U2 + 16t2)

and for the ground state wavefunction, a
b
= −E0

2t
.

In the limit U/t→ 0,

E0 ≈ −2t+
U

2
− U2

16t2
+ · · ·

and in the limit t/U → 0,

E0 ≈ −4t2

U
+ · · ·

In both cases, we perform a binomial expansion of
√
U2 + 16t2, one by assuming U ≪ t

and the other by assuming t≪ U .
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3. Show that the density of states at the Fermi energy levels in one dimension is given by

g(EF ) =
n

2EF

=
2m

ℏ2πkF
Show that the q-dependent susceptibility of the electron gas in one dimension is given by

χq = χP
kF
q

ln

∣∣∣∣q + 2kF
q − 2kF

∣∣∣∣ (1)

where χP =
g2µ0µ2

B

4
g(EF ) is the Pauli susceptibility

Solution Considering a sample of length L, each wavevector occupies in k-space a
”volume” 2π

L
, so calling N the number of states with wavevector |k0| < k, accounting for

the two possible spin states

dN =
2L

π
dk (2)

and normalizing per unit length

dn =
2

π
dk (3)

so that

n =

∫ kF

0

2

π
dk =

2

π
kF (4)

for a free electron gas

E =
ℏ2k2

2m
(5)

√
m

2E

dE

ℏ
= dk (6)

g(E) = g(k)
dk

dE
=

1

πℏ

√
2m

E
(7)

n =

∫ EF

0

g(E)dE =

√
2m

πℏ
2
√
EF (8)

so

g(E) =
n

2
√
EF

1√
E

(9)

g(EF ) =
n

2EF

=
2m

ℏ2πkF
(10)

When a spatially varying field of the kind H(r) = Hq cos(q · r) is applied, first order
perturbation theory gives two different wavefunctions for the electron with wavevector k
and spin pointing parallel ψk+ and antiparall ψk− to the field, The magnetization given
by electrons with such wavevector is found to be

3



Mk(r) =
gµ0µB

2
(|ψk+|2 − |ψk−|2) (11)

=
g2µ0µ

2
BmHq cos(q · r)

ℏ2L

[
1

(k+ q)2 − k2
+

1

(k− q)2 − k2

]
(12)

and integrating over all the occupied states

M(r) =Mq cos(q · r) (13)

with

Mq =
g2µ0µ

2
BmHq

ℏ2

∫
|k|<kF

g(k)

[
1

(k + q)2 − k2
+

1

(k − q)2 − k2

]
dk (14)

∫
|k|<kF

g(k)

[
1

(k + q)2 − k2
+

1

(k − q)2 − k2

]
dk = (15)

= 2

∫ kF

−kF

g(k)

(k + q)2 − k2
dk (16)

=

∫ kF

−kF

1

πq(q + 2k)
dk (17)

=
1

2qπ
[ln |q + 2kF ||kF−kF

(18)

=
1

2qπ
ln

∣∣∣∣q + 2kF
q − 2kF

∣∣∣∣ (19)

The q-dependent susceptibility is given by χq =Mq/Hq, so that

χq =
g2µ0µ

2
Bm

2qℏ2π
ln

∣∣∣∣q + 2kF
q − 2kF

∣∣∣∣ (20)

= χP
kF
q

ln

∣∣∣∣q + 2kF
q − 2kF

∣∣∣∣ (21)
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