MAGNETISM IN MATERIALS

Lecture 11: Experimental Techniques
NMR & uSR
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»* medicine, chemistry, physics,...different needs, different approaches
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s NMR-active nuclei
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Visualization of the T, and T, o
relaxation times.
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https://en.wikipedia.org/wiki/File:Proton_spin_MRI.webm
https://en.wikipedia.org/wiki/Nuclear_magnetic_resonance#Relaxation
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Spin echo animation showing the response of spins (red arrows) in
the blue Bloch sphere to the green pulse sequence



https://en.wikipedia.org/wiki/Spin_echo
https://en.wikipedia.org/wiki/Spin_echo

H = j’[n +:7'[n_n+ }[hf + }[EFG

l

electric-field gradient (charge distribution)

v

hyperfine interaction (multiple contributions)

v

indirect interaction between nuclear moments by electrons (usually safe to ignore)

v

Zeeman splitting (B, + screening of electrons in specific orbitals — chemical shift)
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H = j’[n +}[n_n+ }[hf + }[EFG

l

electric-field gradient (charge distribution)

v

hyperfine interaction (multiple contributions)

v

indirect interaction between nuclear moments by electrons (usually safe to ignore)

v

Zeeman splitting (B, + screening of electrons in specific orbitals — chemical shift)
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% uUSR facilities

HOME Communications Logistics orum CONTACT

Muon facilities osi
i« == E3

TRIUMF CMMS (Centre for Molecular & Materials Science
PSI LMU/SuS (Laboratory for Muon Spin Spectroscopy/Swiss Muon Source)

ISIS Muons & RIKEN-RAL Muon Facility

J-PARC MLF (Materials & Life Sciences Facility)
MuSIC (DC Muon Reseach Group, RCNP)
Project EMuS (Experimental Muon Source) at the Chinese Spallation Neutron Source CSNS (pulsed)

Project Muon Facility at the South Korean RAON (Rare Isotope Science Project) (DC)
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Forward detectors

Counts
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Backward detectors

Forward detectors
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asymmetry function
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Gaussian distribution
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Asymmetry: a, P
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Asymmetry: a, P
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PRL 98, 197203 (2007)
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magnetic order

PRL 98, 197203 (2007)
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