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 NMR

 µSR

EXPERIMENTAL TECHNIQUES



EXPERIMENTAL TECHNIQUES NMR

 medicine, chemistry, physics,…different needs, different approaches
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 NMR-active nuclei
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free induction decay

T1/T2 relaxation

https://en.wikipedia.org/wiki/File:Proton_spin_MRI.webm
https://en.wikipedia.org/wiki/Nuclear_magnetic_resonance#Relaxation
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ℋ = ℋ𝑛𝑛 + ℋ𝑛𝑛−𝑛𝑛 + ℋℎ𝑓𝑓 + ℋ𝐸𝐸𝐸𝐸𝐸𝐸

Zeeman splitting (B0 + screening of electrons in specific orbitals → chemical shift)

hyperfine interaction (multiple contributions)

indirect interaction between nuclear moments by electrons (usually safe to ignore)

electric-field gradient (charge distribution)
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ℋℎ𝑓𝑓 = −ℏ2𝛾𝛾𝑛𝑛𝛾𝛾𝑒𝑒
𝑰𝑰 � 𝑳𝑳
𝑟𝑟3 − ℏ2𝛾𝛾𝑛𝑛𝛾𝛾𝑒𝑒

𝑰𝑰 � 𝑺𝑺
𝑟𝑟3 − 3

𝑰𝑰 � 𝒓𝒓 𝑺𝑺 � 𝒓𝒓
𝑟𝑟5 + ℏ2𝛾𝛾𝑛𝑛𝛾𝛾𝑒𝑒

8𝜋𝜋
3 𝑰𝑰 � 𝑺𝑺𝛿𝛿(𝑟𝑟)

orbital effect dipolar effect Fermi contact

wave-function overlap 
(s-orbitals, metals)
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REFERENCE

DIAMAGNETS chemical shift
T-independent

PARAMAGNETS Knight shift
T-dependent 𝐾𝐾~𝜒𝜒

MoOPO4

FERROMAGNETS

presence of an 
internal field, 
possible even 
with B0 = 0

Phys.Rev. 140, A854 (1965)

CrI3
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𝑇𝑇1𝑇𝑇𝐾𝐾2 =

4𝜋𝜋𝑘𝑘𝐵𝐵
ℏ

𝛾𝛾𝑛𝑛
𝛾𝛾𝑒𝑒

2

Korringa relation (Fermi liquid)

deviations for correlated metals

Nature 434, 622 (2005)
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interstitial
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image source: wikimedia.org
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B

precession due to a local magnetic field

muon spin rotation

image source: wikimedia.org
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𝜇𝜇+ + 𝜈𝜈𝜇𝜇
spin antiparallel
to momentum

𝜇𝜇+
2.2𝜇𝜇𝜇𝜇

𝑒𝑒+ + 𝜈𝜈𝑒𝑒 + 𝜈𝜈𝜇𝜇

preferably in the direction of the muon spin

thermalization

𝐵𝐵 ≳ 0.1 G 𝜇𝜇 ≳ 0.001 𝜇𝜇𝐵𝐵

interstitial
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 µSR facilities
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𝑁𝑁𝐵𝐵 𝑡𝑡 − 𝑁𝑁𝐹𝐹 𝑡𝑡
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𝐴𝐴 𝑡𝑡 =
𝑁𝑁𝐵𝐵 𝑡𝑡 − 𝑁𝑁𝐹𝐹 𝑡𝑡
𝑁𝑁𝐵𝐵 𝑡𝑡 + 𝑁𝑁𝐹𝐹 𝑡𝑡

G 𝑡𝑡 = 𝐴𝐴(𝑡𝑡)/𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚
µ+

B

P(0)
θ
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G 𝑡𝑡 = cos𝜃𝜃 2 + sin𝜃𝜃 2 cos𝜔𝜔𝑡𝑡 𝜔𝜔 = 𝛾𝛾𝜇𝜇𝐵𝐵
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JPSJ 49, 1773 (1980)
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External magnetic field
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G 𝑡𝑡 = 𝑒𝑒−𝜆𝜆𝜆𝜆𝐺𝐺𝐾𝐾𝐾𝐾(𝑡𝑡)

nuclearelectronic

time-dependence 
of internal fields 
(fluctuations, µ-
diffusion)
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G 𝑡𝑡 = 𝑒𝑒−𝜆𝜆𝜆𝜆𝐺𝐺𝐾𝐾𝐾𝐾(𝑡𝑡)

nuclearelectronic

time-dependence 
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magnetic order

PRL 98, 197203 (2007)

YMnO3

 two muon stopping sites….but where exactly?

 typically 1 Å from oxygen (DFT)

 reverse-engineering the structure from dipole fields (~105 sites)
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