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Lecture 10: Experimental Techniques
Specific heat & ESR
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 specific heat

 ESR

EXPERIMENTAL TECHNIQUES



EXPERIMENTAL TECHNIQUES thermodynamics

 magnetization
 magnetic susceptibility
 (magnetic) specific heat

𝐹𝐹 =  … + 𝑀𝑀𝑀𝑀 + ⋯− 𝑇𝑇𝑇𝑇

𝐶𝐶𝑉𝑉 = −𝑇𝑇
𝜕𝜕2𝐹𝐹
𝜕𝜕𝑇𝑇2



EXPERIMENTAL TECHNIQUES thermodynamics

experiment

𝐶𝐶𝑝𝑝~
∆𝑇𝑇
∆𝑄𝑄
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 magnetization
 magnetic susceptibility
 (magnetic) specific heat

𝐹𝐹 =  … + 𝑀𝑀𝑀𝑀 + ⋯− 𝑇𝑇𝑇𝑇

𝐶𝐶𝑉𝑉 = −𝑇𝑇
𝜕𝜕2𝐹𝐹
𝜕𝜕𝑇𝑇2

𝐶𝐶𝑃𝑃 − 𝐶𝐶𝑉𝑉 = 𝑉𝑉𝑉𝑉
α2

β α =
1
𝑉𝑉

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 𝑃𝑃

β = −
1
𝑉𝑉

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 𝑇𝑇

constant volume is not feasible in solid state → CP



EXPERIMENTAL TECHNIQUES specific heat

thermal resistance

THERMAL BATH

H
EATER

TH
ER

M
O

M
ETER

SAMPLE

SAMPLE HOLDER

κe , τe

κi , τi



EXPERIMENTAL TECHNIQUES specific heat

thermal resistance

THERMAL BATH

H
EATER

TH
ER

M
O

M
ETER

SAMPLE

SAMPLE HOLDER

κe , τe

κi , τi

T

t

Tb

∆T ~ 1-2% Tb

ideal case: κe << κi



EXPERIMENTAL TECHNIQUES specific heat

thermal resistance

THERMAL BATH

H
EATER

TH
ER

M
O

M
ETER

SAMPLE

SAMPLE HOLDER

κe , τe

κi , τi

T

t

Tb

ideal case: κe << κi

real life: 2τ-method

∆T ~ 1-2% Tb



EXPERIMENTAL TECHNIQUES specific heat

thermal resistance
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ideal case: κe << κi

long-shot: 1st order

∆T ~ 1-2% Tb



EXPERIMENTAL TECHNIQUES specific heat

Ni3TeO6

 phase boundaries

𝐹𝐹 𝑀𝑀 = 𝐹𝐹0 + 𝑎𝑎0 𝑇𝑇 − 𝑇𝑇𝐶𝐶 𝑀𝑀2 + 𝑏𝑏𝑀𝑀4

𝜕𝜕𝐹𝐹
𝜕𝜕𝑀𝑀 = 0 𝑀𝑀 = 0

𝑀𝑀 = ±K 𝑇𝑇𝐶𝐶 − 𝑇𝑇

𝐶𝐶 = 𝐶𝐶0 + 𝑊𝑊𝑊𝑊 𝑇𝑇 < 𝑇𝑇𝑐𝑐

𝐶𝐶 = 𝐶𝐶0 𝑇𝑇 > 𝑇𝑇𝑐𝑐

∆𝐶𝐶|𝑇𝑇=𝑇𝑇𝑐𝑐 = 𝑊𝑊𝑇𝑇𝑐𝑐
(2nd order)



EXPERIMENTAL TECHNIQUES specific heat

Ni3TeO6

 phase boundaries

𝐶𝐶 = 𝐶𝐶0 + 𝑊𝑊𝑊𝑊 𝑇𝑇 < 𝑇𝑇𝑐𝑐

𝐶𝐶 = 𝐶𝐶0 𝑇𝑇 > 𝑇𝑇𝑐𝑐

∆𝐶𝐶|𝑇𝑇=𝑇𝑇𝑐𝑐 = 𝑊𝑊𝑇𝑇𝑐𝑐
(2nd order)

(1st order) → latent heat!
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 short-range correlations
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Dy2Ti2O7
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EXPERIMENTAL TECHNIQUES specific heat

 the ubiquitous contribution is coming from phonons

Debye limit

𝐶𝐶𝑉𝑉 = 9NR
𝑇𝑇
Θ𝐷𝐷

3

�
0

Θ𝐷𝐷
𝑇𝑇 𝑥𝑥4𝑒𝑒𝑥𝑥

𝑒𝑒𝑥𝑥 − 1 2 𝑑𝑑𝑑𝑑

Einstein limit

𝐶𝐶𝑉𝑉 = 3NR
Θ𝐸𝐸
𝑇𝑇

2 𝑒𝑒
Θ𝐸𝐸
𝑇𝑇

𝑒𝑒
Θ𝐸𝐸
𝑇𝑇 − 1

2

𝑇𝑇 ≫ Θ𝐷𝐷 → 𝐶𝐶𝑉𝑉 = 3NR

𝑇𝑇 ≪ Θ𝐷𝐷 →∼
𝑇𝑇
Θ𝐷𝐷

3

𝑇𝑇 ≪ Θ𝐸𝐸 →∼
Θ𝐸𝐸
𝑇𝑇

2

𝑒𝑒−
Θ𝐸𝐸
𝑇𝑇

𝑇𝑇 ≫ Θ𝐸𝐸 → 𝐶𝐶𝑉𝑉 = 3NR

Ni3TeO6
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𝑆𝑆 = �
𝐶𝐶𝑚𝑚
𝑇𝑇 𝑑𝑑𝑑𝑑 = 𝑅𝑅𝑅𝑅𝑅𝑅(2𝑆𝑆 + 1)
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Ctot = Cph + Cel + Cmag + Csch + Cnucl



EXPERIMENTAL TECHNIQUES resonances

 electron spin resonance (ESR/EPR)
 nuclear magnetic resonance (NMR/MRI)
 muon spin resonance (µSR)
 FMR, AFMR, Moessbauer,...

X-band: ~9 GHz (B~0.3 T)
K-band: ~24 GHz
Q-band: ~35 GHz
W-band: ~95 GHz

fix
ed

E

B

m = -1/2

m = 1/2

S = 1/2 hν

E

B

m = -1/2

m = 1/2

I = 1/2 hν
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B

mS = -1/2

mS = 1/2

S = 1/2 hν = geµBBmS

𝐵𝐵 = 𝐵𝐵𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚 sin𝜔𝜔𝜔𝜔

Bmod ~ 1 G

ω ~ 100 kHz
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� 𝐼𝐼 𝐵𝐵 𝑑𝑑𝑑𝑑~𝜒𝜒
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mS = -1/2

mS = 1/2

S = 1/2 hν = geµBBmS

𝐵𝐵 = 𝐵𝐵𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚 sin𝜔𝜔𝜔𝜔

Bmod ~ 1 G

ω ~ 100 kHz

𝐼𝐼(𝐵𝐵)

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

� 𝐼𝐼 𝐵𝐵 𝑑𝑑𝑑𝑑~𝜒𝜒

∆B ~ 1/T

T1 – spin-lattice/longitudinal relaxation 
(decay of population back to equilibrium)
T2 – spin-spin/transverse relaxation 
(decay of coherence between the spins)
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ℋ = ℋ𝑒𝑒 + ℋ𝑧𝑧𝑧𝑧𝑧𝑧 + ℋℎ𝑓𝑓 + ℋ𝑒𝑒𝑒𝑒

Zeeman splitting (g-tensor)

hyperfine interaction (element identification)

zero-field splitting (anisotropy)

exchange interaction (narrowing of line-widths)
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ℋ = ℋ𝑒𝑒 + ℋ𝑧𝑧𝑧𝑧𝑧𝑧 + ℋℎ𝑓𝑓 + ℋ𝑒𝑒𝑒𝑒

Zeeman splitting (g-tensor)

hyperfine interaction (element identification)
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3d (LS coupling)

𝑔𝑔𝑒𝑒 = 2.0023

𝑔̿𝑔 = 𝑔𝑔𝑒𝑒(�1 + 2𝜆𝜆�Λ) Λ𝑖𝑖𝑖𝑖 = �
𝑛𝑛≠0

𝜓𝜓0 𝐿𝐿𝑖𝑖 𝜓𝜓𝑛𝑛 𝜓𝜓𝑛𝑛 𝐿𝐿𝑗𝑗 𝜓𝜓0
𝐸𝐸0 − 𝐸𝐸𝑛𝑛

�𝐷𝐷 = 𝜆𝜆2�Λ
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𝑔𝑔𝑒𝑒 = 2.0023

𝑔̿𝑔 = 𝑔𝑔𝑒𝑒(�1 + 2𝜆𝜆�Λ) Λ𝑖𝑖𝑖𝑖 = �
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𝐸𝐸0 − 𝐸𝐸𝑛𝑛

�𝐷𝐷 = 𝜆𝜆2�Λ

𝑔̿𝑔 =
𝑔𝑔11 𝑔𝑔12 𝑔𝑔13
𝑔𝑔21 𝑔𝑔22 𝑔𝑔23
𝑔𝑔31 𝑔𝑔32 𝑔𝑔33

𝑔𝑔𝑥𝑥𝑥𝑥 0 0
0 𝑔𝑔𝑦𝑦𝑦𝑦 0
0 0 𝑔𝑔𝑧𝑧𝑧𝑧
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cubic
gxx = gyy = gzz

trigonal, tetragonal, hexagonal
gxx = gyy = g⊥ ≠ gzz = g||

orthorombic
gxx ≠ gyy ≠ gzz
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JMaterRes 7, 565 (1992)

Y2BaCuO5
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E

B

B || z

B ⊥ z
g⊥ > g|| also possible

JMaterRes 7, 565 (1992)

Y2BaCuO5

powder I

B

𝐼𝐼(𝐵𝐵)

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
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ℋ𝑧𝑧𝑧𝑧𝑧𝑧 = 𝑺𝑺�𝐷𝐷𝑺𝑺 = 𝐷𝐷𝑥𝑥𝑆𝑆𝑥𝑥2 + 𝐷𝐷𝑦𝑦𝑆𝑆𝑦𝑦2 + 𝐷𝐷𝑧𝑧𝑆𝑆𝑧𝑧2 = ⋯ = 𝐷𝐷 𝑆𝑆𝑧𝑧2 −
1
3
𝑆𝑆 𝑆𝑆 + 1 + 𝐸𝐸 𝑆𝑆𝑥𝑥2 − 𝑆𝑆𝑦𝑦2

𝐷𝐷 =
3
2
𝐷𝐷𝑧𝑧 𝐸𝐸 =

1
2
𝐷𝐷𝑥𝑥 − 𝐷𝐷𝑦𝑦
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ℋ𝑧𝑧𝑧𝑧𝑧𝑧 = 𝑺𝑺�𝐷𝐷𝑺𝑺 = 𝐷𝐷𝑥𝑥𝑆𝑆𝑥𝑥2 + 𝐷𝐷𝑦𝑦𝑆𝑆𝑦𝑦2 + 𝐷𝐷𝑧𝑧𝑆𝑆𝑧𝑧2 = ⋯ = 𝐷𝐷 𝑆𝑆𝑧𝑧2 −
1
3
𝑆𝑆 𝑆𝑆 + 1 + 𝐸𝐸 𝑆𝑆𝑥𝑥2 − 𝑆𝑆𝑦𝑦2

𝐷𝐷 =
3
2
𝐷𝐷𝑧𝑧 𝐸𝐸 =

1
2
𝐷𝐷𝑥𝑥 − 𝐷𝐷𝑦𝑦

-1/2

1/2

-1/2

1/2

-3/2

3/2

-1

0

1
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1
3
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𝐷𝐷 =
3
2
𝐷𝐷𝑧𝑧 𝐸𝐸 =

1
2
𝐷𝐷𝑥𝑥 − 𝐷𝐷𝑦𝑦

non-degenerate spin-states even for B = 0

-1/2

1/2

-1/2

1/2

-3/2

3/2

-1

0

1

𝐷𝐷

𝐸𝐸

∆𝑚𝑚𝑠𝑠 = ±1
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ℋℎ𝑓𝑓 = 𝑰𝑰𝐴̿𝐴𝑺𝑺
𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝐸𝐸 = 𝑔𝑔𝜇𝜇𝐵𝐵𝐵𝐵𝑚𝑚𝑆𝑆 + 𝐴𝐴𝑚𝑚𝑆𝑆𝑚𝑚𝐼𝐼

mS = -1/2

mS = 1/2
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ℋℎ𝑓𝑓 = 𝑰𝑰𝐴̿𝐴𝑺𝑺
𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝐸𝐸 = 𝑔𝑔𝜇𝜇𝐵𝐵𝐵𝐵𝑚𝑚𝑆𝑆 + 𝐴𝐴𝑚𝑚𝑆𝑆𝑚𝑚𝐼𝐼

mS = -1/2

mS = 1/2

I = 1/2

I = 1
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ℋ𝑒𝑒𝑒𝑒 = 𝐽𝐽𝑺𝑺𝟏𝟏𝑺𝑺𝟐𝟐

Bext

𝐵𝐵𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝐵𝐵𝑒𝑒𝑒𝑒𝑒𝑒 + �𝐵𝐵𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

at low T spins are less 
randomly oriented → 
exchange narrowing

image source: wikimedia.org
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 comparison with SQUID

SQUID ~ 10-8 emu

NMR ~ 10-10 emu

ESR ~ 10-15 emu

AdvMater 15, 1251 (2003)
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