MAGNETISM IN MATERIALS

Lecture 10: Experimental Techniques
Specific heat & ESR
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EXPERIMENTAL TECHNIQUES specific heat

¢ short-range correlations
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EXPERIMENTAL TECHNIQUES specific heat
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Magnetic properties of the heavy-fermion antiferromagnet CeMg;

Pranab Kumar Das, Neeraj Kumar, R. Kulkarni, and A. Thamizhavel

Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Homi Bhabha Road, 0.04 1
Colaba, Mumbai 400 005, India (a) 35 . ;

(Received 3 November 2010; revised manuscript received 6 February 2011; published 13 April 2011) H//[100]

We have grown the single crystals of CeMgs and its nonmagnetic analog LaMgs, which crystallize in the

cubic crystal structure with the space group Fm3m, and studied their magnetic properties on well-oriented single
crystals by measuring the magnetic susceptibility, magnetization, electrical resistivity, and heat capacity. CeMg;
orders antiferromagnetically with a Néel temperature Ty of 2.6 K. The specific heat capacity at low temperature 3
exhibits an enhanced Sommerfeld coefficient of 370 mJ/K? mol, indicating the heavy-fermion nature of CeMg.
An estimation of the Kondo temperature T was made and it was found that it is of a magnitude similar to that of Yo, 2 . ‘ .
Tx. The reduced value of the magnetization below the ordering temperature, together with the reduced entropy at I %Uoor%w 00 2 4 6 1
the magnetic ordering temperature and the enhanced low-temperature heat capacity, indicates that Kondo effect
plays a significant role in this compound. The electrical resistivity measurement suggests that CeMgs is a Kondo P N T S
lattice compound. We have performed a crystalline electric field (CEF) analysis on the magnetic susceptibility 0 100 200 300
and the heat capacity data and found that the ground state is a I'; doublet with an overall splitting of 191 K.
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electron spin resonance (ESR/EPR)
nuclear magnetic resonance (NMR/MRI)

muon spin resonance (USR)
FMR, AFMR, Moessbauer,...
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X-band: ~9 GHz (B~0.3 T)
K-band: ~24 GHz
Q-band: ~35 GHz
W-band: ~95 GHz
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EXPERIMENTAL TECHNIQUES

JMaterRes 7, 565 (1992)
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FIG. 2. EPR first-derivative spectra of powder samples of (a)
YBa;Cuz 075 (8 ~ 0.5) and (b} Y2BaCuOs at room temperature.
The microwave frequencies are approximately 9.162 GHz.
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= lsotropic
Hyr = IAS — FE = gugBmg + Amgm,
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comparison with SQUID

SQUID ~ 108 emu
NMR ~ 1019 emu

ESR~ 101 emu

AdvMater 15, 1251 (2003)
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