MAGNETISM IN MATERIALS

Lecture 9: Experimental Techniques
Magnetization & Susceptibility
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* sometimes a new field direction with new systems
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Observation of the Spin-Peierls Transition in Linear Cu?* (Spin- 3 ) Chains
in an Inorganic Compound CuGeQ; L
1400+ citations
Masashi Hase, Ichiro Terasaki, and Kunimitsu Uchinokura
Department of Applied Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113, Japan
(Received 4 January 1993)

The magnetic susceptibility of single-crystal CuGeOg, a linear Cu®* (spin- ) chain compound, was
measured. The susceptibilities in all the directions rapidly drop to small constant values with decreasing
temperature below a phase transition temperature near 14 K. The magnetic-ficld dependence of the
transition temperature quantitatively agrees with both theoretical predictions and experimental results
for organic spin-Peierls systems. This Letter is the first report of an unambiguous determination of the
existence of the spin-Peierls transition in an inorganic compound.
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Susceptibility (1072 emu/mole)
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EXPERIMENTAL TECHNIQUES

¢ superconducting quantum interference device
¢ converts nanoAmps to Volts

Josephson junction

Ipc = I¢sin(@1 — ¢3) AC:

V=w voltage-frequency converter



EXPERIMENTAL TECHNIQUES

¢ superconducting quantum interference device
¢ converts nanoAmps to Volts

VvV, VvV,
working point f' working point
> M >
| IDC —> ©
C
h —-15
D, = > = 2.068 - 10 Wb
Josephson junction [1T=1Wb/m?]
| S,
: d(p1— @) 2m
Inc = I¢ sin(@q1 — @3) AC: = V=w voltage-frequency converter



EXPERIMENTAL TECHNIQUES

detection
coils —

anon -

i vV =1 R
I cryostat S I out ~ 'COMP
VvV,
AD —> AV = Al oyp > AV =0
feedback loop keeps
the working point fixed
ML 100 kHz
IDC




EXPERIMENTAL TECHNIQUES SQUID

detection coils Z,

AVO uT ~ AD
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EXPERIMENTAL TECHNIQUES SQUID

detection coils Z,
VSM option

AVqyr ~ AD V = kz?




detection coils Z,

VSM option
A \
| AV~ AD V = kz?
. - \ sensitivity: 108 emu
S S
D

| / :
0




EXPERIMENTAL TECHNIQUES Cu-based VSM
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EXPERIMENTAL TECHNIQUES Cu-based VSM
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EXPERIMENTAL TECHNIQUES Cu-based VSM
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allows easy sample rotation
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ferromagnet

PHYSICAL REVIEW B 88, 144404 (2013)
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EXPERIMENTAL TECHNIQUES susceptibility

% dc=M/H
% ac=dM/dH
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s why/when AC?
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s why/when AC?
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s why/when AC?

Ep

T = TyekBT Arrhenius law

H(t) = Hy sin wt — % characteristic time-scale(s)

R/

VOLUME 79, NUMBER 25 PHYSICAL REVIEW LETTERS 22 DECEMBER 1997

Dynamics of an Interacting Particle System: Evidence of Critical Slowing Down

C. Djurberg, P. Svedlindh, and P. Nordblad
Department of Materials Science, Uppsala University, Box 334, §-751 21 Uppsala, Sweden

M. F. Hansen, F. Boedker, and S. Merup

Department of Physics, Building 307, Technical University of Denmark, DE-2800 Lyngby, Denmark
(Received 15 August 1997)

The dynamics of a magnetic particle system consisting of ultrafine Fe-C particles of monodisperse
nature has been investigated i a large time window. 10°7—10" s, using Méassbauer spectroscopy, ac
susceptibility, and zero field cooled magnetic relaxation measurements. By studying two samples from
the same dilution series. with concentrations of 3 and 6 X 10 * vol %. respectively, it has been found
that dipole-dipole interaction increases the characteristic relaxation time of the particle system at all
temperatures investigated. The results for the most concentrated particle assembly are mndicative of
collective magnetic dynamics and crifical slowmg down at a fimte temperature. T, = 40 K. Close
to and below the transition temperature, an aging phenomenon 15 observed, another manifestation of

collectrve magnetic dynammcs. [S0031-9007(97104826-6]
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s why/when AC?

H(t) = Hy sin wt

VOLUME 79, NUMBER 25
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Dynamics of an Interacting Particle System: Evidence of Critical Slowing Down
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s why/when AC?

H(t) = Hy sin wt — % characteristic time-scale(s)
¢ (spin-glass, superparamagnets, single-molecule magnets, domain walls,...)
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