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EXPERIMENTAL TECHNIQUES thermodynamics

 magnetization
 magnetic susceptibility
 (magnetic) specific heat
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𝜕𝜕𝜕𝜕 =
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𝜕𝜕𝐻𝐻2



EXPERIMENTAL TECHNIQUES thermodynamics

experiment

𝑀𝑀 = � ↑−� ↓
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EXPERIMENTAL TECHNIQUES magnetization

 stray fields
 non-selective (sample, background, impurities,…)
 ∆Φ-based
 90+% SQUID (the rest is induction in Cu-coils)
 most often a simple characterization technique
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 stray fields
 non-selective (sample, background, impurities,…)
 ∆Φ-based
 90+% SQUID (the rest is induction in Cu-coils)
 most often a simple characterization technique
 sometimes a new field direction with new systems

1400+ citations

3500+ citations



EXPERIMENTAL TECHNIQUES SQUID

 superconducting quantum interference device
 converts nanoAmps to Volts

IDC

Josephson junction

S1 S2I

𝐼𝐼𝐷𝐷𝐷𝐷 = 𝐼𝐼𝐶𝐶 sin 𝜑𝜑1 − 𝜑𝜑2
𝜕𝜕 𝜑𝜑1 − 𝜑𝜑2

𝜕𝜕𝜕𝜕
=

2𝜋𝜋
Φ0

𝑉𝑉 = 𝜔𝜔 voltage-frequency converterAC:



EXPERIMENTAL TECHNIQUES SQUID

 superconducting quantum interference device
 converts nanoAmps to Volts

V

IDCIC

working point

V

Φ

working point

IDC

[1 T = 1 Wb/m2]Josephson junction

S1 S2I

𝐼𝐼𝐷𝐷𝐷𝐷 = 𝐼𝐼𝐶𝐶 sin 𝜑𝜑1 − 𝜑𝜑2
𝜕𝜕 𝜑𝜑1 − 𝜑𝜑2

𝜕𝜕𝜕𝜕
=

2𝜋𝜋
Φ0

𝑉𝑉 = 𝜔𝜔

Φ0 =
ℎ
2𝑒𝑒 = 2.068 � 10−15 Wb

voltage-frequency converterAC:



EXPERIMENTAL TECHNIQUES SQUID

cryostat

R

Vout = ICOMPR

detection
coils

V

IDCIC

100 kHz

IDC+

∆Φ→ ∆V →∆ICOMP →∆V = 0

ICOMP

compensation
coils

feedback loop keeps 
the working point fixed
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detection coils

VOUT

z

∆VOUT ~ ∆Φ

~𝑚𝑚

MPMS
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EXPERIMENTAL TECHNIQUES SQUID

detection coils

VOUT

z

∆VOUT ~ ∆Φ

VSM option

𝑉𝑉 = 𝑘𝑘𝑧𝑧2

~𝑚𝑚

sensitivity: 10-8 emu

MPMS



EXPERIMENTAL TECHNIQUES Cu-based VSM

z

V

z

V



EXPERIMENTAL TECHNIQUES Cu-based VSM

V

V

quasi-linear

z(t) = z0sin ωt

V(t) = V0sin ωt

∝ M(T,H)



EXPERIMENTAL TECHNIQUES Cu-based VSM

V

BDC



EXPERIMENTAL TECHNIQUES Cu-based VSM

V

z(t) = z0sin ωtBDC

allows easy sample rotation

V(t) = V0sin 2ωt



EXPERIMENTAL TECHNIQUES Cu-based VSM

V

z(t) = z0sin ωtBDC

allows easy sample rotation

V(t) = V0sin 2ωt

sensitivity: 10-6 emu
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ferromagnet

Co3Sn2S2
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EXPERIMENTAL TECHNIQUES examples

antiferromagnet

spin-glass
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 dc = M/H
 ac = dM/dH

M

H

χDC

χAC
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M

H
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A

B
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B
VTOT = VA – VB ∝ ωH0χAC



EXPERIMENTAL TECHNIQUES susceptibility

 dc = M/H
 ac = dM/dH

M

H

χDC

χAC

dc field coils

ac field coils

H(t) = H0sin ωt

detection coils

no sample

A

B
VTOT = VA – VB = 0

with sample

A

B
VTOT = VA – VB ∝ ωH0χAC

SQUID-based ac



EXPERIMENTAL TECHNIQUES susceptibility

 phase issues

dc field coils

ac field coils

H(t) = H0sin ωt

detection coils

χAC = χ' + iχ''
=
energy dissipation > 0

correct phase

+ 0.2deg
no sample

A

B
VTOT = VA – VB = 0

with sample

A

B
VTOT = VA – VB ∝ ωH0χAC



EXPERIMENTAL TECHNIQUES susceptibility

 why/when AC?

𝐵𝐵 = 0

Co3Sn2S2

 critical behavior
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EXPERIMENTAL TECHNIQUES susceptibility

 why/when AC?

𝐻𝐻(𝑡𝑡) = 𝐻𝐻0 sin𝜔𝜔𝑡𝑡  characteristic time-scale(s)
 (spin-glass, superparamagnets, single-molecule magnets, domain walls,…)

𝜏𝜏 = 𝜏𝜏0𝑒𝑒
𝐸𝐸𝐵𝐵
𝑘𝑘𝐵𝐵𝑇𝑇 Arrhenius law
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𝜏𝜏 = 𝜏𝜏0𝑒𝑒
𝐸𝐸𝐵𝐵
𝑘𝑘𝐵𝐵𝑇𝑇 Arrhenius law

𝜏𝜏 = 𝜏𝜏0𝑒𝑒
𝐸𝐸𝐵𝐵

𝑘𝑘𝐵𝐵(𝑇𝑇−𝑇𝑇0)



EXPERIMENTAL TECHNIQUES susceptibility

 why/when AC?

𝐻𝐻(𝑡𝑡) = 𝐻𝐻0 sin𝜔𝜔𝑡𝑡  characteristic time-scale(s)
 (spin-glass, superparamagnets, single-molecule magnets, domain walls,…)

Ca3Co2O6



EXPERIMENTAL TECHNIQUES susceptibility

 why/when AC?

𝐻𝐻(𝑡𝑡) = 𝐻𝐻0 sin𝜔𝜔𝑡𝑡  characteristic time-scale(s)
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