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ITINERANT MAGNETISM

s g-dependence

** spin-density wave
s RKKY

¢ Kondo effect
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ITINERANT MAGNETISM g-dependence
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ITINERANT MAGNETISM g-dependence
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ITINERANT MAGNETISM spin-density wave

¢ Stoner criterion with g-dependence
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ITINERANT MAGNETISM spin-density wave

¢ Stoner criterion with g-dependence
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1D: Kohn anomaly (gap at the Fermi surface)
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of various dimensions

J.Phys.Condens.Matter 19, 19 (2007)



ITINERANT MAGNETISM
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reduced local field
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chromium: Tgp,,, = 310K

Rev.Mod.Phys. 60, 209 (1988)
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+* Ruderman-Kittel-Kasuya-Yosida interaction
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+* limited at high g/small distances
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typical resistivity of metals:  p(T) = py + AT? + ppp,

PRL 97, 226804 (2006)
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ITINERANT MAGNETISM Kondo effect

typical resistivity of metals:  p(T) = py + AT* + pyp,

1934: resistance minimum in gold

1964: Kondo effect ~ log(T)
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ITINERANT MAGNETISM Kondo effect
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ITINERANT MAGNETISM Kondo effect

typical resistivity of metals:  p(T) = py + AT* + pyp,
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ITINERANT MAGNETISM Kondo effect
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typical resistivity of metals:  p(T) = py + AT? + ppp,

1934: resistance minimum in gold

1964: Kondo effect ~ log(T)
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+* low concentration of impurities

103 x (emu/gm Ce)
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** low concentration of impurities
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% concentration > 1
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% concentration > 1

JPSJ 54,1923 (1985)
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ITINERANT MAGNETISM the Hubbard model
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