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 q-dependence

 spin-density wave

 RKKY

 Kondo effect

 Hubbard model

ITINERANT MAGNETISM



ITINERANT MAGNETISM q-dependence

ℋ =
𝒑𝒑2

2𝑚𝑚𝑒𝑒
ℋψ𝒌𝒌± = 𝐸𝐸ψ𝒌𝒌± ψ𝒌𝒌± 𝒓𝒓 =

1
𝑉𝑉
𝑒𝑒𝑖𝑖𝒌𝒌𝒌𝒌| ⟩±



ITINERANT MAGNETISM q-dependence

spatially varying magnetic field: 𝑯𝑯 𝒓𝒓 = 𝑯𝑯𝒒𝒒 cos𝒒𝒒𝒒𝒒 ℋ𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
′ = ±

1
2
𝑔𝑔𝜇𝜇0𝜇𝜇𝐵𝐵 𝑯𝑯𝒒𝒒 cos𝒒𝒒𝒒𝒒

ℋ =
𝒑𝒑2

2𝑚𝑚𝑒𝑒
ℋψ𝒌𝒌± = 𝐸𝐸ψ𝒌𝒌± ψ𝒌𝒌± 𝒓𝒓 =

1
𝑉𝑉
𝑒𝑒𝑖𝑖𝒌𝒌𝒌𝒌| ⟩±

ℋ𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
′

ψ(𝒌𝒌+𝒒𝒒)± 𝒓𝒓 =
1
𝑉𝑉
𝑒𝑒𝑖𝑖(𝒌𝒌+𝒒𝒒)𝒓𝒓| ⟩±

ψ(𝒌𝒌−𝒒𝒒)± 𝒓𝒓 =
1
𝑉𝑉
𝑒𝑒𝑖𝑖(𝒌𝒌−𝒒𝒒)𝒓𝒓| ⟩±
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1
2
𝑔𝑔𝜇𝜇0𝜇𝜇𝐵𝐵 𝑯𝑯𝒒𝒒 cos𝒒𝒒𝒒𝒒

ℋ =
𝒑𝒑2

2𝑚𝑚𝑒𝑒
ℋψ𝒌𝒌± = 𝐸𝐸ψ𝒌𝒌± ψ𝒌𝒌± 𝒓𝒓 =

1
𝑉𝑉
𝑒𝑒𝑖𝑖𝒌𝒌𝒌𝒌| ⟩±

ℋ𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
′

ψ(𝒌𝒌+𝒒𝒒)± 𝒓𝒓 =
1
𝑉𝑉
𝑒𝑒𝑖𝑖(𝒌𝒌+𝒒𝒒)𝒓𝒓| ⟩±

ψ(𝒌𝒌−𝒒𝒒)± 𝒓𝒓 =
1
𝑉𝑉
𝑒𝑒𝑖𝑖(𝒌𝒌−𝒒𝒒)𝒓𝒓| ⟩±

ψ𝒌𝒌± 𝒓𝒓 =
1
𝑉𝑉
𝑒𝑒𝑖𝑖𝒌𝒌𝒌𝒌 ±

1
4𝑔𝑔𝜇𝜇0𝜇𝜇𝐵𝐵 𝑯𝑯𝒒𝒒

𝑒𝑒𝑖𝑖(𝒌𝒌+𝒒𝒒)𝒓𝒓

𝐸𝐸𝒌𝒌+𝒒𝒒 − 𝐸𝐸𝒌𝒌
+

𝑒𝑒𝑖𝑖(𝒌𝒌−𝒒𝒒)𝒓𝒓

𝐸𝐸𝒌𝒌−𝒒𝒒 − 𝐸𝐸𝒌𝒌
cos𝒒𝒒𝒒𝒒 | ⟩±

ψ𝒌𝒌± 𝒓𝒓 2 =
1
𝑉𝑉

1 ±
1
ℏ2
𝑚𝑚𝑒𝑒𝑔𝑔𝜇𝜇0𝜇𝜇𝐵𝐵 𝑯𝑯𝒒𝒒

1
𝒌𝒌 + 𝒒𝒒 2 − 𝑘𝑘2 +

1
𝒌𝒌 − 𝒒𝒒 2 − 𝑘𝑘2 cos𝒒𝒒𝒒𝒒

𝑯𝑯𝒒𝒒 ≪ keeping only linear terms



ITINERANT MAGNETISM q-dependence

ψ𝒌𝒌± 𝒓𝒓 2 =
1
𝑉𝑉

1 ±
1
ℏ2
𝑚𝑚𝑒𝑒𝑔𝑔𝜇𝜇0𝜇𝜇𝐵𝐵 𝑯𝑯𝒒𝒒

1
𝒌𝒌 + 𝒒𝒒 2 − 𝑘𝑘2 +

1
𝒌𝒌 − 𝒒𝒒 2 − 𝑘𝑘2 cos𝒒𝒒𝒒𝒒

𝑀𝑀 𝒓𝒓 =
𝑔𝑔𝜇𝜇0𝜇𝜇𝐵𝐵

2 ψ𝒌𝒌+ 𝒓𝒓 2 − ψ𝒌𝒌− 𝒓𝒓 2 = 𝑀𝑀𝒒𝒒 cos𝒒𝒒𝒒𝒒

𝑀𝑀𝒒𝒒 =
𝑚𝑚𝑒𝑒𝑔𝑔2𝜇𝜇0𝜇𝜇𝐵𝐵2 𝑯𝑯𝒒𝒒

𝑉𝑉ℏ2 �
0

𝒌𝒌 <𝑘𝑘𝐹𝐹 1
𝒌𝒌 + 𝒒𝒒 2 − 𝑘𝑘2 +

1
𝒌𝒌 − 𝒒𝒒 2 − 𝑘𝑘2 𝑔𝑔 𝒌𝒌 𝑑𝑑3𝒌𝒌 𝑔𝑔 𝑘𝑘 𝑑𝑑𝑑𝑑~𝑘𝑘2𝑑𝑑𝑑𝑑

𝑀𝑀𝒒𝒒 =
𝑘𝑘𝐹𝐹𝑚𝑚𝑒𝑒𝑔𝑔2𝜇𝜇0𝜇𝜇𝐵𝐵2 𝑯𝑯𝒒𝒒

𝜋𝜋2ℏ2 1 +
4𝑘𝑘𝐹𝐹2 − 𝑞𝑞2

4𝑘𝑘𝐹𝐹𝑞𝑞
log

𝑞𝑞 + 2𝑘𝑘𝐹𝐹
𝑞𝑞 − 2𝑘𝑘𝐹𝐹



ITINERANT MAGNETISM q-dependence

𝑀𝑀𝒒𝒒 =
𝑘𝑘𝐹𝐹𝑚𝑚𝑒𝑒𝑔𝑔2𝜇𝜇0𝜇𝜇𝐵𝐵2 𝑯𝑯𝒒𝒒

𝜋𝜋2ℏ2 1 +
4𝑘𝑘𝐹𝐹2 − 𝑞𝑞2

4𝑘𝑘𝐹𝐹𝑞𝑞
log

𝑞𝑞 + 2𝑘𝑘𝐹𝐹
𝑞𝑞 − 2𝑘𝑘𝐹𝐹

𝑴𝑴𝒒𝒒 = χ𝒒𝒒𝑯𝑯𝒒𝒒 χ𝒒𝒒 = χ𝑃𝑃𝐹𝐹
𝑞𝑞

2𝑘𝑘𝐹𝐹
𝐹𝐹 𝑥𝑥 =

1
2 1 +

1 − 𝑥𝑥2

2𝑥𝑥
ln

𝑥𝑥 + 1
𝑥𝑥 − 1

Pauli paramagnetism



ITINERANT MAGNETISM q-dependence

𝑀𝑀𝒒𝒒 =
𝑘𝑘𝐹𝐹𝑚𝑚𝑒𝑒𝑔𝑔2𝜇𝜇0𝜇𝜇𝐵𝐵2 𝑯𝑯𝒒𝒒

𝜋𝜋2ℏ2 1 +
4𝑘𝑘𝐹𝐹2 − 𝑞𝑞2

4𝑘𝑘𝐹𝐹𝑞𝑞
log

𝑞𝑞 + 2𝑘𝑘𝐹𝐹
𝑞𝑞 − 2𝑘𝑘𝐹𝐹

𝑴𝑴𝒒𝒒 = χ𝒒𝒒𝑯𝑯𝒒𝒒 χ𝒒𝒒 = χ𝑃𝑃𝐹𝐹
𝑞𝑞

2𝑘𝑘𝐹𝐹
𝐹𝐹 𝑥𝑥 =

1
2 1 +

1 − 𝑥𝑥2

2𝑥𝑥
ln

𝑥𝑥 + 1
𝑥𝑥 − 1

Pauli paramagnetism

χ𝒒𝒒 = −
1
3 χ𝑃𝑃𝐺𝐺

𝑞𝑞
2𝑘𝑘𝐹𝐹

Landau diamagnetism



ITINERANT MAGNETISM spin-density wave

 Stoner criterion with q-dependence

χ𝒒𝒒 = 𝜒𝜒𝒒𝒒0 = χ𝑃𝑃𝐹𝐹
𝑞𝑞

2𝑘𝑘𝐹𝐹
𝜒𝜒𝒒𝒒0

1 − 1
𝜇𝜇0𝜇𝜇𝐵𝐵2

𝑈𝑈𝜒𝜒𝒒𝒒0 q = 0 q = π/a

FM AFM
SDW
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 Stoner criterion with q-dependence

χ𝒒𝒒 = 𝜒𝜒𝒒𝒒0 = χ𝑃𝑃𝐹𝐹
𝑞𝑞

2𝑘𝑘𝐹𝐹
𝜒𝜒𝒒𝒒0

1 − 1
𝜇𝜇0𝜇𝜇𝐵𝐵2

𝑈𝑈𝜒𝜒𝒒𝒒0 q = 0 q = π/a

FM AFM
SDW

Scientific American 270, 50 (1994)



ITINERANT MAGNETISM spin-density wave

1D: Kohn anomaly (gap at the Fermi surface)

J.Phys.Condens.Matter 19, 19 (2007)



ITINERANT MAGNETISM spin-density wave

1D: Kohn anomaly (gap at the Fermi surface)

pairing total spin total 
momentum

broken 
symmetry

collective 
excitations

singlet SC e--e- 0 0 gauge gapped

triplet SC e--e- 1 0 gauge ?

CDW e--h+ 0 2kF translation phasons
amplitudons

SDW e--h+ 1 2kF translation phasons
magnons

Δ𝑇𝑇=0 = 2𝐸𝐸𝐹𝐹𝑒𝑒
− 1
𝑈𝑈𝑈𝑈(𝐸𝐸)

2Δ = 3.52𝑘𝑘𝐵𝐵𝑇𝑇𝐶𝐶

BCS



ITINERANT MAGNETISM spin-density wave

Rev.Mod.Phys. 66, 1 (1994)



ITINERANT MAGNETISM spin-density wave

chromium: TSDW = 310K

Rev.Mod.Phys. 60, 209 (1988)

PRB 23, 4977 (1981)



ITINERANT MAGNETISM RKKY

 Ruderman-Kittel-Kasuya-Yosida interaction

 response to a delta-function perturbation (nuclear moments, impurities)

 limited at high q/small distances

𝑯𝑯 𝒓𝒓 = 𝑯𝑯𝛿𝛿(𝒓𝒓)

𝑅𝑅(𝑥𝑥) =
−𝑥𝑥 cos𝑥𝑥 + sin 𝑥𝑥

𝑥𝑥4χ(𝒓𝒓) =
1

2𝜋𝜋 3 �𝜒𝜒𝒒𝒒𝑒𝑒𝑖𝑖𝒒𝒒𝒒𝒒𝑑𝑑3𝒒𝒒~χ𝑃𝑃𝑅𝑅 2𝑟𝑟𝑘𝑘𝐹𝐹

 charge channel → Friedel oscillations
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ITINERANT MAGNETISM Kondo effect

typical resistivity of metals: 𝜌𝜌 𝑇𝑇 = 𝜌𝜌0 + 𝐴𝐴𝑇𝑇2 + 𝜌𝜌𝑝𝑝𝑝

1934: resistance minimum in gold

1964: Kondo effect ~ log(T)

PRL 97, 226804 (2006)
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typical resistivity of metals: 𝜌𝜌 𝑇𝑇 = 𝜌𝜌0 + 𝐴𝐴𝑇𝑇2 + 𝜌𝜌𝑝𝑝𝑝

1934: resistance minimum in gold

1964: Kondo effect ~ log(T)

g(E)

E

EF

E4f

V

empty but close to EF
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E

EF

E4f
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ITINERANT MAGNETISM Kondo effect

typical resistivity of metals: 𝜌𝜌 𝑇𝑇 = 𝜌𝜌0 + 𝐴𝐴𝑇𝑇2 + 𝜌𝜌𝑝𝑝𝑝

1934: resistance minimum in gold

1964: Kondo effect ~ log(T)

g(E)

E

EF

E4f

~
1

𝐸𝐸4𝑓𝑓 − 𝐸𝐸𝐹𝐹 + 𝑈𝑈𝑓𝑓
𝐽𝐽 =

2𝑉𝑉2𝑈𝑈
𝐸𝐸𝐹𝐹 − 𝐸𝐸4𝑓𝑓 𝐸𝐸4𝑓𝑓 − 𝐸𝐸𝐹𝐹 + 𝑈𝑈𝑓𝑓TK

𝑇𝑇𝐾𝐾~𝐸𝐸𝐹𝐹𝑒𝑒
− 1
𝐽𝐽 𝑔𝑔(𝐸𝐸𝐹𝐹)

Kondo temperature

not a phase transition!

ℋ = 𝐽𝐽𝝈𝝈𝝈𝝈



ITINERANT MAGNETISM Kondo effect

 low concentration of impurities
PRL 20, 1348 (1968)

𝜒𝜒 =
𝐶𝐶
𝑇𝑇

𝜒𝜒~
𝐶𝐶
𝑇𝑇

𝑇𝑇
𝑇𝑇𝐾𝐾



ITINERANT MAGNETISM Kondo effect

 low concentration of impurities
PRL 20, 1348 (1968)

 singlet

 large effective mass
𝜒𝜒 =

𝐶𝐶
𝑇𝑇

𝜒𝜒~
𝐶𝐶
𝑇𝑇

𝑇𝑇
𝑇𝑇𝐾𝐾



ITINERANT MAGNETISM Kondo lattice/heavy fermion

 concentration → 1

JPSJ 54, 1923 (1985)

𝑇𝑇𝐾𝐾~𝐸𝐸𝐹𝐹𝑒𝑒
− 1
𝐽𝐽 𝑔𝑔(𝐸𝐸𝐹𝐹)

𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅~
𝐽𝐽2

𝐸𝐸𝐹𝐹
cos 2𝑘𝑘𝐹𝐹𝑟𝑟

𝑟𝑟3

𝑓𝑓 𝐸𝐸𝐹𝐹 − 𝐸𝐸4𝑓𝑓

Khomskii (2014)

image source: wikimedia.org
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 concentration → 1

JPSJ 54, 1923 (1985)

𝑇𝑇𝐾𝐾~𝐸𝐸𝐹𝐹𝑒𝑒
− 1
𝐽𝐽 𝑔𝑔(𝐸𝐸𝐹𝐹)

𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅~
𝐽𝐽2

𝐸𝐸𝐹𝐹
cos 2𝑘𝑘𝐹𝐹𝑟𝑟

𝑟𝑟3

𝑓𝑓 𝐸𝐸𝐹𝐹 − 𝐸𝐸4𝑓𝑓

Khomskii (2014)

image source: wikimedia.org

Cerium:

volume collapse due to 4f electron becoming delocalized



ITINERANT MAGNETISM the Hubbard model

Na: 1s22s22p63s1

d

E

3s1

2p6

2s2

d0

individual atoms, well separated, but still ‘half-filled band’?

t

insulator
metal

𝑈𝑈3𝑠𝑠
𝑡𝑡3𝑠𝑠

AFM

𝐻𝐻 = −𝑡𝑡3𝑠𝑠�
𝑖𝑖,𝜎𝜎

𝑐𝑐𝑖𝑖𝜎𝜎
ϯ 𝑐𝑐𝑖𝑖+1𝜎𝜎 + 𝐻𝐻. 𝑐𝑐. + 𝑈𝑈3𝑠𝑠�

𝑖𝑖

𝑛𝑛𝑖𝑖↑𝑛𝑛𝑖𝑖↓

what happens with doping?



ITINERANT MAGNETISM the Hubbard model

J. Phys. Soc. Jpn. 67, 2582 (1998)

doping → FM

→ phase separation



ITINERANT MAGNETISM the Hubbard model

J. Phys. Soc. Jpn. 67, 2582 (1998)

doping → FM

→ phase separation

image source: wikimedia.org
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