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ITINERANT MAGNETISM

» elemental magnets

** free electron model

+%* Pauli paramagnetism

** spontaneous band polarization

% Landau levels



ITINERANT MAGNETISM elemental magnets
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ENERGY (RYDBERG)

Phys. Rev. B 16, 2095 (1977) J. Appl. Phys. 50, 7423 (1979)
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** ignoring the periodic potential of the lattice
¢ at T=0 states are filled up to k. (spherical symmetry)

up/down

spherical
4tk2dk  shell
g(k)dk = 2 — E,
(T) volume of
one k-point
g(E)~VE
dm, k "
g(Ep) = hez d g(E)
2/3



¢ applied field raises one sub-band and lowers the other
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% itinerant vs localized behavior
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+* on-site repulsion U has to be considerable
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Stoner criterion
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+* on-site repulsion U has to be considerable
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ITINERANT MAGNETISM spontaneous band polarization

s pressure effect

PHYSICAL REVIEW B 105, 024404 (2022)

Pressure-induced collapse of ferromagnetism in nickel
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ITINERANT MAGNETISM spontaneous band polarization

s pressure effect
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» ‘non-magnetic’ ferromagnets

PHYSICAL REVIEW B 72, 184436 (2005)

Ferromagnetic properties of ZrZn,
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H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 ITL, United Kingdom

(Received 15 August 2005; revised manuscript received 14 October 2005; published 30 November 2005)
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** non-Fermi liquid behavior

Marginal breakdown of the Fermi-liquid state
on the border of metallic ferromagnetism

R. P. Smith & M. Sutherland, G. G. Lonzarich, S. S. Saxena, N. Kimura, S. Takashima, M.

Nohara & H. Takagi

Nature 455, 1220-1223 (2008) ‘ Cite this article
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** non-Fermi liquid behavior
Nohara & H. Takagi
Nature 455, 1220-1223 (2008) ‘ Cite this article
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non-Fermi liquid behavior

Non-Fermi-liquid nature of the normal state of
itinerant-electron ferromagnets
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ITINERANT MAGNETISM spontaneous-bandpolarization
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** non-Fermi liquid behavior

VOLUME 85, NUMBER 9 FHYSICAL REVIEW LETTERS 28 AuGusT 2000

Pressure Induced Quantum Critical Point and Non-Fermi-Liquid Behavior in BaVS;
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+» orbital contribution of itinerant electrons when B>0
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ITINERANT MAGNETISM ERLETRIEYES
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ITINERANT MAGNETISM ERLETRIEYES
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