MAGNETISM IN MATERIALS

Lecture 6: Magnetic Ordering (cont.)
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MAGNETIC ORDERING

s antiferromagnetism
% ferrimagnetism
% incommensurate order

% spin-glass
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s paramagnet — Curie law ¢ general approach
s ferromagnet — Curie-Weiss law
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¢ very anisotropic magnetic response (susceptibility) below T
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% very anisotropic magnetic response (susceptibility) below Ty
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** anisotropy energy
% in the simplest form: E = Acos?a
+* origin in SOC
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¢ very anisotropic magnetic response (susceptibility) below T
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¢ very anisotropic magnetic response (susceptibility) below T
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*¢* RE = Ho (c-axis anisotropy) a ferromagnet with Tc=1.5K
*¢* RE = Er (ab-plane anisotropy) an antiferromagnet with Tc=0.38K
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*¢* RE = Ho (c-axis anisotropy) a ferromagnet with Tc=1.5K
*¢* RE = Er (ab-plane anisotropy) an antiferromagnet with Tc=0.38K
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*¢* RE = Ho (c-axis anisotropy) a ferromagnet with Tc=1.5K
*¢* RE = Er (ab-plane anisotropy) an antiferromagnet with Tc=0.38K

% transverse field induced QPT Kramers theorem:

levels with half-integer spins
TABLE VII, Energies and wave functions for the crystal levels of Ho are at least dou b|y degenerate
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MAGNETIC ORDERING antiferromagnetism

G-type AFM

A-type AFM (FM planes)

C-type AFM (FM chains)
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REVIEW ARTICLE nature

+** FiM = unequal sublattices ———

¢ more often multiple sites with a resultant FM moment Ferrimagnetic spintronics
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** FiM = unequal sublattices
** more often multiple sites with a resultant FM moment
** sometimes with a compensation point
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s AFM - canting

H = —]S§25% + D(5* x §P)

hematite
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** sometimes it gets very complicated

Co7(Te0O3)4Br6

lons M, M, M. ppl/Co o

Co(11) 2.64(9) 1.86(6) 2.77(9) 4.25(7) 0

Co(12) —2.64(9) 1.86(6) =2.77(9) 4.25(7) 125(2)
Col(21) -3.08(7) —-1.1(1) 3.08(7) 4.4(1) 05(2)
Col(22) 3.08(7) —-1.1(1) -3.08(7) 4.4(1) 97(2)
Co(31) —0.43(8) =3.1(1) 2.22(8) 3.8(1) 03(2)
Col(32) 0.43(8) =3.1(1) -2.22(8) 3.8(1) 131(2)
Col(41) -3.51(8) 1.33(9) 2.48(8) 4.5(1) 00(2)
Co(42) 3.51(8) 1.33(9) —2.48(8) 4.5(1) 75(2)
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MAGNETIC ORDERING

* FM + DMI — helical order

21t/Q >> unit cell

A=



MAGNETIC ORDERING incommensurate order

* FM + DMI — helical order

spiral order

OO0

Q

A = 21/Q >> unit cell

conical order (Q weakly coupled to lattice)
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Skyrmion lattice
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* helical order from AFM
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** often claimed, rarely proven
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» random-site in CuMn, AuFe; random-bond in (Fe,Mn)TiO3
» randomness, frustration, competing interactions

Ccanonicalynd ‘other’ spin-glasses
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+** random-site in CuMn, AuFe; random-bond in (Fe,Mn)TiO3
** randomness, frustration, competing interactions
+** canonical and ‘other’ spin-glasses T>T, kgT
M
Infinite Number of Order Parameters for Spin-Glasses T<~T
~ g
G. Parisi kBT
Servizio Documentazione, Istituto Nazionale di Fisica Nueleave, Labovatoyi Nazionali di Frascati, Frascali, Ilgly » == == | - — e —
(Received 22 June 1979)
This Letter shows that in the mean-field approximation spin-glasses must be described M
by an infinite number of order parameters in the framework of the replica theory, g
E
Order Parameter for Spin-Glasses
Giorgio Parisi T< Tg
Univevsild di Roma II, Tor Vevgata, Rome, Ialy, and Laboratori Nazionali, k T
Istituto Nazionale di Fisica Nuclearve, Frascali, Ialy — — o —
(Received 1 February 1983) M

An order parameter for spin-glasses is defined in a clear physical way: It is a function
on the interval 0—1 and it is related to the probability distribution of the overlap of the
magnetization in different states of the system. It is shown to coincide with the order
parameter introduced by use of the broken replica-symmetry approach.
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An order parameter for spin-glasses is defined in a clear physical way: It is a function
ey |

on the interval 0—1 and it is related to the probability distribution of the overlap of the
magnetization in different states of the system. It is shown to coincide with the order
parameter introduced by use of the broken replica-symmetry approach.



>

** random-site in CuMn, AuFe; random-bond in (Fe,Mn)TiO3

randomness, frustration, competing interactions

% canonical in-glasses

VOLUME 78. NUMBER 5 PHYSICAL REVIEW LETTERS

>

3 FEBRUARY 1997

Static Critical Behavior of the Spin-Freezing Transition in the Geometrically Frustrated
Pvrochlore Antiferromagnet Y, Mo>0+
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Some frustrated pyrochlore antiferromagnets. such as Y,Mo,0,, show a spin-freezing transition and
magnetic irreversibilities below a temperature T similar to what 1s observed in randemly frustrated
spin-glasses. We present results of nonlinear dc magnetization measurements on Y ,Mo,(; that provide
strong evidence that there 15 an underlying thermodynamic phase transition at Ty, which 1s characterized
by cntical exponents y == 2.8 and S = (0.8. These values are typical of those found 1 random
spin-glasses, despite the fact that the level of random disorder i Y,Mo.0; 15 immeasurably small.
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Self-induced spin glass state in elemental
and crystalline neodymium

Umut Kamber', Anders Bergman®, Andreas Eich', Diana lusan®, Manuel Steinbrecher?,
Nadine Hauptmann®, Lars Nordstrém?, Mikhail I. Katsnelson®, Daniel Wegner'*,
Olle Eriksson®*, Alexander A. Khajetoorians*

Spin glasses are a highly complex magnetic state of matter intricately linked to spin frustration and
structural disorder. They exhibit no long-range order and exude aging phenomena, distinguishing them
from quantum spin liquids. We report a previously unknown type of spin glass state, the spin-Q glass,
observable in bulk-like crystalline metallic neodymium thick films. Using spin-polarized scanning
tunneling microscopy combined with ab initio calculations and atomistic spin-dynamics simulations,
we visualized the variations in atomic-scale noncolinear order and its response to magnetic field and
temperature. We quantified the aging phenomena relating the glassiness to crystalline symmetry and the
energy landscape. This result not only resolves the long-standing debate of the magnetism of neodymium,
but also suggests that glassiness may arise in other magnetic solids lacking extrinsic disorder.

Kamber et al., Science 368, eaayi757 (2020)
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