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CRYSTAL FIELD EFFECTS

 orbitals

 octahedral environment

 high spin/low spin

 orbital quenching

 Jahn-Teller effect
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orbitals

bonding magnetism

𝑝𝑝0 = 𝑅𝑅𝑛𝑛,𝑙𝑙=1𝑌𝑌𝑙𝑙=1,𝑚𝑚=0

𝑝𝑝1 = 𝑅𝑅𝑛𝑛,𝑙𝑙=1𝑌𝑌𝑙𝑙=1,𝑚𝑚=1

𝑝𝑝−1 = 𝑅𝑅𝑛𝑛,𝑙𝑙=1𝑌𝑌𝑙𝑙=1,𝑚𝑚=−1 𝑝𝑝𝑧𝑧 = 𝑝𝑝0

𝑝𝑝𝑥𝑥 =
1
2
−𝑝𝑝1 + 𝑝𝑝−1

𝑝𝑝𝑦𝑦 =
𝑖𝑖
2
𝑝𝑝1 + 𝑝𝑝−1

𝑑𝑑0 = 𝑅𝑅𝑛𝑛,𝑙𝑙=2𝑌𝑌𝑙𝑙=2,𝑚𝑚=0

𝑑𝑑1 = 𝑅𝑅𝑛𝑛,𝑙𝑙=2𝑌𝑌𝑙𝑙=2,𝑚𝑚=1

𝑑𝑑−1 = 𝑅𝑅𝑛𝑛,𝑙𝑙=2𝑌𝑌𝑙𝑙=2,𝑚𝑚=−1

𝑑𝑑2 = 𝑅𝑅𝑛𝑛,𝑙𝑙=2𝑌𝑌𝑙𝑙=2,𝑚𝑚=2

𝑑𝑑−2 = 𝑅𝑅𝑛𝑛,𝑙𝑙=2𝑌𝑌𝑙𝑙=2,𝑚𝑚=−2

𝑑𝑑𝑥𝑥𝑥𝑥 =
−𝑖𝑖

2
𝑑𝑑2 − 𝑑𝑑−2

𝑑𝑑𝑦𝑦𝑦𝑦 =
𝑖𝑖
2
𝑑𝑑1 + 𝑑𝑑−1

𝑑𝑑𝑥𝑥𝑥𝑥 =
−1

2
𝑑𝑑1 − 𝑑𝑑−1

𝑑𝑑𝑥𝑥2−𝑦𝑦2 =
1
2
𝑑𝑑2 + 𝑑𝑑−2

𝑑𝑑3𝑧𝑧2−𝑟𝑟2 = 𝑑𝑑0

 based on hydrogen

 radial and angular coordinates

 complex value

 visualization is not straight-forward
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3z2-r2

xz yz

xy x2-y2

point-charges
(crystal field theory)

cation-anion orbital mixing
(ligand field theory)

3z2-r2 xz yz xy x2-y2

away from charges

close to charges
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 6 point charges

 equal distance from the magnetic ion (ideal case)
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Nature 592, 381 (2021)
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J. Phys. Soc. Jpn. 67, 2582 (1998)
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octahedral environment

3z2-r2

xz yzxy

x2-y2

M

∆o

3/5∆o

2/5∆o

eg

t2g

3z2-r2 xz yz xy x2-y2

 6 point charges

 equal distance from the magnetic ion (ideal case)

 ABO3 (perovskites, new solar-cell materials)

 high-Tc superconductivity in cuprates

 colossal magnetoresistance in manganites
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d1

Sc2+/Ti3+/V4+/Cr5+

S = 1/2
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d2

Ti2+/V3+/Cr4+

S = 1

!!! maximize S !!!
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d3

V2+/Cr3+/Mn4+

S = 3/2
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d4

Cr2+/Mn3+

S = 2

??? maximize S ???
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d5

Mn2+/Fe3+

S = 5/2
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d6

Fe2+/Co3+

S = 2
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d7

Co2+

S = 3/2
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d8

Ni2+

S = 1
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d9

Cu2+

S = 1/2
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d10

Cu1+/Zn2+

S = 0
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d0 d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

Sc3+/Ti4+/V5+ Sc2+/Ti3+/V4+/Cr5+ Ti2+/V3+/Cr4+ V2+/Cr3+/Mn4+ Cr2+/Mn3+ Mn2+/Fe3+ Fe2+/Co3+ Co2+ Ni2+ Cu2+ Cu1+/Zn2+

S = 0 S = 1/2 S = 1 S = 3/2 S = 2 S = 5/2 S = 2 S = 3/2 S = 1 S = 1/2 S = 0



CRYSTAL FIELD EFFECTS high spin/low spin

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

Sc3+/Ti4+/V5+ Sc2+/Ti3+/V4+/Cr5+ Ti2+/V3+/Cr4+ V2+/Cr3+/Mn4+ Cr2+/Mn3+ Mn2+/Fe3+ Fe2+/Co3+ Co2+ Ni2+ Cu2+ Cu1+/Zn2+

S = 0 S = 1/2 S = 1 S = 3/2 S = 2 S = 5/2 S = 2 S = 3/2 S = 1 S = 1/2 S = 0

JH
∆o

∆o

-> see Matthiesen PRL 130, 076702 (2023)
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d0 d1 d2 d3 d4 d5 d6 d7 d8 d9 d10
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JH

∆o
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∆o
JH

S = 1

 if there would be no electron-electron repulsion (JH = 0) → S = 1

 if JH > 0 but JH < ∆o → S = 1

 if JH > ∆o → S = 2

low spinhigh spin

high spin/low spin
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d0 d1 d2 d3 d4 d5 d6 d7 d8 d9 d10
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S = 2

∆o
JH

S = 1

 if there would be no electron-electron repulsion (JH = 0) → S = 1

 if JH > 0 but JH < ∆o → S = 1

 if JH > ∆o → S = 2

low spinhigh spin

S = 1 S = 1/2 S = 0 S = 1/2

high spin/low spin
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d0 d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

Sc3+/Ti4+/V5+ Sc2+/Ti3+/V4+/Cr5+ Ti2+/V3+/Cr4+ V2+/Cr3+/Mn4+ Cr2+/Mn3+ Mn2+/Fe3+ Fe2+/Co3+ Co2+ Ni2+ Cu2+ Cu1+/Zn2+

S = 0 S = 1/2 S = 1 S = 3/2 S = 2 S = 5/2 S = 2 S = 3/2 S = 1 S = 1/2 S = 0

JH

∆o

S = 2

∆o
JH

S = 1
low spinhigh spin

S = 1 S = 1/2 S = 0 S = 1/2

intermediate spin

high spin/low spin
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Sc3+/Ti4+/V5+ Sc2+/Ti3+/V4+/Cr5+ Ti2+/V3+/Cr4+ V2+/Cr3+/Mn4+ Cr2+/Mn3+ Mn2+/Fe3+ Fe2+/Co3+ Co2+ Ni2+ Cu2+ Cu1+/Zn2+

S = 0 S = 1/2 S = 1 S = 3/2 S = 2 S = 5/2 S = 2 S = 3/2 S = 1 S = 1/2 S = 0

CRYSTAL FIELD EFFECTS orbital quenching

L = 0 L = 2 L = 3 L = 3 L = 2 L = 0 L = 2 L = 3 L = 3 L = 2 L = 0

Σ = 2 + 1 + 0 + (- 1) = 2
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S = 0 S = 1/2 S = 1 S = 3/2 S = 2 S = 5/2 S = 2 S = 3/2 S = 1 S = 1/2 S = 0

CRYSTAL FIELD EFFECTS orbital quenching

L = 0 L = 2 L = 3 L = 3 L = 2 L = 0 L = 2 L = 3 L = 3 L = 2 L = 0

χ =
𝑁𝑁𝐴𝐴𝜇𝜇0𝑔𝑔𝐽𝐽2𝜇𝜇𝐵𝐵2𝐽𝐽(𝐽𝐽 + 1)

3𝑘𝑘𝐵𝐵𝑇𝑇
=
𝐶𝐶
𝑇𝑇 =

𝑁𝑁𝐴𝐴𝜇𝜇0𝜇𝜇𝑒𝑒𝑒𝑒𝑒𝑒2

3𝑘𝑘𝐵𝐵𝑇𝑇

𝜇𝜇𝑒𝑒𝑒𝑒𝑒𝑒2 = 𝑔𝑔𝐽𝐽2𝜇𝜇𝐵𝐵2𝐽𝐽(𝐽𝐽 + 1)
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d0 d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

Sc3+/Ti4+/V5+ Sc2+/Ti3+/V4+/Cr5+ Ti2+/V3+/Cr4+ V2+/Cr3+/Mn4+ Cr2+/Mn3+ Mn2+/Fe3+ Fe2+/Co3+ Co2+ Ni2+ Cu2+ Cu1+/Zn2+

S = 0 S = 1/2 S = 1 S = 3/2 S = 2 S = 5/2 S = 2 S = 3/2 S = 1 S = 1/2 S = 0

CRYSTAL FIELD EFFECTS orbital quenching

L = 0 L = 2 L = 3 L = 3 L = 2 L = 0 L = 2 L = 3 L = 3 L = 2 L = 0

 J = L + S does not work

 L is ‘quenched’

 point charges break the rotational symmetry

𝑉𝑉𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜 𝑟𝑟 ~𝑥𝑥4 + 𝑦𝑦4 + 𝑧𝑧4 −
3
5 𝑟𝑟

4 �𝑳𝑳 = −𝑖𝑖�𝒓𝒓 × ∇
Hermitian, so |⟨0 �𝑳𝑳 ⟩|0 ∈ ℝ |⟨0 �𝑳𝑳 ⟩|0 = 0only if

imaginary

real

ℋ0 > ℋ𝐶𝐶𝐶𝐶 > ℋ𝑆𝑆𝑆𝑆 ≫ ℋ𝑍𝑍
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Sc3+/Ti4+/V5+ Sc2+/Ti3+/V4+/Cr5+ Ti2+/V3+/Cr4+ V2+/Cr3+/Mn4+ Cr2+/Mn3+ Mn2+/Fe3+ Fe2+/Co3+ Co2+ Ni2+ Cu2+ Cu1+/Zn2+

S = 0 S = 1/2 S = 1 S = 3/2 S = 2 S = 5/2 S = 2 S = 3/2 S = 1 S = 1/2 S = 0

CRYSTAL FIELD EFFECTS orbital quenching

L = 0 L = 2 L = 3 L = 3 L = 2 L = 0 L = 2 L = 3 L = 3 L = 2 L = 0

 in practice: incomplete quenching

• t2g subset (n=1,2,6,7), ‘effective’ L = 1
• spin-orbit coupling

 reflected in g > 2 and often anisotropic
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shielding of 4f electrons from the 
crystal-field potential
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CRYSTAL FIELD EFFECTS 4f orbitals

ρ(r)

r

4f
5s

5p
5d 6s

shielding of 4f electrons from the 
crystal-field potential

ℋ0 > ℋ𝑆𝑆𝑆𝑆 > ℋ𝐶𝐶𝐶𝐶 > ℋ𝑍𝑍

6 states

8 states

J=5/2

J=7/2

∆ECF << ∆ESO

∆ESO

9 states

11 states

J=4

J=5

number of electrons
evenodd

Kramer’s theorem:

2-fold degeneracy (at least)

possible 1-fold degeneracy
(singlets → non-magnetic ground states!)

Ce3+ Pr3+



CRYSTAL FIELD EFFECTS other environments

3z2-r2

xz yzxy

x2-y2

M MM

3z2-r2

x2-y2

xz

xy

yz

3z2-r2

x2-y2

xz

xy

yz

octahedral tetragonal 
elongation

tetragonal 
compression

M

3z2-r2

x2-y2

xz

xy

yz

square planar

M

tetrahedral

3z2-r2

xz yzxy

x2-y2

trigonal
prism

3z2-r2

xz yz

xy x2-y2

M



CRYSTAL FIELD EFFECTS Jahn-Teller effect

no degeneracy

doubly degenerate
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no degeneracy

doubly degenerate

Ed

z

M

z0

z0

∆𝐸𝐸𝑑𝑑= 𝑓𝑓 𝑧𝑧 − 𝑧𝑧0 = ±𝑎𝑎 𝑧𝑧 − 𝑧𝑧0 + 𝑏𝑏(𝑧𝑧 − 𝑧𝑧0)2+⋯k

𝑧𝑧 − 𝑧𝑧0 = ξ ≪ 𝑧𝑧0
one orbital down

one orbital up



CRYSTAL FIELD EFFECTS Jahn-Teller effect

no degeneracy

doubly degenerate

Ed

z

M

z0

z0

∆𝐸𝐸𝑑𝑑= 𝑓𝑓 𝑧𝑧 − 𝑧𝑧0 = ±𝑎𝑎 𝑧𝑧 − 𝑧𝑧0 + 𝑏𝑏(𝑧𝑧 − 𝑧𝑧0)2+⋯k

𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =
1
2 𝑘𝑘(𝑧𝑧 − 𝑧𝑧0)2

𝑧𝑧 − 𝑧𝑧0 = ξ ≪ 𝑧𝑧0
one orbital down

𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡 = ±𝑎𝑎ξ +
1
2 𝑘𝑘ξ2

𝑑𝑑𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡
𝑑𝑑ξ

= ±𝑎𝑎 + 𝑘𝑘ξ = 0

ξ𝐽𝐽𝐽𝐽 = ±
𝑎𝑎
𝑘𝑘

one orbital up

static JT
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Jahn-Teller effect

no degeneracy

doubly degenerate

Ed

z

M

z0

z0

∆𝐸𝐸𝑑𝑑= 𝑓𝑓 𝑧𝑧 − 𝑧𝑧0 = ±𝑎𝑎 𝑧𝑧 − 𝑧𝑧0 + 𝑏𝑏(𝑧𝑧 − 𝑧𝑧0)2+⋯k

𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =
1
2 𝑘𝑘(𝑧𝑧 − 𝑧𝑧0)2

𝑧𝑧 − 𝑧𝑧0 = ξ ≪ 𝑧𝑧0
one orbital down

𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡 = ±𝑎𝑎ξ +
1
2 𝑘𝑘ξ2

𝑑𝑑𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡
𝑑𝑑ξ

= ±𝑎𝑎 + 𝑘𝑘ξ = 0

one orbital up

ξ → 𝑄𝑄𝜃𝜃2 + 𝑄𝑄𝜖𝜖2

dynamic JTξ𝐽𝐽𝐽𝐽 = ±
𝑎𝑎
𝑘𝑘

static JT
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Jahn-Teller effect

no degeneracy

doubly degenerate

Ed

z

M

z0

z0

∆𝐸𝐸𝑑𝑑= 𝑓𝑓 𝑧𝑧 − 𝑧𝑧0 = ±𝑎𝑎 𝑧𝑧 − 𝑧𝑧0 + 𝑏𝑏(𝑧𝑧 − 𝑧𝑧0)2+⋯k

𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =
1
2 𝑘𝑘(𝑧𝑧 − 𝑧𝑧0)2

𝑧𝑧 − 𝑧𝑧0 = ξ ≪ 𝑧𝑧0
one orbital down

𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡 = ±𝑎𝑎ξ +
1
2 𝑘𝑘ξ2

𝑑𝑑𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡
𝑑𝑑ξ

= ±𝑎𝑎 + 𝑘𝑘ξ = 0

one orbital up

ξ → 𝑄𝑄𝜃𝜃2 + 𝑄𝑄𝜖𝜖2

dynamic JT

co
op

er
at

iv
e 

JT

ξ𝐽𝐽𝐽𝐽 = ±
𝑎𝑎
𝑘𝑘

static JT
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