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CRYSTAL FIELD EFFECTS
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CRYSTAL FIELD EFFECTS charged environment
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CRYSTAL FIELD EFFECTS octahedral environment
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\




CRYSTAL FIELD EFFECTS

octahedral environment
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+ equal distance from the magnetic ion (ideal case)
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6 point charges

equal distance from the magnetic ion (ideal case) P
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6 point charges

equal distance from the magnetic ion (ideal case) P
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CRYSTAL FIELD EFFECTS octahedral environment
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o The ab initio self-interaction-corrected local-spin-density approximation is used to study the
electronic structure of both stoichiometric and nonstoichiometric nickelates. From total energy

-'—H v v considerations it emerges that, in their ground state, both LiNiOs and NaNiO» are insulators, v v -'—H
with the Ni ion in the Ni*" low-spin state (tggeﬁ,) configuration. It is established that a substitution
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- - —— b- bt FF Ot bt R 44
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high spin low spin
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ﬂ‘r‘rﬂ#‘rﬂﬂ‘ﬂ’r#ﬂ

_______________________

' A A E
—'— N i intermediate spin i A +

_______________________
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CRYSTAL FIELD EFFECTS orbital quenching

Sc3t/Ti v+ Sc2*/Tidt/V4+/Cr5* Ti2*/V3t/Cré* VZ/Cr3t/Mn* Cr*/Mn3* Fe2t/Co%* Cu'*/Zn?

S=0 S=1/2 S=1 S=3/2 S=2 S= 5/2 S=2 S= 3/2 S=1 S= 1/2 S=0

- I e e N
e

L=0 L=2 L=3 L=3 L=2 L=0 L=2 L=3 L=3 L=2 L=0

_____________________

_____________________



Sc3t/Tit /Vo+ Sc2*/Tidt/V4+/Cr5* Ti2*/V3t/Cré* V2t /Cr3*/Mn* Cr*/Mn3* Fe?t/Co%* Cu'*/Zn?

S=0 S=1/2 S=1 S=3/2 S=2 S= 5/2 S=2 S= 3/2 S=1 S= 1/2 S=0

- . T I
e

L=0 L=2 L=3 L=3 L=2 L=0 L=2 L=3 L=3 L=2 L=0

g/ J(J+1)

B NA.UOQJZHJZBJU +1) C_ NAP‘O“gff
3kyT T~ 3kyT

uerr = giugJ(J + 1)
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Sc3t/Tit /Vo+ Sc2*/Tidt/V4+/Cr5* Ti2*/V3t/Cré* V2t /Cr3*/Mn* Cr*/Mn3* Fe?t/Co%* Cu'*/Zn?
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Sc3t/Tit /Vo+ Sc2*/Tidt/V4+/Cr5* Ti2*/V3t/Cré* V2t /Cr3*/Mn* Cr*/Mn3* Fe?t/Co%* Cu'*/Zn?

S=0 S=1/2 S=1 S=3/2 S=2 S= 5/2 S=2 S= 3/2 S=1 S= 1/2 S=0

- . T I
e

L=0 L=2 L=3 L=3 L=2 L=0 L=2 L=3 L=3 L=2 L=0

oI 1) ' ' ' +* J =L+ S does not work Hy > Heop > Hso > H,
* Lis ‘qguenched’

+** point charges break the rotational symmetry

e e il L
-
-
~

imaginary

3 ~
L VS () ~x* + y* + z* 5r4: L=-i#xV \v\'
TS g Hermitian,so  (O|L|0) € R onlyif (O|L|0) = 0




Sc3t/Tit /Vo+ Sc2*/Tidt/V4+/Cr5* Ti2*/V3t/Cré* V2t /Cr3*/Mn* Cr*/Mn3* Fe?t/Co%* Cu'*/Zn?

S=0 S=1/2 S=1 S=3/2 S=2 S= 5/2 S=2 S= 3/2 S=1 S= 1/2 S=0

- . T I
e

L=0 L=2 L=3 L=3 L=2 L=0 L=2 L=3 L=3 L=2 L=0

+** in practice: incomplete quenching

th subset (n=1,2,6,7), ‘effective’ L =1
e spin-orbit coupling

+» reflected in g > 2 and often anisotropic




CRYSTAL FIELD EFFECTS Af orbitals

shielding of 4f electrons from the Hoy>Hso > Hep > H,

p(r) 4 af /\4\ crystal-field potential
5s

op

5d 6s
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CRYSTAL FIELD EFFECTS

Af orbitals

p(r) 4

af

shielding of 4f electrons from the

crystal-field potential
5s

op

1=7/2

J=5/2

Ce3+

8 states

6 states,

<«

t AE << AEg,

Pr3+

11 states

9 states

J=5

~




CRYSTAL FIELD EFFECTS 4f orbitals

shielding of 4f electrons from the Hoy>Hso > Hep > H,

p(r) 4 af /\4\ crystal-field potential
5s

op

§ \\;
r
K odd even / \
Ce3+ < number of electrons > Pr3+
8 states 11 states J=5
1=7/2 'y Kramer’s theorem: -
2-fold degeneracy (at least)
6statesy ___ —  9states _
J=5/2 = § AE,<<AE, possible 1-fold degeneracy -
J (singlets — non-magnetic ground states!)K_ /




CRYSTAL FIELD EFFECTS

other environments

octahedral
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e
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% \\\\7
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i
1
1
1
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[
1
1
1
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Xz Xy yz
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CRYSTAL FIELD EFFECTS Jahn-Teller effect

doubly degenerate

@ no degeneracy
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CRYSTAL FIELD EFFECTS Jahn-Teller effect

doubly degenerate

@ no degeneracy

one orbital up
Ed A *

AE =f(z—z)=ia(z—z)ﬂ@><z§)’2i--

M Z—2zy=§E Kz
one orbital down

v

Eclas = Ek(z - ZO)Z

1
Etor = tag + EkE;Z

[ & = i% -'— —-—-—--'-'::::::::::j:jj_'_'ff._'__ static JT }




-'— —_ doubly degenerate

Gt

one orbital up

Ed A 1
k % , AEd= f(Z — Zo) = ia(Z - ZO)M"
0 ’
® v z—2z5=§ K 2
§ , one orbital down Energy
Z, Z )
1 2
Eelas = Ek(z — Zp)
1 E
Eeor = +ag + 5 k&> dg’t =+a+kE=0

a V- — .
[ Er = iE "- e _'_ static JT } dynamic JT

image source: wikimedia.org




doubly degenerate

one orbital up

AEg= f(z —zp) =

v

1 2
Eclas = Ek(z — Zp)

L
Eior = ia€;+§k§

4

N

s

ClR
e

M

16

2"*»«»%**-""“’“‘

3 3

o 2

7{K)

Specific heat of DyVOy4 showing A anomalies associated with the JT transition at
14 K and a magnetic transition at 3 K; the estimated lattice specific heat has bey

A

ta(z — z9) + blz—25)"+ -~

y

subtracted out, From Cooke et al (1971a).

/ cooperative JT \

g - /Q5+Q§

Energy

Z—2z9=E&<K 2

one orbital down

dynamicJT

static JT }

image source: wikimedia.org
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