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ISOLATED MAGNETIC MOMENTS

 an atom in magnetic field

 diamagnetism

 paramagnetism

 Hund’s rules

 spin-orbit coupling

 nuclear spins



ISOLATED MAGNETIC MOMENTS canonical momentum

v(-e),me

r +

𝐿𝐿 = 𝑟𝑟 × 𝑝⃑𝑝 →�
𝑖𝑖

𝑟𝑟𝑖𝑖 × 𝑝⃑𝑝𝑖𝑖

not one but several electrons

ℋ0 = �
𝑖𝑖

𝒑𝒑𝑖𝑖2

2𝑚𝑚
+ 𝑉𝑉𝑖𝑖 →�

𝑖𝑖

𝒑𝒑𝑖𝑖 + 𝑒𝑒𝑨𝑨 2

2𝑚𝑚
+ 𝑉𝑉𝑖𝑖 + 𝑔𝑔𝜇𝜇𝐵𝐵𝑩𝑩𝑩𝑩

applying magnetic field



ISOLATED MAGNETIC MOMENTS canonical momentum
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𝑖𝑖

𝒑𝒑𝑖𝑖2

2𝑚𝑚
+ 𝑉𝑉𝑖𝑖 →�

𝑖𝑖
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+ 𝑉𝑉𝑖𝑖 + 𝑔𝑔𝜇𝜇𝐵𝐵𝑩𝑩𝑩𝑩

applying magnetic field

𝑭𝑭 = 𝑚𝑚
𝑑𝑑𝒗𝒗
𝑑𝑑𝑑𝑑 = 𝑞𝑞 𝑬𝑬 + 𝒗𝒗 × 𝑩𝑩

𝓔𝓔 = −𝛻𝛻𝛻𝛻 −
𝜕𝜕𝑨𝑨
𝜕𝜕𝑡𝑡

𝑩𝑩 = 𝛻𝛻 × 𝑨𝑨 because 𝛻𝛻𝑩𝑩 = 0

𝒗𝒗 × 𝑩𝑩 = 𝒗𝒗 × 𝛻𝛻 × 𝑨𝑨 = 𝛻𝛻 𝒗𝒗 � 𝑨𝑨 − 𝒗𝒗 � ∇ 𝑨𝑨

𝑚𝑚
𝑑𝑑𝒗𝒗
𝑑𝑑𝑑𝑑 + 𝑞𝑞

𝜕𝜕𝑨𝑨
𝜕𝜕𝜕𝜕 + 𝒗𝒗 � ∇ 𝑨𝑨 = −𝑞𝑞𝛻𝛻 𝑉𝑉 − 𝒗𝒗 � 𝑨𝑨

𝜕𝜕𝑨𝑨
𝜕𝜕𝜕𝜕 + 𝒗𝒗 � ∇ 𝑨𝑨 =

𝜕𝜕𝑨𝑨
𝜕𝜕𝜕𝜕 +

𝑑𝑑𝒓𝒓
𝑑𝑑𝑑𝑑 �

𝑑𝑑
𝑑𝑑𝒓𝒓 𝑨𝑨 =

𝑑𝑑𝑨𝑨
𝑑𝑑𝑡𝑡

𝑑𝑑
𝑑𝑑𝑑𝑑 𝑚𝑚𝒗𝒗 + 𝑞𝑞𝑨𝑨 = −𝑞𝑞𝛻𝛻 𝑉𝑉 − 𝒗𝒗 � 𝑨𝑨

canonical momentum: 𝒑𝒑 = 𝑚𝑚𝒗𝒗 + 𝑞𝑞𝑨𝑨



ISOLATED MAGNETIC MOMENTS an atom in a magnetic field

v(-e),me

r +

𝐿𝐿 = 𝑟𝑟 × 𝑝⃑𝑝 →�
𝑖𝑖

𝑟𝑟𝑖𝑖 × 𝑝⃑𝑝𝑖𝑖

not one but several electrons

ℋ0 = �
𝑖𝑖

𝒑𝒑𝑖𝑖2

2𝑚𝑚
+ 𝑉𝑉𝑖𝑖 →�

𝑖𝑖

𝒑𝒑𝑖𝑖 + 𝑒𝑒𝑨𝑨 2

2𝑚𝑚
+ 𝑉𝑉𝑖𝑖 + 𝑔𝑔𝜇𝜇𝐵𝐵𝑩𝑩𝑩𝑩

applying magnetic field

𝐸𝐸𝑘𝑘 =
1
2𝑚𝑚𝒗𝒗

2 =
1

2𝑚𝑚𝒑𝒑2

kinetic energy

=
1

2𝑚𝑚 (𝒑𝒑 − 𝑞𝑞𝑨𝑨)2

𝑨𝑨 =
1
2𝑩𝑩 × 𝒓𝒓

B > 0
ℋ = ℋ0 + 𝜇𝜇𝐵𝐵 𝑳𝑳 + 𝑔𝑔𝑺𝑺 𝑩𝑩 +

𝑒𝑒2

8𝑚𝑚�
𝑖𝑖

𝑩𝑩 × 𝒓𝒓𝑖𝑖 2

choice of gauge:



ISOLATED MAGNETIC MOMENTS magnetic susceptibility

ℋ = ℋ0 + 𝜇𝜇𝐵𝐵 𝑳𝑳 + 𝑔𝑔𝑺𝑺 𝑩𝑩 +
𝑒𝑒2

8𝑚𝑚
�
𝑖𝑖

𝑩𝑩 × 𝒓𝒓𝑖𝑖 2

 field-induced response

 response is magnetization



ISOLATED MAGNETIC MOMENTS magnetic susceptibility

ℋ = ℋ0 + 𝜇𝜇𝐵𝐵 𝑳𝑳 + 𝑔𝑔𝑺𝑺 𝑩𝑩 +
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8𝑚𝑚
�
𝑖𝑖

𝑩𝑩 × 𝒓𝒓𝑖𝑖 2

 field-induced response

 response is magnetization

what is magnetic field?

𝑭𝑭 = 𝑞𝑞𝑬𝑬 + 𝑞𝑞𝒗𝒗 × 𝑩𝑩
• magnetic field
• magnetic induction
• magnetic-flux density

1
𝜇𝜇0
𝑩𝑩 −𝑴𝑴 = 𝑯𝑯 • magnetic field

• magnetizing field𝜀𝜀0𝑬𝑬 + 𝑷𝑷 = 𝑫𝑫



ISOLATED MAGNETIC MOMENTS magnetic susceptibility

ℋ = ℋ0 + 𝜇𝜇𝐵𝐵 𝑳𝑳 + 𝑔𝑔𝑺𝑺 𝑩𝑩 +
𝑒𝑒2

8𝑚𝑚
�
𝑖𝑖

𝑩𝑩 × 𝒓𝒓𝑖𝑖 2

 field-induced response

 response is magnetization

𝑩𝑩 = 𝜇𝜇0 𝑯𝑯 + 𝑴𝑴 = 𝜇𝜇0𝜇𝜇𝑟𝑟𝑯𝑯

what is magnetic field?

𝑭𝑭 = 𝑞𝑞𝑬𝑬 + 𝑞𝑞𝒗𝒗 × 𝑩𝑩
• magnetic field
• magnetic induction
• magnetic-flux density

1
𝜇𝜇0
𝑩𝑩 −𝑴𝑴 = 𝑯𝑯 • magnetic field

• magnetizing field𝜀𝜀0𝑬𝑬 + 𝑷𝑷 = 𝑫𝑫
𝑴𝑴 = �χ𝑯𝑯

magnetic susceptibility (a tensor)

𝑴𝑴 = χ𝑯𝑯

iso
tr

op
ic

, l
in

ea
r 

m
at

er
ia

l

𝜇𝜇𝑟𝑟 = 1 + 𝜒𝜒



ISOLATED MAGNETIC MOMENTS diamagnetism

ℋ = ℋ0 + 𝜇𝜇𝐵𝐵 𝑳𝑳 + 𝑔𝑔𝑺𝑺 𝑩𝑩 +
𝑒𝑒2

8𝑚𝑚
�
𝑖𝑖

𝑩𝑩 × 𝒓𝒓𝑖𝑖 2

dominant contribution

small perturbation

ℋ0 ��Ψ𝑖𝑖 = 𝐸𝐸𝑖𝑖 ��Ψ𝑖𝑖

𝐸𝐸0 < 𝐸𝐸1 < 𝐸𝐸2 < 𝐸𝐸3 ⋯
ground 
state excited states



ISOLATED MAGNETIC MOMENTS diamagnetism

ℋ = ℋ0 + 𝜇𝜇𝐵𝐵 𝑳𝑳 + 𝑔𝑔𝑺𝑺 𝑩𝑩 +
𝑒𝑒2

8𝑚𝑚
�
𝑖𝑖

𝑩𝑩 × 𝒓𝒓𝑖𝑖 2

dominant contribution

small perturbation

ℋ0 ��Ψ𝑖𝑖 = 𝐸𝐸𝑖𝑖 ��Ψ𝑖𝑖

𝐸𝐸0 < 𝐸𝐸1 < 𝐸𝐸2 < 𝐸𝐸3 ⋯
ground 
state excited states

perturbation theory

1. order Δ𝐸𝐸0 = |⟨0 ℋ𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ⟩|0

2. order Δ𝐸𝐸0 = �
𝑖𝑖

|⟨0 ℋ𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ⟩|𝑖𝑖 |⟨𝑖𝑖 ℋ𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ⟩|0
𝐸𝐸0 − 𝐸𝐸𝑖𝑖



ISOLATED MAGNETIC MOMENTS diamagnetism

ℋ = ℋ0 + 𝜇𝜇𝐵𝐵 𝑳𝑳 + 𝑔𝑔𝑺𝑺 𝑩𝑩 +
𝑒𝑒2

8𝑚𝑚
�
𝑖𝑖

𝑩𝑩 × 𝒓𝒓𝑖𝑖 2

dominant contribution

small perturbation

ℋ0 ��Ψ𝑖𝑖 = 𝐸𝐸𝑖𝑖 ��Ψ𝑖𝑖

𝐸𝐸0 < 𝐸𝐸1 < 𝐸𝐸2 < 𝐸𝐸3 ⋯
ground 
state excited states

perturbation theory

1. order Δ𝐸𝐸0 = |⟨0 ℋ𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ⟩|0

2. order Δ𝐸𝐸0 = �
𝑖𝑖

|⟨0 ℋ𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ⟩|𝑖𝑖 |⟨𝑖𝑖 ℋ𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ⟩|0
𝐸𝐸0 − 𝐸𝐸𝑖𝑖

∆𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑 = 0
𝑒𝑒2

8𝑚𝑚�
𝑖𝑖

𝑩𝑩 × 𝒓𝒓𝑖𝑖 2 0 𝐵𝐵 ∥ 𝑧𝑧 ⇒ 𝑩𝑩 =
0
0
𝐵𝐵

𝒓𝒓𝑖𝑖 =
𝑥𝑥𝑖𝑖
𝑦𝑦𝑖𝑖
𝑧𝑧𝑖𝑖

𝑩𝑩 × 𝒓𝒓𝑖𝑖 = 𝐵𝐵
−𝑦𝑦𝑖𝑖
𝑥𝑥𝑖𝑖
0

∆𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑 =
𝑒𝑒2𝐵𝐵2

8𝑚𝑚 �
𝑖𝑖

0 𝑥𝑥𝑖𝑖2 + 𝑦𝑦𝑖𝑖2 0 =
𝑒𝑒2𝐵𝐵2

12𝑚𝑚�
𝑖𝑖

0 𝑟𝑟𝑖𝑖2 0

spherical symmetry

0 𝑥𝑥𝑖𝑖2 0 = 0 𝑦𝑦𝑖𝑖2 0 = 0 𝑧𝑧𝑖𝑖2 0 =
1
3

0 𝑟𝑟𝑖𝑖2 0

χ𝑑𝑑𝑑𝑑𝑑𝑑 =
𝑀𝑀
𝐻𝐻 ~

1
𝐻𝐻
𝜕𝜕∆𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑

𝜕𝜕𝐵𝐵 ~�
𝑖𝑖

0 𝑟𝑟𝑖𝑖2 0

χ𝑑𝑑𝑑𝑑𝑑𝑑~𝑍𝑍𝑜𝑜𝑜𝑜𝑜𝑜𝑟𝑟2



ISOLATED MAGNETIC MOMENTS diamagnetism

ℋ = ℋ0 + 𝜇𝜇𝐵𝐵 𝑳𝑳 + 𝑔𝑔𝑺𝑺 𝑩𝑩 +
𝑒𝑒2

8𝑚𝑚
�
𝑖𝑖

𝑩𝑩 × 𝒓𝒓𝑖𝑖 2

dominant contribution

NEUTRON STARS!!!

ℋ0 ��Ψ𝑖𝑖 = 𝐸𝐸𝑖𝑖 ��Ψ𝑖𝑖

𝐸𝐸0 < 𝐸𝐸1 < 𝐸𝐸2 < 𝐸𝐸3 ⋯
ground 
state excited states

perturbation theory

1. order Δ𝐸𝐸0 = |⟨0 ℋ𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ⟩|0

2. order Δ𝐸𝐸0 = �
𝑖𝑖

|⟨0 ℋ𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ⟩|𝑖𝑖 |⟨𝑖𝑖 ℋ𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ⟩|0
𝐸𝐸0 − 𝐸𝐸𝑖𝑖

∆𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑 = 0
𝑒𝑒2

8𝑚𝑚�
𝑖𝑖

𝑩𝑩 × 𝒓𝒓𝑖𝑖 2 0 𝐵𝐵 ∥ 𝑧𝑧 ⇒ 𝑩𝑩 =
0
0
𝐵𝐵

𝒓𝒓𝑖𝑖 =
𝑥𝑥𝑖𝑖
𝑦𝑦𝑖𝑖
𝑧𝑧𝑖𝑖

𝑩𝑩 × 𝒓𝒓𝑖𝑖 = 𝐵𝐵
−𝑦𝑦𝑖𝑖
𝑥𝑥𝑖𝑖
0

∆𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑 =
𝑒𝑒2𝐵𝐵2

8𝑚𝑚 �
𝑖𝑖

0 𝑥𝑥𝑖𝑖2 + 𝑦𝑦𝑖𝑖2 0 =
𝑒𝑒2𝐵𝐵2

12𝑚𝑚�
𝑖𝑖

0 𝑟𝑟𝑖𝑖2 0

spherical symmetry

0 𝑥𝑥𝑖𝑖2 0 = 0 𝑦𝑦𝑖𝑖2 0 = 0 𝑧𝑧𝑖𝑖2 0 =
1
3

0 𝑟𝑟𝑖𝑖2 0

χ𝑑𝑑𝑑𝑑𝑑𝑑 =
𝑀𝑀
𝐻𝐻 ~

1
𝐻𝐻
𝜕𝜕∆𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑

𝜕𝜕𝐵𝐵 ~�
𝑖𝑖

0 𝑟𝑟𝑖𝑖2 0

χ𝑑𝑑𝑑𝑑𝑑𝑑~𝑍𝑍𝑜𝑜𝑜𝑜𝑜𝑜𝑟𝑟2
temperature and field 

independent



ISOLATED MAGNETIC MOMENTS paramagnetism

E

BBout

E+ = +½gµBBout

E- = -½gµBBout

∆E = E+ - E- = gµBBout

the principle of ESR (EPR)



ISOLATED MAGNETIC MOMENTS paramagnetism

E

BBout

E+ = +½gµBBout

E- = -½gµBBout

∆E = E+ - E- = gµBBout

the principle of ESR (EPR)

thermodynamics through the partition function:

𝑍𝑍 = �
𝑖𝑖

𝑒𝑒
𝐸𝐸𝑖𝑖
𝑘𝑘𝐵𝐵𝑇𝑇 = �

𝑚𝑚𝐽𝐽=−𝐽𝐽

𝐽𝐽

𝑒𝑒
𝑚𝑚𝐽𝐽𝑔𝑔𝐽𝐽𝜇𝜇𝐵𝐵𝐵𝐵

𝑘𝑘𝐵𝐵𝑇𝑇

𝑥𝑥 =
𝑔𝑔𝐽𝐽𝜇𝜇𝐵𝐵𝐽𝐽𝐵𝐵𝑜𝑜𝑜𝑜𝑜𝑜

𝑘𝑘𝐵𝐵𝑇𝑇

𝑱𝑱 = 𝑳𝑳 + 𝑺𝑺

𝑀𝑀 = 𝑛𝑛𝑔𝑔𝐽𝐽𝜇𝜇𝐵𝐵 𝑚𝑚𝐽𝐽 = 𝑛𝑛𝑔𝑔𝐽𝐽𝜇𝜇𝐵𝐵
∑𝑚𝑚𝐽𝐽=−𝐽𝐽
𝐽𝐽 𝑚𝑚𝐽𝐽𝑒𝑒𝑚𝑚𝐽𝐽𝑥𝑥

∑𝑚𝑚𝐽𝐽=−𝐽𝐽
𝐽𝐽 𝑒𝑒𝑚𝑚𝐽𝐽𝑥𝑥



ISOLATED MAGNETIC MOMENTS paramagnetism

E

BBout

E+ = +½gµBBout

E- = -½gµBBout

∆E = E+ - E- = gµBBout

the principle of ESR (EPR)

thermodynamics through the partition function:

𝑍𝑍 = �
𝑖𝑖

𝑒𝑒
𝐸𝐸𝑖𝑖
𝑘𝑘𝐵𝐵𝑇𝑇 = �

𝑚𝑚𝐽𝐽=−𝐽𝐽

𝐽𝐽

𝑒𝑒
𝑚𝑚𝐽𝐽𝑔𝑔𝐽𝐽𝜇𝜇𝐵𝐵𝐵𝐵

𝑘𝑘𝐵𝐵𝑇𝑇

𝑀𝑀 = 𝑛𝑛𝑔𝑔𝐽𝐽𝜇𝜇𝐵𝐵𝐽𝐽𝐵𝐵𝐽𝐽(𝑥𝑥)

𝐵𝐵𝐽𝐽 𝑥𝑥 =
2𝐽𝐽 + 1
2𝐽𝐽 coth

2𝐽𝐽 + 1
2𝐽𝐽 𝑥𝑥 −

1
2𝐽𝐽 coth

1
2𝐽𝐽 𝑥𝑥

Brillouin function

𝑱𝑱 = 𝑳𝑳 + 𝑺𝑺

𝑀𝑀 = 𝑛𝑛𝑔𝑔𝐽𝐽𝜇𝜇𝐵𝐵 𝑚𝑚𝐽𝐽 = 𝑛𝑛𝑔𝑔𝐽𝐽𝜇𝜇𝐵𝐵
∑𝑚𝑚𝐽𝐽=−𝐽𝐽
𝐽𝐽 𝑚𝑚𝐽𝐽𝑒𝑒𝑚𝑚𝐽𝐽𝑥𝑥

∑𝑚𝑚𝐽𝐽=−𝐽𝐽
𝐽𝐽 𝑒𝑒𝑚𝑚𝐽𝐽𝑥𝑥

𝑥𝑥 =
𝑔𝑔𝐽𝐽𝜇𝜇𝐵𝐵𝐽𝐽𝐵𝐵𝑜𝑜𝑜𝑜𝑜𝑜

𝑘𝑘𝐵𝐵𝑇𝑇



ISOLATED MAGNETIC MOMENTS paramagnetism

𝑀𝑀 = 𝑛𝑛𝑔𝑔𝐽𝐽𝜇𝜇𝐵𝐵𝐽𝐽𝐵𝐵𝐽𝐽(𝑥𝑥)

𝐵𝐵𝐽𝐽 𝑥𝑥 =
2𝐽𝐽 + 1
2𝐽𝐽

coth
2𝐽𝐽 + 1

2𝐽𝐽
𝑥𝑥 −

1
2𝐽𝐽

coth
1
2𝐽𝐽
𝑥𝑥

PhysRev 88, 559 (1952)

saturation value

E

B

𝑥𝑥 =
𝑔𝑔𝐽𝐽𝜇𝜇𝐵𝐵𝐽𝐽𝐵𝐵𝑜𝑜𝑜𝑜𝑜𝑜

𝑘𝑘𝐵𝐵𝑇𝑇



ISOLATED MAGNETIC MOMENTS paramagnetism

𝐵𝐵𝐽𝐽 𝑥𝑥 =
2𝐽𝐽 + 1
2𝐽𝐽

coth
2𝐽𝐽 + 1

2𝐽𝐽
𝑥𝑥 −

1
2𝐽𝐽

coth
1
2𝐽𝐽
𝑥𝑥

𝐽𝐽 → ∞

𝐵𝐵∞ 𝑥𝑥 → 𝐿𝐿 𝑥𝑥 = coth 𝑥𝑥 −
1
𝑥𝑥

Langevin function



ISOLATED MAGNETIC MOMENTS paramagnetism

𝐵𝐵𝐽𝐽 𝑥𝑥 =
2𝐽𝐽 + 1
2𝐽𝐽

coth
2𝐽𝐽 + 1

2𝐽𝐽
𝑥𝑥 −

1
2𝐽𝐽

coth
1
2𝐽𝐽
𝑥𝑥

𝐽𝐽 → ∞

𝐵𝐵∞ 𝑥𝑥 → 𝐿𝐿 𝑥𝑥 = coth 𝑥𝑥 −
1
𝑥𝑥

Langevin function

𝑥𝑥 ≪ 1

𝐵𝐵𝐽𝐽 𝑥𝑥 ≈
𝐽𝐽 + 1
3𝐽𝐽

𝑥𝑥 → 𝑀𝑀 = 𝑓𝑓 𝑇𝑇 𝐵𝐵

Curie lawχ =
𝑁𝑁𝐴𝐴𝜇𝜇0𝑔𝑔𝐽𝐽2𝜇𝜇𝐵𝐵2𝐽𝐽(𝐽𝐽 + 1)

3𝑘𝑘𝐵𝐵𝑇𝑇
=
𝐶𝐶
𝑇𝑇



ISOLATED MAGNETIC MOMENTS paramagnetism

𝐵𝐵𝐽𝐽 𝑥𝑥 =
2𝐽𝐽 + 1
2𝐽𝐽

coth
2𝐽𝐽 + 1

2𝐽𝐽
𝑥𝑥 −

1
2𝐽𝐽

coth
1
2𝐽𝐽
𝑥𝑥

𝐽𝐽 → ∞

𝐵𝐵∞ 𝑥𝑥 → 𝐿𝐿 𝑥𝑥 = coth 𝑥𝑥 −
1
𝑥𝑥

Langevin function

𝑥𝑥 ≪ 1

𝐵𝐵𝐽𝐽 𝑥𝑥 ≈
𝐽𝐽 + 1
3𝐽𝐽

𝑥𝑥 → 𝑀𝑀 = 𝑓𝑓 𝑇𝑇 𝐵𝐵

χ =
𝑁𝑁𝐴𝐴𝜇𝜇0𝑔𝑔𝐽𝐽2𝜇𝜇𝐵𝐵2𝐽𝐽(𝐽𝐽 + 1)

3𝑘𝑘𝐵𝐵𝑇𝑇
=
𝐶𝐶
𝑇𝑇 Curie law

χ

T

χΤ

T

1/χ

T

C



ISOLATED MAGNETIC MOMENTS Van Vleck paramagnetism

𝑱𝑱 = 0

∆𝐸𝐸(1) = 0 𝑱𝑱 0 = 0

E

⌊ ⟩0

⌊ ⟩1
⌊ ⟩2

∆𝐸𝐸(2)~�
𝑖𝑖≥1

0 𝑳𝑳 + 𝑔𝑔𝑺𝑺 𝑩𝑩 𝑖𝑖 2

𝐸𝐸𝑖𝑖 − 𝐸𝐸0

χ𝑉𝑉𝑉𝑉~�
𝑖𝑖≥1

0 𝐿𝐿𝑧𝑧 + 𝑔𝑔𝑆𝑆𝑧𝑧 𝑖𝑖 2

𝐸𝐸𝑖𝑖 − 𝐸𝐸0
> 0

temperature and field 
independent



ISOLATED MAGNETIC MOMENTS Hund’s rules

1 Maximize S

2 Maximize L

La3+ 0 0 0 0

Ce3+ 1 1/2 3 5/2

Pr3+ 2 1 5 4

Nd3+ 3 3/2 6 9/2

Pm3+ 4 2 6 4

Sm3+ 5 5/2 5 5/2

Eu3+ 6 3 3 0

Gd3+ 7 7/2 0 7/2

Tb3+ 8 3 3 6

Dy3+ 9 5/2 5 15/2

Ho3+ 10 2 6 8

Er3+ 11 3/2 6 15/2

Tm3+ 12 1 5 6

Yb3+ 13 1/2 3 7/2

Lu3+ 14 0 0 0

3

J =
 |

L+
S|

J =
 |

L-
S|

0 2 4 6 8 10 1412

1

2

4

6

8

0

3

7

5

3 subtract/add



ISOLATED MAGNETIC MOMENTS Hund’s rules

 informational



ISOLATED MAGNETIC MOMENTS Hund’s rules

0 2 4 6 8 10 1412

1

2

4

6

8

0

3

7

5

deviations (Sm, Eu)

4f6

J = L – S = 0

J = L – S + 1 = 1

J = L + S = 6

.

.

.

mJ = -1
mJ = 0
mJ = 1

mJ = 0

2J + 1 = 13 states

∆

when kBT ~ ∆, µ > 0



ISOLATED MAGNETIC MOMENTS Landé g-factor

�𝝁𝝁 = 𝑔𝑔𝐽𝐽𝜇𝜇𝐵𝐵�𝑱𝑱 = 𝜇𝜇𝐵𝐵(𝑔𝑔𝐿𝐿 �𝑳𝑳 + 𝑔𝑔𝑆𝑆�𝑺𝑺)

total (measured) moment

𝑱⃑𝑱 = 𝑳𝑳 + 𝑺𝑺 → but also operators!

𝑔𝑔𝐽𝐽�𝑱𝑱2 = (𝑔𝑔𝐿𝐿 �𝑳𝑳�𝑱𝑱 + 𝑔𝑔𝑆𝑆�𝑺𝑺�𝑱𝑱) 𝑳𝑳 = 𝑱⃑𝑱 − 𝑺𝑺 𝑺𝑺 = 𝑱⃑𝑱 − 𝑳𝑳

𝑺𝑺2 = (𝑱⃑𝑱 − 𝑳𝑳)2= 𝑱⃑𝑱2 − 𝑳𝑳2 − 2𝑱⃑𝑱𝑳𝑳

total angular momentum



ISOLATED MAGNETIC MOMENTS Landé g-factor

�𝝁𝝁 = 𝑔𝑔𝐽𝐽𝜇𝜇𝐵𝐵�𝑱𝑱 = 𝜇𝜇𝐵𝐵(𝑔𝑔𝐿𝐿 �𝑳𝑳 + 𝑔𝑔𝑆𝑆�𝑺𝑺)

total (measured) moment

Landé g-factor

𝑱⃑𝑱 = 𝑳𝑳 + 𝑺𝑺 → but also operators!

𝑔𝑔𝐽𝐽�𝑱𝑱2 = (𝑔𝑔𝐿𝐿 �𝑳𝑳�𝑱𝑱 + 𝑔𝑔𝑆𝑆�𝑺𝑺�𝑱𝑱) 𝑳𝑳 = 𝑱⃑𝑱 − 𝑺𝑺 𝑺𝑺 = 𝑱⃑𝑱 − 𝑳𝑳

𝑺𝑺2 = (𝑱⃑𝑱 − 𝑳𝑳)2= 𝑱⃑𝑱2 − 𝑳𝑳2 − 2𝑱⃑𝑱𝑳𝑳

𝑔𝑔𝐽𝐽 = 𝑔𝑔𝐿𝐿
𝐽𝐽 𝐽𝐽 + 1 + 𝐿𝐿 𝐿𝐿 + 1 − 𝑆𝑆(𝑆𝑆 + 1)

2𝐽𝐽(𝐽𝐽 + 1) + 𝑔𝑔𝑆𝑆
𝐽𝐽 𝐽𝐽 + 1 − 𝐿𝐿 𝐿𝐿 + 1 + 𝑆𝑆(𝑆𝑆 + 1)

2𝐽𝐽(𝐽𝐽 + 1)

𝑔𝑔𝐽𝐽 =
3
2 +

𝑆𝑆 𝑆𝑆 + 1 − 𝐿𝐿(𝐿𝐿 + 1)
2𝐽𝐽(𝐽𝐽 + 1)

for 𝑔𝑔𝐿𝐿 = 1,𝑔𝑔𝑆𝑆 = 2

total angular momentum



ISOLATED MAGNETIC MOMENTS oxygen

 triplet and singlet oxygen

 chemical reactivity

 biology

image source: wikimedia.org



ISOLATED MAGNETIC MOMENTS spin-orbit coupling

v(-e),me

r +
v

r
+

nucleus orbiting electron produces magnetic field

𝐵𝐵 =
Ɛ × 𝑣⃑𝑣
𝑐𝑐2

Ɛ = −∇𝑉𝑉 𝒓𝒓 = −
𝒓𝒓
𝑟𝑟
𝑑𝑑𝑑𝑑(𝑟𝑟)
𝑑𝑑𝑑𝑑

𝑉𝑉 𝑟𝑟 =
𝑍𝑍𝑍𝑍

4𝜋𝜋𝜖𝜖0𝑟𝑟



ISOLATED MAGNETIC MOMENTS spin-orbit coupling

v(-e),me

r +
v

r
+

nucleus orbiting electron produces magnetic field

𝐵𝐵 =
Ɛ × 𝑣⃑𝑣
𝑐𝑐2

∆𝐻𝐻𝑆𝑆𝑆𝑆 = −
1
2𝝁𝝁𝝁𝝁~

𝑍𝑍
𝑟𝑟3 𝑺𝑺𝑺𝑺

relativistic correction
Ɛ = −∇𝑉𝑉 𝒓𝒓 = −

𝒓𝒓
𝑟𝑟
𝑑𝑑𝑑𝑑(𝑟𝑟)
𝑑𝑑𝑑𝑑

𝑉𝑉 𝑟𝑟 =
𝑍𝑍𝑍𝑍

4𝜋𝜋𝜖𝜖0𝑟𝑟

∆𝐸𝐸(1)~ 0
𝑍𝑍
𝑟𝑟3 𝑺𝑺𝑺𝑺 0 ~𝑍𝑍4 0 𝑺𝑺𝑺𝑺 0

0
1
𝑟𝑟3 0 ~𝑍𝑍3

not too strict due to the screening

(2S+1)(2L+1) splitting → fine structure

(hyper-fine structure due to the coupling with nucleus)



ISOLATED MAGNETIC MOMENTS nuclear spins

𝜇𝜇𝑁𝑁 = 𝑒𝑒ħ
2𝑚𝑚𝑃𝑃

= 5.0508 × 10−27Am2

𝜇𝜇 = 𝑔𝑔𝐼𝐼𝜇𝜇𝑁𝑁𝐼𝐼 𝐼𝐼𝑝𝑝 = 𝐼𝐼𝑛𝑛 =
1
2

𝑔𝑔𝑝𝑝 = 5.586

𝑔𝑔𝑛𝑛 = −3.826

hyperfine interaction

∆𝐻𝐻 = 𝐴𝐴𝑰𝑰𝑰𝑰

atomic magnetometer 
(NMR/MRI)
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