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ISOLATED MAGNETIC MOMENTS

** an atom in magnetic field
** diamagnetism

*%* paramagnetism

** Hund’s rules

** spin-orbit coupling

** nuclear spins



not one but several electrons applying magnetic field
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not one but several electrons applying magnetic field
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ISOLATED MAGNETIC MOMENTS magnetic susceptibility
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% response is magnetization
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what is magnetic field?

F =qE + qv X|B

magnetic field
magnetic induction
magnetic-flux density

magnetic field
magnetizing field
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field-induced response

response is magnetization

M =5%H
L magnetic susceptibility (a tensor)
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what is magnetic field?

F =qE + qv X|B
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magnetic field
magnetizing field
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ISOLATED MAGNETIC MOMENTS diamagnetism
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H=Hy+ MB + —Z(B X 1;)? perturbation theory
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ISOLATED MAGNETIC MOMENTS paramagnetism
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thermodynamics through the partition function:
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thermodynamics through the partition function:
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ISOLATED MAGNETIC MOMENTS paramagnetism
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ISOLATED MAGNETIC MOMENTS paramagnetism
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ISOLATED MAGNETIC MOMENTS paramagnetism
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Maximize L

subtract/add

La3+
Ce3+
Pr3+
Nd3+
Pm3+
Sm3+
Eu3+
Gd3+
Tb3+
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Lu 3+
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** informational

The ground state is written in the form

J

J and S are expressed in numbers. For L capital letter are used:
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deviations (Sm, Eu)
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ISOLATED MAGNETIC MOMENTS Landé g-factor

total (measured) moment
total angular momentum
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total (measured) moment
total angular momentum
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ISOLATED MAGNETIC MOMENTS oxygen

* triplet and singlet oxygen
** chemical reactivity

*» biology

image source: wikimedia.org



nucleus orbiting electron produces magnetic field
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nucleus orbiting electron produces magnetic field
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(hyper-fine structure due to the coupling with nucleus)



ISOLATED MAGNETIC MOMENTS nuclear spins
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