
Question 8.1: The β function

In Section 4.4 we presented the idea that coupling constants run, that is, that higher order 
corrections can be absorbed into the definition of the coupling constants. Consider, for example, the 
cross section for e+e− → μ+μ−. In the CM frame and to leading order, this is given by (up to 

normalization factors)

σ ∝ α2

E2
, (5.31)

where E is the energy of the electron. Higher order effects change this result. Most of the effect

can be absorbed into the running of α, that is

σ ∝ α(μ)2

E2
, (5.32)

where μ ∼ E is the energy scale in the problem, and α(μ) is a running coupling constant that

satisfies a differential equation:
∂α

∂ log(μ)
= β(α). (5.33)

The beta function can be calculated to the desired precision in perturbation theory. In QED at

one loop, with only electrons in the loop, we have

β(α) = Bα2, B =
2

3π
. (5.34)

This equation is valid for μ > me.

1. Verify that the solution of the beta function equation is

1

α(μ1)
=

1

α(μ2)
+ B log

(
μ2

μ1

)
. (5.35)

2. Use α(me) ≈ 1/137.0 to calculate α(mZ), where mZ ≈ 91 GeV.
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The fact that the coupling constant becomes larger for higher energy scale raises the possibility 
that it diverges at some scale, which would be an indication that the theory breaks down. The 
energy scale at which it diverges is called the Landau pole. That is, the Landau pole is μLP where
α(μLP) →∞.



3. Find the Landau pole for α. How does it stand with respect to the Planck scale, which

constitutes an upper bound on the cut-off scale of all QFT?

Measurements find that α(mZ) ≈ 1/128. The reason for the disagreement with your result above

is that there are other particles in the loop besides the electron. The generalization of Eq. (5.35)

to that case is
1

α(μ1)
=

1

α(μ2)
+ B

∑
i

Q2
iN

i
C log

(
max(mi, μ2)

μ1

)
, (5.36)

where N i
C = 1(3) for leptons (quarks), and Qi is the electric charge. The sum is over all the

charged particles with mass below μ1.

4. Use the physical masses and charges of the known fermions,

q = −1 : me,μ,τ ≈ (0.5, 100, 1777) MeV,

q = +2/3 : mu,c,t ≈ (0.3, 1.4, 174) GeV,

q = −1/3 : md,s,b ≈ (0.3, 0.4, 4.2) GeV, (5.37)

to calculate α(mZ). How close is your result to the measured value? (Note that the values

of mu, md and ms are much larger than the values quoted in PDG. The reason is that we

use the “valence quark masses” rather than “running quark masses”, which is what the PDG

quotes. We discuss this point in Chapter 10.)

We now move to QCD. The beta function is given by β(α) = Bα2
s with

B = −
(
11− 2nf

3

)
1

2π
, (5.38)

where nf is the number of quark flavors with masses below the relevant scale. Below we use the

input αs(mZ) ≈ 0.12.

5. The sign of the beta function depends on the number of flavors. How many flavors are needed
to change the sign of the beta function? We denote this number as NCri.

6. Sketch the shape of the function αs(μ) for μ between 1 and 104 GeV for (i) a theory with nf

< nCri, and (ii) a theory with nf > nCri. Use log scale for μ.

7. Estimate ΛQCD, that is, the scale where αs = . For simplicity, you can neglect all quark masses
except mt.

8. The proton mass is roughly mp ≈ 3ΛQCD. Can you tell if the mass of the proton would be
lighter or heavier if we did not have the third generation, assuming the same measured value
of αs(mZ )?
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Question 8.2: Using the PDG even more

Read the quark model review from the PDG. Answer the following questions using the data
from the light meson summary table.

1. Explain what P , C, J , I, and G stand for. For each of these QNs, indicate if they are (i)

exact in Nature; or (ii) exact in QCD and QED; or (iii) approximately conserved in QCD.

2. Find the mass, width, and the above mentioned QNs of the π0, η, ρ0, and ω.

3. Find the Branching Ratios (BRs) of the η, ρ0, and ω decays to two pions and to three pions.

4. From the answer to item 3, it is evident that the η does not decay to two pions, the ω decay

rate to two pions is highly suppressed, while the ρ decays dominantly to two pions. Based

on the QNs listed in item 2, explain these results.

Question 8.3: Leptonic pion decay

Consider the purely leptonic pion decays

π+ → 
+ν�. (10.56)

1. Based on the masses of the relevant particles, what final state leptons are allowed?

2. Draw the diagram for this decay. To take into account that the initial state is a pion, we

need to write the amplitude using the relevant hadronic matrix element. Using Eq. (10.14),

show that the amplitude is given by

Aπ→�ν = − g2
Vudfπpπ

μ
[
ū�γμPLvν

]
, (10.57)

4m2
W

where u and v are the standard notation for the spinors and PL is a projection operator

defined in Eq. (1.3). Explain why you can approximate the W propagator as 1/m2
W .

ψR = PRψ ≡
1 +

2

γ5
ψ, ψL = PLψ ≡

1− γ5
2

ψ. (1.3)

⟨0|Aµ|π⟩ ≡ −ifπpπµ, (10.14)



Γ(π → μν) =
G2

F |Vud|2
8π

m2
μmπ

(
1− m2

μ

m2
π

)2

fπ
2. (10.58)

6. Using the previous result, we find that the decay rate for massless neutrinos is

For the rate for massive neutrinos is

R =
m2
π (me

2 +m2
1)− (me

2 −m2
1)

2

m2
π(m

2
µ +m2

2)− (m2
µ −m2

2)
2

√√√√ [m2
π − (me +m1)2] [m2

π − (me −m1)2]

[m2
π − (mµ +m2)2] [m2

π − (mµ −m2)2]
, (Q10.21)

Then , the rate between leptons is

R ≡ Γ(π+ → e+νe)

Γ(π+ → µ+νµ)
=

(
me

mµ

)2 (
m2
π −me

2

m2
π −m2

µ

)2

. (Q10.16)

Assuming that m2
1 � me

2 and

that m2
2 � m2

μ, expanding the ratio R to first order in m2
1/me

2 and in m2
2/m

2
μ,

R

R0

= 1 +

(
m2

1

me
2

)
ae −

(
m2

2

m2
μ

)
aμ (10.61)

where R0 is the value of R for massless neutrinos. The expression for ae and aμ.

ae =
m4
π − 3me

4

(m2
π −me

2)2
, aµ =

m4
π − 3m4

µ

(m2
π −m2

µ)
2
.

6. Find the numerical values of ae and aμ and show that they are both positive. Argue that there 
is a “flat direction,” i.e. a curve in the (m1,  m2) plane where R = R0.

7. The experimental data give

R = (1.2327± 0.0023)× 10−4. (10.62)

Using Eq. (10.60) would give the theory prediction of R0 = 1.2833×10−4. However, to obtain
the bound, we have to take into account higher order corrections, which shift the result:

R0 = (1.2352± 0.0001)× 10−4. (10.63)

Working to 2σ, derive numerical bounds on m1 for m2 = 0,  and  on  m2 for m1 = 0. Explain
why the bound on m1 is much stronger than the one on m2. For each of the two cases check if
the leading order expansion that was used is valid. (Note: these bounds are not very strong
compared to other bounds on neutrino masses, see Section 14.B.)
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