

Flavour Physics: Week: VI

Luismi Garcia

April 11, 2024

Problem 1. The four generation SM

Consider an extension of the SM with an additional (4th) generation of quarks and leptons:

$$L_4(1, 2)_{-1/2}, \quad E_4(1, 2)_{-1/2}, \quad Q_4(3, 2)_{+1/6}, \quad U_4(3, 1)_{+2/3}, \quad D_4(3, 1)_{-1/3}. \quad (1)$$

We denote the fourth generation mass eigenstates by t' , b' , τ' , and ν'_τ in an obvious notation.

- (a) Write down the Yukawa interactions. Use matrix notation, *e.g.*, use L_i where $i = 1, 2, 3, 4$ to denote the lepton doublets.
- (b) What is the global symmetry of the model? What is the number of physical parameters related to the Yukawa terms? Separate them into masses, mixing angles and phases. (Hint: Read Sec. 7.5.3 Parameter counting in Yuval's book for further information).
- (c) Is CP violated in the quark sector? Is it violated in the lepton sector?

Solution

(a) The Yukawa part of the lagrangian is

$$\mathcal{L}_{\text{Yuk}} = \lambda_{ij}^E (\overline{L}_L)_i (\overline{E}_R)_j \phi + \lambda_{ij}^D (\overline{Q}_L)_i (\overline{D}_R)_j \phi + \lambda_{ij}^U (\overline{Q}_L)_i (\overline{U}_R)_j \tilde{\phi} + \text{h.c.} \quad (2)$$

where i, j are flavour indeces and $\tilde{\phi} = i\sigma_2\phi^*$.

(b) In general, the initial symmetry (the symmetry due to the kinematic term alone) is $[U(N_g)]^n = [SU(N_g) \times U(1)]^n$, where N_g is the number of generations, and n is the number of different states we have. In our case, we have $N_g = 4$ (four generations), and $n = 5$ (charged leptons, neutrinos, left-handed quarks, right-handed up-quarks and right-handed down-quarks). A $U(N)$ symmetry has $N_g \times N_g$ symmetry generators, and, thus, our initial $[U(4)]^5$ symmetry has $(4 \times 4) \times 5 = 80$ symmetry generators. Alternatively, we could also use that $U(1)$ has only one generator, and $SU(N_g)$ has $N_g^2 - 1$ generators. Equivalently, $[SU(4) \times U(1)]^5$ has $((4 \times 4 - 1) + 1) \times = 80$ generators.

The initial symmetry is broken due to the Yukawa matrices down to $U(1)_B \times U(1)_e \times U(1)_\mu \times U(1)_\tau \times U(1)_{\tau'}$ (baryon number and N_g lepton flavours). This symmetry is $[U(1)]^5$ and has 5 generators. Therefore, we have broken $80 - 5 = 75$ symmetry generators.

We compute the number of physical parameters as $N_{\text{phys}} = N_{\text{total}} - N_{\text{broken}}$ with $N_{\text{broken}} = 75$ as previously computed. We need to compute the total number of parameters of our model.

We have three Yukawa matrices (λ^E , λ^D and λ^U). As we have four generations, they are 4×4 matrices. The total number of parameters is $3_{\text{number of matrices}} (4 \times 4)_{\text{parameters per matrix}} = 96$. Therefore, the number of physical parameters is $96 - 75 = 21$.

To identify the parameters we need to consider that the initial amount of parameters is equally divided between real and imaginary parts: $96 = 48 + 48$. And A unitary $N_g \times N_g$ matrix has $N_g(N_g - 1)/2$ real parameters and $N_g(N_g + 1)/2 - 1$ phases. These are the ones that are broken. Using $N_g = 4$ and that initially we have 5 matrices, we have $N_{\text{broken}}^{\text{real}} = 5[4(4 - 1)/2] = 30$ broken real parameters, and $N_{\text{broken}}^{\text{phases}} = 5[4(5)/2 - 1] = 45$ broken phases. Recovering our initial 48 real and 48 imaginary parameters we have:

- $N_{\text{phys}}^{\text{real}} = 48 - 30 = 18$, which are divided in 12 charged masses, and the rest (6) are mixing angles.
- $N_{\text{phys}}^{\text{real}} = 48 - 45 = 3$ phases. These are CP phases for the quark sector.

(c) CP is violated in the quark sector, as the 4×4 mixing matrix has three irremovable phases.

CP is not violated in the lepton sector: Since the neutrinos are degenerate, there is no lepton mixing and thus no CP violating phases.

Problem 2. (a) Derive the Wolfenstein notation $\mathcal{O}(\lambda^3)$

$$V_{\text{CKM}} = \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4) \quad (3)$$

using the CKM matrix as a function of the mixing angles and the CP phase

$$V_{\text{CKM}} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix} \quad (4)$$

and the equalities

$$s_{12} = \lambda, \quad s_{23} = A\lambda^2, \quad s_{13}e^{-i\delta} = A\lambda^3(\rho - i\eta), \quad (5)$$

Hint: Use Taylor expansion to express the elements c_{ij} as a function of the elements s_{ij} .

(b) Using the definition of the J_{CKM}

$$\mathcal{I}m(V_{ij}V_{kl}V_{il}^*V_{kj}^*) = J_{\text{CKM}} \sum_{m,n=1}^3 \epsilon_{ikm}\epsilon_{jln}, \quad (i, j, k, l = 1, 2, 3) \quad (6)$$

show that

$$J_{\text{CKM}} = \mathcal{I}m(V_{ud}V_{cs}V_{us}^*V_{cd}^*) \quad (7)$$

Problem 3. In the main text, we discuss the UT, that is the bd triangle,

$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0 \quad (8)$$

. We mention that each of its sides is of $\mathcal{O}(\lambda^3)$, and each of its angles is of $\mathcal{O}(1)$. Here we discuss another unitarity triangle, the bs triangle.

- (a) Write the equation for the bs UT.
- (b) Draw the rescaled bs UT and label the angles as α_s , β_s and γ_s , in a similar way to our discussion of the rescaled bd triangle.
- (c) Estimate, in terms of powers of λ , the size of each side of the bs UT.

Problem 4. Semileptonic decays and the CKM matrix.

A semileptonic decay is one where the final state has both hadrons and leptons. Here we consider semileptonic b decays.

- (a) Draw the tree-level diagram for $b \rightarrow u e \bar{\nu}$ and estimate the size of the amplitude.
- (b) Estimate the ratio $\frac{\Gamma(b \rightarrow u e \bar{\nu})}{\Gamma(b \rightarrow c e \bar{\nu})}$ as a function of CKM matrix elements. Neglect m_e and use $m_c/m_b \simeq 0.3$, and $m_u/m_b \simeq 0.002$. The phase space function for a three-body decay with one massive and two massless final particles is given by

$$f(x_f) = 1 - 8x_f + 8x_f^3 - x_f^4 - 12x_f^2 \log x_f \quad (9)$$

- (c) The experimental value is $\frac{\Gamma(b \rightarrow u e \bar{\nu})}{\Gamma(b \rightarrow c e \bar{\nu})} \simeq 2 \times 10^{-2}$. Estimate the relevant ratio of CKM matrix elements. Comment on the agreement between your estimate and the best fit value for that ratio. (Hint: You will need to look for the value of relevant CKM elements in the PDG).