
L =
mℓ2̇2

2
mgℓ(1 cos ),

Assuming small oscillations ( ≪ 1), we can expand the potential. Keeping only terms up to

second-order, we get

L =
mℓ2̇2

2
 mgℓ2

2
,

which is the Lagrangian of a simple harmonic oscillator. It is well known that the frequency of a

simple harmonic oscillator does not depend on its amplitude. Below we aim to understand how

this result is related to accidental symmetries.

1. Show that the EoM derived from the Lagrangian of Eq. (1.16) is invariant under dilation, →
λ, for any nite λ. (We are then saying that L of Eq. (1.16) has dilation symmetry, despite the
fact that it is only the EoM that is invariant.)

2. Does the Lagrangian of Eq. (1.1) also have dilation symmetry?

3. Expand the Lagrangian of Eq. (1.1) up to O(4). Show explicitly that the 4 term breaks
the dilation invariance. Explain why this implies that this symmetry is accidental.

4. Without a formal proof, argue that dilation symmetry implies that the frequency cannot
depend on the amplitude.

What we have shown is that the dilation symmetry is accidental and that it is broken by higher

order terms.

Question 2.1: Accidental symmetries

In this question, we study a classical system in order to show examples of accidental symmetries. 
Consider a classical one-dimensional pendulum of length ℓ. The one degree of freedom can be chosen 
to be , the angle of the pendulum. Then, the Lagrangian is given by

Eq. (1.1)

Eq. (1.2)



Question 2.2: Algebra

1. Using Eqs. (2.25) and (2.27), derive Eq. (2.28).

3. Consider a kinetic term of a fermion eld, iψ∂ψ, and show that it is not invariant under a

local transformation: ψ → eiθ(x)ψ.

4. Explain why, for terms that involve scalar and/or fermion elds but do not involve derivatives,

the  → (x) substitution has no eect on the symmetry properties.

5. Show that the covariant derivative of the eld, dened in Eq. (2.25), transforms in the same

way as the eld itself:

Dµϕ → eiqθ(x)Dµϕ (2.33)

6. Show that Eq. (2.33) can be written equivalently as

Dµ → eiqθ(x)Dµe
iqθ(x) (2.34)

7. Show that a mass term for Aµ, that is, m2AµA
µ is not invariant under the transformation

law of Eq. (2.26).

8. Show that F µν , dened in Eq. (2.28), is gauge invariant.

9. Show that F µνF̃µν (with F̃µν ≡ ϵµνρσF
ρσ) is a total derivative.

Dµ = ∂µ + igqAµ , (2.25)

[Dµ, Dν ] = igqF µν , (2.27)

F µν = ∂µAν − ∂νAµ. (2.28)

Aµ → Aµ −
g

1
∂µθ. (2.26)



Question 2.3: Chiral symmetry

The Lagrangian for a single, massless, free Dirac fermion eld is given by

L = iψ ∂ψ  (2.38)

Consider the following two transformations:

ψ → eiθ ψ, ψ → eiθγ5 ψ  (2.39)

1. Show that under these two transformations, the conjugate eld transforms, respectively, as

ψ → ψ eiθ, ψ → ψ eiθγ5  (2.40)

Hint: For the second transformation, use a Taylor expansion of eiθγ5 .

2. The ψ → eiθ ψ transformation is clearly vectorial, that is, ψL and ψR transfrom in the same

way:

ψ → eiθ ψ = eiθ ψL + eiθ ψR (2.41)

The ψ → eiθγ5 ψ transformation, on the other hand, is chiral. That is, ψL and ψR transfrom

diferently under it:

ψ → eiθγ5 ψ = eiθ ψL + e+iθ ψR (2.42)

Prove Eq. (2.42).

3. Show that the Lagrangian (2.38) is invariant under both transformations of Eq. (2.39).

4. Add a Dirac mass term to the Lagrangian, mψψ, and show that it breaks the chiral symmetry,

ψ → eiθγ5 ψ, and conserves the vectorial one, ψ → eiθ ψ.

The above result is the source of the statement that we can use chiral symmetries to forbid mass

terms for fermions.



Consider a system with N Dirac fermion elds ψ1,ψ2,    ,ψN , and one real scalar eld, ϕ. The

most general part of the Lagrangian that involves the fermions is

L = ψi[i∂ij mij  λijϕ]ψj  (2.43)

Generally, the symmetry of (2.43) is a U(1) under which all the fermions carry the same charge

and the scalar carries charge zero.

̸

Question 2.4: Vectorial and chiral symmetries

1. Show that, if λij ∝ mij, the symmetry is larger, [U(1)]N .

2. Find a symmetry to impose on the Lagrangian in Eq. (2.43) that sets mij = 0 but allows for

λij ̸= 0. Explain why this symmetry must be chiral.

lumgarci
Line



L = ∂µϕ†
i∂µϕi m2

iϕ
†
iϕi  λij(ϕ

†
iϕi)(ϕ

†
jϕj) (2.48)

1. Show that L has a U(1)a × U(1)b symmetry, where the the charges of the elds are

q1 = (1, 0), q2 = (0, 1) (2.49)

Here the rst [second] number in the parenthesis refers to the charge under U(1)a [U(1)b].

The U(1)a × U(1)b symmetry is partially accidental, that is, we imposed a single U(1) and ended

up with a [U(1)]2 symmetry. We can rewrite the symmetry as a product of U(1)imp ×U(1)acc such

that U(1)imp is the imposed symmetry (with qimp
1 = 1 and qimp

2 = 5) and U(1)acc is an accidental

one. While there are many possible choices for U(1)acc, the one we consider below is particularly

useful.

2. We choose U(1)acc such that the charges under U(1)imp and U(1)acc are orthonormal:

qimp
1 qacc1 + qimp

2 qacc2 = 0,

qimp
1

2
+


qimp
2

2
= (qacc1 )2 + (qacc2 )2  (2.50)

Find one possibility for qacc1 and qacc2 .

3. A generic [U(1)]2 transformation can be written in the two bases as

ϕ → ei(qaθa+qbθb)ϕ = ei(q
impθimp+qaccθacc)ϕ (2.51)

The angles, imp and acc, can be expressed in terms of a and b. Find that relation.

4. Write a dimension six operator that breaks the U(1)a × U(1)b symmetry into U(1)imp.

Question 2.5: Accidental symmetries

Consider a variation of the model discussed in Subsection (2.1.4). We impose a U(1)imp symme-

try. The model has two complex scalar elds, ϕ1 and ϕ2, that carry charges q1
imp = 1 and q2

imp = 5. 
The most general Lagrangian for this model is given by Eq. (2.16) that we rewrite here:




