Chapter 6
Spontaneous Symmetry Breaking

Spontaneously broken symmetries play an important role in physics, and in particle physics in
particular. In this chapter we introduce the idea of spontaneous symmetry breaking and discuss
its consequences. The role of such symmetries in the weak interaction part of the SM is discussed
in Chapter [7]

6.1 Introduction

The notion of broken symmetries may seem strange: In what sense is there a difference between
the case that we call “a broken symmetry” and the case of not having the symmetry at all? The

idea of a broken symmetry is however meaningful in two scenarios:

e Explicit breaking of a symmetry by a small parameter. The Lagrangian includes terms
that break the symmetry, but these terms are characterized by a small parameter. The small
parameter can be either a small dimensionless coupling, or a small ratio between mass scales.

The symmetry is then approximate, and one can expand around the symmetry limit.

e Spontaneous Symmetry Breaking (SSB). The Lagrangian is symmetric, but the vacuum state
is not. Even though with SSB the symmetry is not manifest but rather hidden, the number
of parameters is the same as in the case of unbroken symmetry. In this sense, the predictive

power of a spontaneously broken symmetry is as strong as that of the unbroken symmetry.

SSB is based on the following ingredients. Symmetries of interactions are determined by the
symmetries of the Lagrangian. The states, however, do not have to obey these symmetries. Con-
sider, for example, the hydrogen atom. While the Lagrangian is invariant under rotations, an
eigenstate does not have to be. Specifically, a state with a finite m quantum number is not invari-
ant under rotation around the z-axis. The fact that there are eigenstates that are not invariant

under the symmetry of the system is a generic feature when there are degenerate states.
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In perturbative QFT we expand around the lowest energy state. This lowest state is called the
“vacuum” state. When the vacuum state is degenerate, the fact that the physics would remain
the same for any choice of vacuum to expand around is a consequence of the symmetry. Yet, when
we expand around a specific vacuum state out of the degenerate set of vacua, we expand around
a state that does not conserve the symmetry.

The name “spontaneously broken” indicates that there is no preference as to which of the
states is chosen. A very simple example is that of a hungry donkey. Consider a donkey that stands
exactly halfway between two stacks of hay. Symmetry tells us that it costs the same amount of
energy to go to either stack. Thus, we may expect that the donkey is unable to choose and would
starve! Yet, in reality, the donkey would make an arbitrary choice and go to one of the stacks to
eat. We say that the donkey spontaneously breaks the symmetry between the two sides.

In previous chapters we encountered the predictive power of imposed symmetries. In this
chapter we show that spontaneously broken symmetries are no less predictive than exact ones,
though the predictions are different. While the symmetry is no longer manifest, in the sense that
processes that are forbidden in the symmetry limit may become allowed if it is spontaneously
broken, there are subtle relations between these ‘forbidden’ processes and the allowed ones. These
relations reveal that the Lagrangian does have this symmetry. This is why a spontaneously broken

symmetry is also called a hidden symmetry.

6.2 Global discrete symmetries: 7,

Consider a model with an imposed Z, symmetry, similar to the one discussed in Section [2.1.1]

There is a single real scalar field ¢, which is odd under the symmetry:

O — —0o. (6.1)

Thus, the symmetry is simply ¢-parity. The Lagrangian reads

1 n lu2 2 A 4
L= 35(0u0)(0")) — —¢" — 10" (6.2)
2 2 4
In particular, the symmetry forbids a ¢3 term. Hermiticity of £ requires that p? and \ are real,
and we must have A > 0. (A < 0 leads to a “run-away” potential, that is, one that is not bounded
from below.) As for the p? term, we can have either py? > 0 or u? < 0. The p? > 0 case is
considered in Section [2.1.1 It corresponds to an ordinary ¢* theory, and ;2 is the mass-squared

of ¢. The case of interest for our purposes is
p? < 0. (6.3)

The minimum of the scalar potential should satisfy

oV
0= 55 = 0l + 2%, (6.4)
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Thus, the potential has two possible minima:

bs = i,/‘f = +0. (6.5)

The classical solution would be either ¢, or ¢_. We say that ¢ acquires a Vacuum Expectation
Value (VEV):

() = (0]]0) # 0. (6.6)

Perturbative calculations should involve expansion around the classical minimum. Since the
two solutions are physically equivalent, the physics cannot depend on our choice, but we must
make a choice. Let us choose — without loss of generality — to expand around ¢,. We define a

field ¢’ with a vanishing VEV:

¢ =¢—w. (6.7)
In terms of ¢’, the Lagrangian reads
1 / / 1 2 /2 /3 A 14
£ = 20,0)@"6) — LM% — g = 247 ©5)
where we used 12 = —M\v? and discarded a constant term.

We recall that the most general Lagrangian of a scalar field is given in Eq. (1.2)) and we rewrite
it here in terms of ¢’
1 m? n A
£ I /au/_7/2_7/3_7/4. 69
5= G000 — 50 = ST~ G (6.9
Examining the Lagrangians of Egs. (6.2)), and raises the following points:

1. The Lagrangian includes all possible terms for the real scalar field ¢/. In particular,
it has no ¢'-parity symmetry. Thus, the ¢ — —¢ symmetry is hidden. It is spontaneously
broken by our choice of the ground state (¢) = 4wv.

2. Yet, the Lagrangian is not the most general renormalizable Lagrangian for a scalar field.
While the most general one, Eq. , depends on three independent parameters, Eq.
depends on only two. In terms of the parameters of the general Lagrangian Eq. , the
relation is

n? = 4 m?. (6.10)
This relation is the clue that the symmetry is spontaneously, rather than explicitly, broken.

3. The two parameters can be chosen to be v and ), or u? and \. The first choice is the one we
made in writing Eq. . The second choice employs the same parameters of the original,
manifestly symmetric £(¢), see Eq. (6.2). It demonstrates that the SSB does not introduce

additional new parameters.
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4. The coefficients of the quadratic and trilinear terms in are different from those of the
quadratic and trilinear terms in Eq. (6.2). In contrast, the coefficients of the quartic terms
are the same. This is a general result: as long as we consider only the renormalizable terms,

SSB changes dimensionful parameters, but not dimensionless ones.

5. While the symmetry is manifest in Eq. (6.2), the phenomenological interpretation of this
model should start from Eq. . Specifically, the model describes a scalar particle of

mass-squared 2 \v? = —2p2. This particle is an excitation of the ¢’ field.

6. Hypothetical particles with negative mass-squared are called tachyons and they travel faster
than light. The example above shows why tachyons do not appear in QFT. To make a
physical interpretation, we have to expand around the minimum, and thus physical particles
have positive mass-squared. Fields with negative mass-squared terms are sometimes referred

to as tachyonic fields.

7. In non-relativistic quantum mechanics, the analogous case — a particle in a double-well poten-
tial — does not have a degenerate vacuum due to tunneling effects. Such tunneling effectively
vanishes in QFT.

6.3 Global Abelian continuous symmetries: U(1)

Consider a model with an imposed U(1) symmetry, similar to the one discussed in Section [2.1.2]
There is a single complex scalar field ¢, with ¢ = +1, so the theory is required to be invariant

under

¢ — €. (6.11)

The Lagrangian reads
L= (0,0")(0"¢) — 1*'d — Mo'9)”. (6.12)

Equivalently, we can rewrite the Lagrangian in terms of two real scalar fields, as in Eq. (2.5)),

¢

= (Gn+i6), (6.13)

and impose an SO(2) symmetry,

0 in 6
AN oSy S or) (6.14)
o1 —sinf cosf o1
The Lagrangian reads, see Eq. (2.8)),

1 1 2 A
£ = S(0"6m) 0u0r) + 5(0"0n)(@u0r) = & (6 + 67) = (h+3) (6.15)

79



The p? and A parameters are real, and we must have A > 0. We consider the case that pu? < 0.
(The p? > 0 case is considered in Section [2.1.2l) We define v* = —u?/\. The scalar potential can

be written (up to a constant term) as

2\ 2
V =\ <¢T¢ _ 1;) ' (6.16)

Thus, ¢ acquires a VEV:
2
1

2(0%0) = (S +07) =" = - (6.17)

In the (¢g, ¢r) plane, there is a circle of radius v that corresponds to minima of the potential. We
have to choose a specific vacuum to expand around. We choose the real component of ¢ to carry
the VEV:

(Or) = v, (¢1) = 0. (6.18)
We define the real scalar fields
h=oér—v,  §=0r, (6.19)
with vanishing VEVs:
(hy = (&) = 0. (6.20)

We obtain the Lagrangian in terms of h and &:
1 1
L= L(@h)(0N) + (D6 (D) — MR — Noh(1? + &) ~ Z(h? L) (6.21)
Note the following points:

1. The SO(2) symmetry is spontaneously broken. This can be seen from the presence of the
h(h? + £2) term.

2. Since the symmetry is spontaneously broken, the Lagrangian is not invariant under a trans-
formation similar to the one in Eq. (6.14]). Explicitly,

h cosf sinf h
()= (S o) () 622
& —sinf cos6 &

3. The Lagrangian describes one massive scalar, h, with m? = 2 \v?, and one massless scalar, &.

is not a symmetry of L.

If the symmetry were not broken, it would be impossible to distinguish the two components
of the complex scalar field. With the symmetry spontaneously broken, these two DoF are

distinguishable, for example, by their different masses.

4. The Lagrangian of Eq. (6.21)) is not the most general Lagrangian for two real scalar fields.
Many terms are missing, while others, that would have been independent in the general case,

are related. In particular, there are only two independent parameters, as for a Lagrangian
with an unbroken SO(2).
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Figure 6.1: The “Mexican hat” potential. The masses of the two scalar DoF correspond to the
second derivative of the potential around the minimum. One direction (left) is flat, while the other
(center) is not. The plot on the right shows the symmetric maximum. It is unstable and does not
correspond to a particle. In the case of a global symmetry, the flat direction corresponds to the
massless Goldstone boson, while the non-flat direction corresponds to the massive DoF'. In the case
of a local symmetry, the flat direction corresponds to the longitudinal component of the vector

boson, while the non-flat direction corresponds to the massive Higgs boson.

5. The quartic terms, with dimensionless couplings, are the same in Eqs. (6.15) and (6.21]).

Only dimensionful couplings are modified.

6. We chose a basis by assigning the VEV to the real component of ¢. This is an arbitrary

choice. We made it since it is convenient. The physics does not depend on this choice.

7. We write the VEV as (¢r) = v or equivalently as (¢) = v/v/2. The factor of v/2 between
the two VEVs is just the one that we encounter many times when moving between real and

complex fields.

One of the most interesting features of the model presented here is the existence of a massless
scalar field. This feature is not particular to our specific model, but rather the result of a general
theorem called Goldstone’s theorem: The spontaneous breaking of a global continuous symmetry
is accompanied by massless scalars. Their number and quantum numbers equal those of the broken
generators. The massless scalars are called Nambu-Goldstone Bosons.

While we do not prove here the theorem, we briefly describe the intuition behind it. SSB is
possible only when the vacuum is degenerate. For a continuous symmetry, the set of degenerate
vacua is also continuous. In the case of a U(1) symmetry, the shape of the potential is usually called
“a Mexican hat,” see Fig. [6.1] When expanding around any point in the “valley,” one direction
is flat. A flat direction in the potential corresponds to a massless DoF. Goldstone’s theorem is a

generalization of this simple picture. Fig. demonstrates the point.

81



6.4 Global non-Abelian continuous symmetries: SO(3)

Consider a model with an imposed SO(3) symmetry, and a real scalar field, ¢, that transforms as

a triplet under the symmetry:
¢ — el (6.23)

The three L, matrices, (Lg)pe = i€ape, constitute the triplet representation of the SO(3) algebra.
They are given explicitly in Eq. (6.49). This model provides an intuitive picture of spontaneous
symmetry breaking. The triplet constitutes a vector in a real three-dimensional (3d) space. Once
a vector is fixed in space, the symmetry under 3d rotations breaks, but not completely, as the
symmetry under rotations in the plane that is perpendicular to the vector remains. Here we
translate this intuitive picture into a rigorous analysis.

The Lagrangian reads

2
L= L (0,6)(0%0) ~ L6~ 2(67 o) (6.24)

We take p? < 0, and define v? = —p2/\. Then ¢ acquires a VEV: | (¢) | = v. The triplet ¢ has
three DoF. We choose the direction of the VEV to lie in the ¢3 direction:

o1
o=1 o2 |, (6.25)
v+ @3

such that (¢;) =0, i =1,2,3. The SO(3) symmetry is only partially broken,
SO(3) = SO(2), (6.26)

where the SO(2) symmetry refers to rotations in the (¢1, ¢2) plane.
The Lagrangian for the ¢; fields can be written as

L= Lin+ Lo+ Ls+ Lo, (6.27)

where £,, includes terms that are n’th power in the ¢; fields. Let us comment on the significance

of each of these parts of the Lagrangian:

e Quadratic terms:
—Ly = 23, (6.28)

The model has one massive scalar, ¢3, of mass-squared m3 = 2 \v?, and two massless scalars,
m? = m2 = 0. This is a manifestation of Goldstone’s theorem. Spontaneous symmetry
breaking requires the appearance of massless Goldstone bosons in correspondence to the
broken generators. Since SO(3) has three generators, and it is spontaneously broken to

SO(2) that has one generator, our model must have two Goldstone bosons.
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o Trilinear terms:
—L3 = Mvdz(p161 + 202 + P303). (6.29)
The fact that £3 # 0 is a manifestation of the SO(3) breaking.

e The quartic terms:
L= (gt s+ ) 6.30
v= (0 ) (6.30)
This part of the Lagrangian has dimensionless couplings and therefore it is unchanged from

the symmetric form.

The model presented here is an example of partial breaking of the symmetry. In general, a
generator corresponds to a spontaneously broken symmetry if the vacuum is not invariant under an
operation of the corresponding group element. Conversely, a generator corresponds to an unbroken
symmetry if the vacuum is invariant to an operation by the corresponding group element. Given the
fact that the group element is the exponent of the generator, these conditions can be represented
in terms of the generators as follows. We denote the the vacuum state by (¢). A broken generator
gives

To(d) # 0. (6.31)

An unbroken generator gives
To(p) = 0. (6.32)

More details are given in Question (6.3

6.5 Fermion masses

Spontaneous symmetry breaking can give masses to chiral fermions. We explain this statement by
an explicit example.
Consider a model with a U(1) symmetry. The field content consists of a left-handed fermion

Yy, a right-handed fermion g, and a complex scalar ¢ with the following U(1) charges:

q(Wr)=+1,  q@Wr)=+2,  q(¢)=+1 (6.33)

The most general Lagrangian we can write is

L= Lin— 10" = N0'¢)* — (Yo rir +hc.). (6.34)

Since the fermions are charged and chiral, we cannot write mass terms for them (£, = 0).

We take p? < 0, so that the scalar potential is the one given in Eq. , leading to a VEV
for ¢: |(¢)| = v/v/2 # 0. As in Section we choose (¢r) = v, (¢;) = 0 and define the real fields
h and & in such a way that they have vanishing VEVs:

h+v+i&
\/5 )
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Expanding around the chosen vacuum we find

o

L= Ekin - V<h7 5) \/iﬁ"lh + \}//§<h + Zf)%ﬁm + h.c. , (636)

where V' (h,£) can be read off Eq. (6.21). We learn that ¢, and g combine to form a Dirac

fermion with mass
Yv

ma, =
V2

This is possible because the symmetry under which the fermion is chiral is broken.

(6.37)

In a more general case, the symmetry might be only partially broken, namely a subgroup of the
original group remains unbroken. In this case, necessary conditions for generating fermion masses

are the following:
e Dirac mass: the fermion representation is vector-like under the unbroken subgroup.

e Majorana mass: the fermion is neutral under unbroken U(1) groups and in a real represen-

tation of unbroken non-Abelian subgroups.

6.6 Local symmetries: the Higgs mechanism

In this section we discuss spontaneous breaking of local symmetries. We demonstrate it by studying
a U(1) gauge symmetry. One of the main results is that the breaking of a local symmetry generates
mass terms for the gauge bosons that correspond to the broken generators. At first sight, this result
might seem surprising, since the spontaneous breaking of a global symmetry gives massless Nambu-
Goldstone bosons. In the case of a local symmetry, however, these would-be Nambu-Goldstone
bosons are “eaten” by the gauge bosons and become the longitudinal components of the resulting
massive vector-bosons.

An explanation of the terms “eaten” and “would-be Goldstone bosons”, that are commonly
used in the physics jargon, is called for. The key point for the term “eaten” is that, for a model with
a spontaneously broken local symmetry, the number of DoF's is the same in the interaction basis
and in the mass basis. Concretely, if Ny of the symmetry generators are spontaneously broken
then, in the mass basis, there are Ny massive vector boson fields, each with 3 DoF's (two transverse
and one longitudinal polarizations). In the interaction basis, these 3Ny DoFs are assigned to Ny
gauge fields, each with 2 DoF's (the two transverse polarizations), and Ny real scalar fields. These
Ny real scalar fields of the interaction basis, which become part (the longitudinal components) of
the Ny massive vector bosons in the mass basis, are referred to as the “eaten” DoFs. The term
“would-be Goldstone bosons” refers to the fact that, if the spontaneously broken symmetry were
global instead of local, these Ny real scalar fields of the interaction basis would correspond to the

massless Goldstone bosons in the mass basis.
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Consider a theory similar to the one discussed in Section (6.3, where we have a single scalar

field that is charged under a U(1) symmetry. The difference is that here we impose a local U(1)

symmetry:
b — @y, (6.38)
The Lagrangian is given by
r HDlgY _ Lp e 2t )2
= (Dug) (D"9) = L Eu ™ — 1791 — AM(¢'9)". (6.39)
The covariant derivative is given by
Dtp = (0" +igA*)o. (6.40)

AF is the gauge field, F),, is defined in Eq. (2.28), and g is the coupling constant.
We consider the case of u? < 0, leading to SSB via a VEV of ¢:

vt = ——. (6.41)

We choose the real component of ¢ to carry the VEV. We again write the complex scalar in terms
of two real scalar fields with vanishing VEVs, (h) = (£) = 0, but, unlike the global case, it is

convenient to write the two DoF as a phase, {(z) and a magnitude, h(x):

pit@)/o ¥ T h(z) _

V2
Note that we normalized £(x) such that it has mass dimension one. To linear order in the fields,

Eq. (6.42)) is the same as Eq. (6.35). We usually refer to Eq. (6.42)) as a non-linear realization and

to Eq. (6.35)) as a linear realization.
When a symmetry is spontaneously broken and we write the Lagrangian in terms of the VEV-

o) = (6.42)

less fields, the Lagrangian is no longer manifestly invariant under the broken symmetry transfor-
mation. Instead, the transformation constitutes a change of basis. We can use this change of basis
to our advantage, by choosing a basis that makes the physics of the model more transparent. This
is what we do here by choosing a specific gauge: 0(x) = —&(x)/v. (It is fully legitimate to choose
the phase to be related to a field.) This gauge is called the unitary gauge.

With this choice of gauge,

o1 1
O — ¢ :ﬁ(thv), Au—>Vu:Au+g—U 23 (6.43)

such that ¢’ has one DoF and V), three. The Lagrangian in terms of h and V), reads

1 1 1 1
L= =7VV* + 5 (0:h)(9"h) + §(g2v2)VuV” - 5(2M2)h2 (6.44)
g° A
ViV (20 4 1) — Avh3 — Zh‘*.
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The kinetic term of the gauge boson is independent of the gauge fixing. This can be seen from the
fact that

0.V, — 8,V, = 9,4, — 0,A,. (6.45)

The spectrum of the model consists of a massive vector boson of mass-squared m? = (gv)? and

a massive scalar of mass-squared mi = 2\v?. We note the following points:

1.

The sign of a mass-squared term for a vector-boson is opposite sign to that of a mass-squared

term for a scalar.

. The h scalar is called “a Higgs boson”. The related field, which acquires a VEV, in our case

¢, is called the Brout-Englert-Higgs (BEH) field or the Higgs field.

The source of the mass-squared term for the vector bosons is the kinetic term of the Higgs
field.

The propagator of a a massive gauge boson depends on the gauge choice. In the unitary

gauge it is given by

O i G T4 (6.46)
k? —m3,

We do not discuss in detail the issues of gauge fixing for massive gauge bosons.

The ¢ field is “eaten” in order to give mass to the gauge boson. It was a convenient choice
to make the phase to be the “eaten” DoF. The total number of degrees of freedom does
not change: instead of the scalar &, we have the longitudinal component of a massive vector

boson.

In the limit ¢ — 0 we have my — 0. This situation describes a massless gauge boson
and a massless scalar. We see that in that limit the longitudinal component is the massless

Nambu-Goldstone boson as expected.

The interactions of the model include scalar self-interactions and interactions of the scalar with

the vector boson. We note the following points:

1.

2.

The hV'V coupling is proportional to the mass-squared of the vector boson.

The dimensionless V'V hh and hhhh couplings are unchanged from the symmetric Lagrangian.

The Lagrangian ([6.39) depends on three parameters. They can be taken to be g, v, and A.
The Lagrangian (6.44) has two mass terms and four interaction terms which depend on the same

three parameters. Thus, the six relevant terms, which would be independent in the absence of a

symmetry, obey three relations among them. This is a sign of SSB.

In the example above, we consider SSB of a local U(1) symmetry. The basic ingredients are,

however, much more generic and apply also to non-Abelian symmetries and to product groups.
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Table 6.1: Symmetries and some of their main consequences

Type Consequences

Spacetime Conservation of energy, momentum, angular momentum
Discrete Selection rules

Global (exact) Conserved charges

Global (spon. broken) Massless scalars
Local (exact) Interactions, massless spin-1 mediators

Local (spon. broken)  Interactions, massive spin-1 mediators

In fact, the SM incorporates SSB of a local SU(2) x U(1) symmetry. The following lessons are

generic to all cases of spontaneous breaking of a local symmetry:

e Spontaneous symmetry breaking gives masses to the gauge bosons related to the broken

generators.

e Gauge bosons related to an unbroken subgroup remain massless, because their masslessness

is protected by the symmetry.
The following points are common to the spontaneous breaking of both local and global symmetries:

e The field that acquires a VEV (the BEH field) must be a scalar field. Otherwise its VEV

would break Lorentz invariance.

e Spontaneous breaking of a symmetry, whether global or local, can give masses also to

fermions, via Yukawa interactions.

e States with different QNs under the broken symmetry but with the same QNs under the
unbroken subgroup can mix. By “mixing” we mean that a mass eigenstate can be a linear
combination of such states. We do not elaborate on it here. Chapter [7] provides an example

of mixing among vector bosons. Chapter [14] provides an example of mixing among fermions.

6.7 Summary

Symmetries in QFT have a strong predictive, or explanatory, power. The main consequences of
the various types of symmetries are summarized in Table [6.1]

To construct a model, we provide as input the following ingredients:

(1) The symmetry;
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(7i) The transformation properties of the fermions and the scalars.

Then we write the most general Lagrangian that is invariant under the symmetry up to some order
in the fields. Unless explicitly stated otherwise, we truncate the Lagrangian at the renormalizable
level, that is, at dimension four in the fields.

The resulting Lagrangian has a finite number of parameters that we need to determine by
experiment. In principle, for a theory with N independent parameters, we need to perform N
appropriate measurements to extract the values of the parameters. Additional measurements test
the theory.

The values of the parameters can have minor or major implications. In particular, variation
of values of parameters can lead to different patterns of SSB, which result in very different phe-
nomenology. Thus, often, when we define a theory, the various SSB branches of it are given
different names.

Our process of building some model X starts with defining the imposed symmetry and the
transformation properties of fermions and scalars under this symmetry, and writing the most
general Lagrangian consistent with these definitions. At this stage, we can obtain the predictions
of model X that are independent of the values of the model parameters. Additional predictions
can be made when the values of the parameters are determined experimentally. We sometimes
use the term “a model X” for the class of models that are described by the Lagrangian, with any
possible values of its parameters, and “the model X” for the specific model with the values of the
parameters as realized in Nature (namely, as determined by experiments). In particular, we use
the terminology of “a SM” and “the SM” in this sense later in the book.

For further reading

More on the formal aspects of SSB can be found, for example, in Section 2.2 in Ref. [17], Chapters
20 and 21 of Ref. [2], Chapter 28 in Ref. [15], and Section 4 of Ref. [21].
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Problems

Question 6.1: Algebra

1. Show that, to up to linear order in all fields, Eq. (6.42)) leads to Eq. (6.35)).

2. Use Egs. (6.39)), (6.42), and (6.43]) to derive Eq. (6.44]).

Question 6.2: SSB with many scalars

Consider the following model. The symmetry is global SO(N). There is a real scalar field ®,
in the N representation, so there are N real scalar DoF ® = (¢1, ¢, ..., ¢n)T. The Lagrangian is
given by

1

1 1
L= §6N<I>8“<I> - 5,ﬂ<1>2 - ZA@‘*, (6.47)

with 4? < 0 and A > 0. This Lagrangian is a generalization of Eq. (6.12)).

1. Show that £ describes a theory with a single massive scalar of mass-squared m? = —2u2,

and N — 1 massless scalars.
2. What is the unbroken symmetry group?

3. Goldstone’s theorem states that the number of massless bosons is equal to the number of

broken generators. Show this explicitly for this model.

Question 6.3: Broken and unbroken symmetries

In this question we elaborate on Eqgs. (6.31)) and (6.32) that state that an unbroken generator
T, annihilates the vacuum, T,(¢) = 0, while a spontaneously broken one does not, 7,(¢) # 0.

Consider the operation of a group element on the vacuum:
(@) = e (¢). (6.48)
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1. Explain why the symmetry is unbroken if (¢') = (¢) for any 6, and that it is broken if there
is a 0, such that (¢') # (¢).

2. Explain why the above implies that T,{(¢) = 0 if T}, corresponds to an unbroken symmetry.

3. A familiar example is the case of a vector in 3d, that breaks the symmetry from SO(3) to
SO(2), that is, from rotations in 3d to rotations in the plane perpendicular to the vector.
Consider a case where we choose the normalized vector to be ¥ = (0,0,1)". Show that L, is
still a symmetry while L, and L, are not. It is useful to recall the explicit representation of

L; for a vector, in the basis that corresponds to rotations in real space:

0 0 0 00 -1 0
Ly=—i|0 0 1 L,=—i[0 0 0 L.=—i| -1 0 0]. (649
0 -1 0 10 0 0 0 0

4. Now consider a generic normalized vector, ¥ = (a, b, ¢) such that a* + b* 4+ ¢* = 1. Show that
laL, +bL, +cL,]U=0. (6.50)

The above shows that there is always one generator that is not broken, so indeed the unbroken

symmetry is SO(2).

5. Consider SU(2) transformations. The previous question demonstrates that a vector, that is
a 3, breaks SU(2) to U(1). Here you are asked to show that a spinor, that is a 2, breaks
SU(2) completely. In order to show this, we need to prove that there is no combination of
generators which annihilates a spinor. The SU(2) generators in the spinor representation
are the Pauli matrices. Consider the spinor § = (0,1) and show that any non-zero linear

combination with real coefficients of the Pauli matrices does not annihilate it.

Question 6.4: More on the dark photon

We consider a model that is an extension of the one discussed in Question [3.3}

(i) The symmetry is a local U(1)gm x U(1)p. We denote the gauge bosons by A, and C,,,

respectively.

(73) There are four fermion fields:

er(—=1,0),  er(—=1,0),  dp(0,—1),  dp(0,—1). (6.51)

(77i) There is a single complex scalar:
¢(qeMm, 4D)- (6.52)
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We assume no kinetic mixing and use a normalization such that the coupling constants of the two

groups is the same, that is, ggpm = gp = e.

1.

There are five specific charge assignments that allow Yukawa interactions, that is, couplings

between ¢ and the fermions. What are these charge assignments?

From this point on, we do not consider any of the above options, that is, we consider only cases

where all Yukawa interactions are forbidden.

2.

Write the scalar potential. What is the condition for ¢ to acquire a VEV? From here on,

assume that this condition is satisfied.

One way to make the model possibly consistent with Nature is to have partial SSB, such
that the photon A, is massless but the dark photon C), is massive. Explain why this is the

case when ggy = 0 and ¢gp # 0.

In the above case, that is with ggy = 0 and gp # 0, write the mass of the dark photon in

terms of the model parameters.

We now consider a case where both ggy # 0 and gp # 0. In this case both U(1)gy and
U(1)p are broken. Show, however, that the breaking pattern is [U(1)]* — U(1). We denote

the massless gauge boson Aj, and the massive one (/.
Write the couplings of the fermions to A, and C/,.

We now assume that gy < ¢p (and ggm = gp). In this case, we can think of AL as a
small deviation from A,, and still call it the photon. We further assume that mg ~ m,.
Experimentally, a particle with a mass of order the electron mass and with EM charge larger

than about 1072 that of the electron, is ruled out. Obtain the resulting constraint on qgn/qp.

Question 6.5: Physics of the Higgs boson

We consider the model of Section with the Lagrangian of Eq. (6.21]).

1.

Draw the tree-level diagrams for the hh — hh scattering and write down the amplitude.

Note that there is more than one diagram.

Estimate the cross section in the limit where £ > v. Here E is the center of mass energy of

the collision.

Consider the same model but with p? > 0. Estimate the ¢¢* — ¢¢* cross section in the
limit where E? > p?. Explain the similarity to the result of the hh — hh scattering cross

section obtained in the previous item.
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Question 6.6: The Sigma model

A classic example of spontaneous symmetry breaking with Nambu—Goldstone bosons is pro-
vided by the o-model. It pre-dated QCD, and we now think of it as an effective theory of the
strong interactions at low energies. It aims to describe the effective strong interactions between
the nucleons — the proton p and the neutron n — via the exchange of three scalars — the pions
7 (a=1,2,3).

Consider the following model:
(1) The symmetry is a global SU(2), x SU(2)g x U(1)p.

(73) There are two fermion fields:

Np(2,1) 41 = <pL>, Ne(1,2)41 = (pR>. (6.53)

nr ngr

(77i) There is a single scalar field:
2(2,2)o. (6.54)

The most general Lagrangian can be written as
L =iN.INy + iNg N + iTr 0,210"%] = [g(NLENg + he))] = V(5). (6.55)
The infinitesimal symmetry transformations on the fermion fields are chiral and given by
ONp =1ie;T* Ny, ONRp = 1T Np. (6.56)

1. £ is invariant under the above chiral symmetries. The fermion kinetic terms can be written
in terms of the Dirac field N = (N; Ng)?. Write the infinitesimal symmetry transformations
in the form

ON =1ie’T*N, ON = ivses TN, (6.57)

and express €* and €f in term of €} and €5,

What you showed is that we can write the symmetry in a different basis. Instead of SU(2), x
SU(2)r we can write SU(2)y x SU(2)a. The SU(2)y group is also called the “diagonal SU(2)”
or “isospin symmetry”, while SU(2)4 is usually called the “axial SU(2)”.

2. Show that a mass term mN N is invariant under SU(2)y but not under SU(2)4. We learn

that it is the axial symmetry that forbids fermion masses.
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The ¥ field has four DoF, so we can write it in terms of four real scalar fields, o and 7 (a = 1, 2, 3):
Y =0+ it,7°, a=1,2,3, (6.58)

where 7, are the Pauli matrices. We aim to have a model that describes Nature, so we need to
provide masses to the proton and the neutron. This is done via spontaneous breaking of the chiral

symmetry by the X field acquiring a VEV.

3. The scalar potential, V(X), can be written as

V() = S -

What are the conditions for V' (X) to be bounded from below and for ¥ to acquire a VEV?

™

»iy). (6.59)

4. Show that, up to a constant term, the potential in Eq. (6.59) is equivalent to
1 2
V()= ) o?+ 7 - F2], (6.60)

with A and F; real and positive. F} is the so called “pion decay constant” and it is the only

mass scale in the theory.

5. What are the minima of V(X)? Find a minimum where only o acquires a VEV, but the 7,’s

do not.

6. Rewrite £ in terms of fields that do not carry a VEV, that is, N, Ng, m,, and s = o — FJ,.

What are the masses of these fields? How many DoF are massless?

7. How many generators are broken? Check your result against Goldstone’s theorem, that is,

check that the number of massless scalars is the same as the number of broken generators.

8. We denote the NN interaction coupling by g-yn. Show that the following relation between

masses and couplings holds:

my = grnnFr. (6.61)

This relation is known as the Goldberger-Treiman relation. It is satisfied in Nature to a good
accuracy. Such a relation between masses and couplings is a signal of SSB, as discussed in the

main text.

9. In Nature the pions have small masses (compared to the nucleon), which reflect a small

explicit breaking of a symmetry. What is this broken symmetry: SU(2)y or SU(2)4?

10. In Nature there is a very small mass splitting between the proton and the neutron, while the
model predicts that they are degenerate. Thus the model provides a very good approximation
to Nature. What symmetry has to be broken to generate the splitting, SU(2)y or SU(2)47
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We conclude that the Sigma model predicts that the proton and neutron are degenerate and that
the pions are massless. These two predictions are approximately fulfilled in Nature. The model
also predicts the existence of the s particle, which can be identified as the f,(500) resonance. We

discuss low energy QCD in more detail in Chapter [10]
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