
Chapter 6

Spontaneous Symmetry Breaking

Spontaneously broken symmetries play an important role in physics, and in particle physics in

particular. In this chapter we introduce the idea of spontaneous symmetry breaking and discuss

its consequences. The role of such symmetries in the weak interaction part of the SM is discussed

in Chapter 7.

6.1 Introduction

The notion of broken symmetries may seem strange: In what sense is there a difference between

the case that we call “a broken symmetry” and the case of not having the symmetry at all? The

idea of a broken symmetry is however meaningful in two scenarios:

• Explicit breaking of a symmetry by a small parameter. The Lagrangian includes terms

that break the symmetry, but these terms are characterized by a small parameter. The small

parameter can be either a small dimensionless coupling, or a small ratio between mass scales.

The symmetry is then approximate, and one can expand around the symmetry limit.

• Spontaneous Symmetry Breaking (SSB). The Lagrangian is symmetric, but the vacuum state

is not. Even though with SSB the symmetry is not manifest but rather hidden, the number

of parameters is the same as in the case of unbroken symmetry. In this sense, the predictive

power of a spontaneously broken symmetry is as strong as that of the unbroken symmetry.

SSB is based on the following ingredients. Symmetries of interactions are determined by the

symmetries of the Lagrangian. The states, however, do not have to obey these symmetries. Con-

sider, for example, the hydrogen atom. While the Lagrangian is invariant under rotations, an

eigenstate does not have to be. Specifically, a state with a finite m quantum number is not invari-

ant under rotation around the z-axis. The fact that there are eigenstates that are not invariant

under the symmetry of the system is a generic feature when there are degenerate states.
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In perturbative QFT we expand around the lowest energy state. This lowest state is called the

“vacuum” state. When the vacuum state is degenerate, the fact that the physics would remain

the same for any choice of vacuum to expand around is a consequence of the symmetry. Yet, when

we expand around a specific vacuum state out of the degenerate set of vacua, we expand around

a state that does not conserve the symmetry.

The name “spontaneously broken” indicates that there is no preference as to which of the

states is chosen. A very simple example is that of a hungry donkey. Consider a donkey that stands

exactly halfway between two stacks of hay. Symmetry tells us that it costs the same amount of

energy to go to either stack. Thus, we may expect that the donkey is unable to choose and would

starve! Yet, in reality, the donkey would make an arbitrary choice and go to one of the stacks to

eat. We say that the donkey spontaneously breaks the symmetry between the two sides.

In previous chapters we encountered the predictive power of imposed symmetries. In this

chapter we show that spontaneously broken symmetries are no less predictive than exact ones,

though the predictions are different. While the symmetry is no longer manifest, in the sense that

processes that are forbidden in the symmetry limit may become allowed if it is spontaneously

broken, there are subtle relations between these ‘forbidden’ processes and the allowed ones. These

relations reveal that the Lagrangian does have this symmetry. This is why a spontaneously broken

symmetry is also called a hidden symmetry.

6.2 Global discrete symmetries: Z2

Consider a model with an imposed Z2 symmetry, similar to the one discussed in Section 2.1.1.

There is a single real scalar field ϕ, which is odd under the symmetry:

ϕ→ −ϕ. (6.1)

Thus, the symmetry is simply ϕ-parity. The Lagrangian reads

L =
1

2
(∂µϕ)(∂

µϕ)− µ2

2
ϕ2 − λ

4
ϕ4. (6.2)

In particular, the symmetry forbids a ϕ3 term. Hermiticity of L requires that µ2 and λ are real,

and we must have λ > 0. (λ < 0 leads to a “run-away” potential, that is, one that is not bounded

from below.) As for the µ2 term, we can have either µ2 > 0 or µ2 < 0. The µ2 > 0 case is

considered in Section 2.1.1. It corresponds to an ordinary ϕ4 theory, and µ2 is the mass-squared

of ϕ. The case of interest for our purposes is

µ2 < 0. (6.3)

The minimum of the scalar potential should satisfy

0 =
∂V

∂ϕ
= ϕ(µ2 + λϕ2). (6.4)
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Thus, the potential has two possible minima:

ϕ± = ±
√
−µ2

λ
≡ ±v. (6.5)

The classical solution would be either ϕ+ or ϕ−. We say that ϕ acquires a Vacuum Expectation

Value (VEV):

⟨ϕ⟩ ≡ ⟨0|ϕ|0⟩ ≠ 0. (6.6)

Perturbative calculations should involve expansion around the classical minimum. Since the

two solutions are physically equivalent, the physics cannot depend on our choice, but we must

make a choice. Let us choose — without loss of generality — to expand around ϕ+. We define a

field ϕ′ with a vanishing VEV:

ϕ′ = ϕ− v. (6.7)

In terms of ϕ′, the Lagrangian reads

L =
1

2
(∂µϕ

′)(∂µϕ′)− 1

2
(2λv2)ϕ′2 − λvϕ′3 − λ

4
ϕ′4, (6.8)

where we used µ2 = −λv2 and discarded a constant term.

We recall that the most general Lagrangian of a scalar field is given in Eq. (1.2) and we rewrite

it here in terms of ϕ′

LS =
1

2
∂µϕ

′∂µϕ′ − m2

2
ϕ′2 − η

2
√
2
ϕ′3 − λ

4
ϕ′4 . (6.9)

Examining the Lagrangians of Eqs. (6.2), (6.8) and (6.9) raises the following points:

1. The Lagrangian (6.8) includes all possible terms for the real scalar field ϕ′. In particular,

it has no ϕ′-parity symmetry. Thus, the ϕ → −ϕ symmetry is hidden. It is spontaneously

broken by our choice of the ground state ⟨ϕ⟩ = +v.

2. Yet, the Lagrangian (6.8) is not the most general renormalizable Lagrangian for a scalar field.

While the most general one, Eq. (6.9), depends on three independent parameters, Eq. (6.8)

depends on only two. In terms of the parameters of the general Lagrangian Eq. (6.9), the

relation is

η2 = 4λm2. (6.10)

This relation is the clue that the symmetry is spontaneously, rather than explicitly, broken.

3. The two parameters can be chosen to be v and λ, or µ2 and λ. The first choice is the one we

made in writing Eq. (6.8). The second choice employs the same parameters of the original,

manifestly symmetric L(ϕ), see Eq. (6.2). It demonstrates that the SSB does not introduce

additional new parameters.
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4. The coefficients of the quadratic and trilinear terms in (6.8) are different from those of the

quadratic and trilinear terms in Eq. (6.2). In contrast, the coefficients of the quartic terms

are the same. This is a general result: as long as we consider only the renormalizable terms,

SSB changes dimensionful parameters, but not dimensionless ones.

5. While the symmetry is manifest in Eq. (6.2), the phenomenological interpretation of this

model should start from Eq. (6.8). Specifically, the model describes a scalar particle of

mass-squared 2λv2 = −2µ2. This particle is an excitation of the ϕ′ field.

6. Hypothetical particles with negative mass-squared are called tachyons and they travel faster

than light. The example above shows why tachyons do not appear in QFT. To make a

physical interpretation, we have to expand around the minimum, and thus physical particles

have positive mass-squared. Fields with negative mass-squared terms are sometimes referred

to as tachyonic fields.

7. In non-relativistic quantum mechanics, the analogous case – a particle in a double-well poten-

tial – does not have a degenerate vacuum due to tunneling effects. Such tunneling effectively

vanishes in QFT.

6.3 Global Abelian continuous symmetries: U(1)

Consider a model with an imposed U(1) symmetry, similar to the one discussed in Section 2.1.2.

There is a single complex scalar field ϕ, with q = +1, so the theory is required to be invariant

under

ϕ→ eiθϕ. (6.11)

The Lagrangian reads

L = (∂µϕ
†)(∂µϕ)− µ2ϕ†ϕ− λ(ϕ†ϕ)2. (6.12)

Equivalently, we can rewrite the Lagrangian in terms of two real scalar fields, as in Eq. (2.5),

ϕ ≡ 1√
2
(ϕR + iϕI) , (6.13)

and impose an SO(2) symmetry,(
ϕR

ϕI

)
→
(

cos θ sin θ

− sin θ cos θ

)(
ϕR

ϕI

)
. (6.14)

The Lagrangian reads, see Eq. (2.8),

L =
1

2
(∂µϕR)(∂µϕR) +

1

2
(∂µϕI)(∂µϕI)−

µ2

2

(
ϕ2
R + ϕ2

I

)
− λ

4

(
ϕ2
R + ϕ2

I

)2
. (6.15)

79



The µ2 and λ parameters are real, and we must have λ > 0. We consider the case that µ2 < 0.

(The µ2 > 0 case is considered in Section 2.1.2.) We define v2 = −µ2/λ. The scalar potential can

be written (up to a constant term) as

V = λ

(
ϕ†ϕ− v2

2

)2

. (6.16)

Thus, ϕ acquires a VEV:

2
〈
ϕ†ϕ

〉
=
〈
ϕ2
R + ϕ2

I

〉
= v2 = −µ

2

λ
. (6.17)

In the (ϕR, ϕI) plane, there is a circle of radius v that corresponds to minima of the potential. We

have to choose a specific vacuum to expand around. We choose the real component of ϕ to carry

the VEV:

⟨ϕR⟩ = v, ⟨ϕI⟩ = 0. (6.18)

We define the real scalar fields

h = ϕR − v, ξ = ϕI , (6.19)

with vanishing VEVs:

⟨h⟩ = ⟨ξ⟩ = 0. (6.20)

We obtain the Lagrangian in terms of h and ξ:

L =
1

2
(∂µh)(∂

µh) +
1

2
(∂µξ)(∂

µξ)− λv2h2 − λvh(h2 + ξ2)− λ

4
(h2 + ξ2)2. (6.21)

Note the following points:

1. The SO(2) symmetry is spontaneously broken. This can be seen from the presence of the

h(h2 + ξ2) term.

2. Since the symmetry is spontaneously broken, the Lagrangian is not invariant under a trans-

formation similar to the one in Eq. (6.14). Explicitly,(
h

ξ

)
→
(

cos θ sin θ

− sin θ cos θ

)(
h

ξ

)
(6.22)

is not a symmetry of L.

3. The Lagrangian describes one massive scalar, h, with m2 = 2λv2, and one massless scalar, ξ.

If the symmetry were not broken, it would be impossible to distinguish the two components

of the complex scalar field. With the symmetry spontaneously broken, these two DoF are

distinguishable, for example, by their different masses.

4. The Lagrangian of Eq. (6.21) is not the most general Lagrangian for two real scalar fields.

Many terms are missing, while others, that would have been independent in the general case,

are related. In particular, there are only two independent parameters, as for a Lagrangian

with an unbroken SO(2).
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Figure 6.1: The “Mexican hat” potential. The masses of the two scalar DoF correspond to the

second derivative of the potential around the minimum. One direction (left) is flat, while the other

(center) is not. The plot on the right shows the symmetric maximum. It is unstable and does not

correspond to a particle. In the case of a global symmetry, the flat direction corresponds to the

massless Goldstone boson, while the non-flat direction corresponds to the massive DoF. In the case

of a local symmetry, the flat direction corresponds to the longitudinal component of the vector

boson, while the non-flat direction corresponds to the massive Higgs boson.

5. The quartic terms, with dimensionless couplings, are the same in Eqs. (6.15) and (6.21).

Only dimensionful couplings are modified.

6. We chose a basis by assigning the VEV to the real component of ϕ. This is an arbitrary

choice. We made it since it is convenient. The physics does not depend on this choice.

7. We write the VEV as ⟨ϕR⟩ = v or equivalently as ⟨ϕ⟩ = v/
√
2. The factor of

√
2 between

the two VEVs is just the one that we encounter many times when moving between real and

complex fields.

One of the most interesting features of the model presented here is the existence of a massless

scalar field. This feature is not particular to our specific model, but rather the result of a general

theorem called Goldstone’s theorem: The spontaneous breaking of a global continuous symmetry

is accompanied by massless scalars. Their number and quantum numbers equal those of the broken

generators. The massless scalars are called Nambu-Goldstone Bosons.

While we do not prove here the theorem, we briefly describe the intuition behind it. SSB is

possible only when the vacuum is degenerate. For a continuous symmetry, the set of degenerate

vacua is also continuous. In the case of a U(1) symmetry, the shape of the potential is usually called

“a Mexican hat,” see Fig. 6.1. When expanding around any point in the “valley,” one direction

is flat. A flat direction in the potential corresponds to a massless DoF. Goldstone’s theorem is a

generalization of this simple picture. Fig. 6.1 demonstrates the point.
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6.4 Global non-Abelian continuous symmetries: SO(3)

Consider a model with an imposed SO(3) symmetry, and a real scalar field, ϕ, that transforms as

a triplet under the symmetry:

ϕ→ eiLaθaϕ. (6.23)

The three La matrices, (La)bc = iϵabc, constitute the triplet representation of the SO(3) algebra.

They are given explicitly in Eq. (6.49). This model provides an intuitive picture of spontaneous

symmetry breaking. The triplet constitutes a vector in a real three-dimensional (3d) space. Once

a vector is fixed in space, the symmetry under 3d rotations breaks, but not completely, as the

symmetry under rotations in the plane that is perpendicular to the vector remains. Here we

translate this intuitive picture into a rigorous analysis.

The Lagrangian reads

L =
1

2
(∂µϕ

T )(∂µϕ)− µ2

2
ϕTϕ− λ

4
(ϕTϕ)2. (6.24)

We take µ2 < 0, and define v2 = −µ2/λ. Then ϕ acquires a VEV: | ⟨ϕ⟩ | = v. The triplet ϕ has

three DoF. We choose the direction of the VEV to lie in the ϕ3 direction:

ϕ =


ϕ1

ϕ2

v + ϕ3

 , (6.25)

such that ⟨ϕi⟩ = 0, i = 1, 2, 3. The SO(3) symmetry is only partially broken,

SO(3)→ SO(2), (6.26)

where the SO(2) symmetry refers to rotations in the (ϕ1, ϕ2) plane.

The Lagrangian for the ϕi fields can be written as

L = Lkin + L2 + L3 + L4, (6.27)

where Ln includes terms that are n’th power in the ϕi fields. Let us comment on the significance

of each of these parts of the Lagrangian:

• Quadratic terms:

−L2 = λv2ϕ2
3. (6.28)

The model has one massive scalar, ϕ3, of mass-squared m2
3 = 2λv2, and two massless scalars,

m2
1 = m2

2 = 0. This is a manifestation of Goldstone’s theorem. Spontaneous symmetry

breaking requires the appearance of massless Goldstone bosons in correspondence to the

broken generators. Since SO(3) has three generators, and it is spontaneously broken to

SO(2) that has one generator, our model must have two Goldstone bosons.
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• Trilinear terms:

−L3 = λvϕ3(ϕ1ϕ1 + ϕ2ϕ2 + ϕ3ϕ3). (6.29)

The fact that L3 ̸= 0 is a manifestation of the SO(3) breaking.

• The quartic terms:

−L4 =
λ

4

(
ϕ2
1 + ϕ2

2 + ϕ2
3

)2
. (6.30)

This part of the Lagrangian has dimensionless couplings and therefore it is unchanged from

the symmetric form.

The model presented here is an example of partial breaking of the symmetry. In general, a

generator corresponds to a spontaneously broken symmetry if the vacuum is not invariant under an

operation of the corresponding group element. Conversely, a generator corresponds to an unbroken

symmetry if the vacuum is invariant to an operation by the corresponding group element. Given the

fact that the group element is the exponent of the generator, these conditions can be represented

in terms of the generators as follows. We denote the the vacuum state by ⟨ϕ⟩. A broken generator

gives

Ta⟨ϕ⟩ ≠ 0. (6.31)

An unbroken generator gives

Ta⟨ϕ⟩ = 0. (6.32)

More details are given in Question 6.3.

6.5 Fermion masses

Spontaneous symmetry breaking can give masses to chiral fermions. We explain this statement by

an explicit example.

Consider a model with a U(1) symmetry. The field content consists of a left-handed fermion

ψL, a right-handed fermion ψR, and a complex scalar ϕ with the following U(1) charges:

q (ψL) = +1, q (ψR) = +2, q (ϕ) = +1. (6.33)

The most general Lagrangian we can write is

L = Lkin − µ2ϕ†ϕ− λ(ϕ†ϕ)2 − (Y ϕψRψL + h.c.). (6.34)

Since the fermions are charged and chiral, we cannot write mass terms for them (Lψ = 0).

We take µ2 < 0, so that the scalar potential is the one given in Eq. (6.15), leading to a VEV

for ϕ: |⟨ϕ⟩| = v/
√
2 ̸= 0. As in Section 6.3, we choose ⟨ϕR⟩ = v, ⟨ϕI⟩ = 0 and define the real fields

h and ξ in such a way that they have vanishing VEVs:

ϕ =
h+ v + iξ√

2
, (6.35)
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Expanding around the chosen vacuum we find

L = Lkin − V (h, ξ)−
[
Y v√
2
ψRψL +

Y√
2
(h+ iξ)ψRψL + h.c.

]
, (6.36)

where V (h, ξ) can be read off Eq. (6.21). We learn that ψL and ψR combine to form a Dirac

fermion with mass

mψ =
Y v√
2
. (6.37)

This is possible because the symmetry under which the fermion is chiral is broken.

In a more general case, the symmetry might be only partially broken, namely a subgroup of the

original group remains unbroken. In this case, necessary conditions for generating fermion masses

are the following:

• Dirac mass: the fermion representation is vector-like under the unbroken subgroup.

• Majorana mass: the fermion is neutral under unbroken U(1) groups and in a real represen-

tation of unbroken non-Abelian subgroups.

6.6 Local symmetries: the Higgs mechanism

In this section we discuss spontaneous breaking of local symmetries. We demonstrate it by studying

a U(1) gauge symmetry. One of the main results is that the breaking of a local symmetry generates

mass terms for the gauge bosons that correspond to the broken generators. At first sight, this result

might seem surprising, since the spontaneous breaking of a global symmetry gives massless Nambu-

Goldstone bosons. In the case of a local symmetry, however, these would-be Nambu-Goldstone

bosons are “eaten” by the gauge bosons and become the longitudinal components of the resulting

massive vector-bosons.

An explanation of the terms “eaten” and “would-be Goldstone bosons”, that are commonly

used in the physics jargon, is called for. The key point for the term “eaten” is that, for a model with

a spontaneously broken local symmetry, the number of DoFs is the same in the interaction basis

and in the mass basis. Concretely, if NH of the symmetry generators are spontaneously broken

then, in the mass basis, there are NH massive vector boson fields, each with 3 DoFs (two transverse

and one longitudinal polarizations). In the interaction basis, these 3NH DoFs are assigned to NH

gauge fields, each with 2 DoFs (the two transverse polarizations), and NH real scalar fields. These

NH real scalar fields of the interaction basis, which become part (the longitudinal components) of

the NH massive vector bosons in the mass basis, are referred to as the “eaten” DoFs. The term

“would-be Goldstone bosons” refers to the fact that, if the spontaneously broken symmetry were

global instead of local, these NH real scalar fields of the interaction basis would correspond to the

massless Goldstone bosons in the mass basis.
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Consider a theory similar to the one discussed in Section 6.3, where we have a single scalar

field that is charged under a U(1) symmetry. The difference is that here we impose a local U(1)

symmetry:

ϕ→ eiθ(x)ϕ. (6.38)

The Lagrangian is given by

L = (Dµϕ)
†(Dµϕ)− 1

4
FµνF

µν − µ2ϕ†ϕ− λ(ϕ†ϕ)2. (6.39)

The covariant derivative is given by

Dµϕ = (∂µ + igAµ)ϕ . (6.40)

Aµ is the gauge field, Fµν is defined in Eq. (2.28), and g is the coupling constant.

We consider the case of µ2 < 0, leading to SSB via a VEV of ϕ:

⟨ϕ⟩ = v√
2
, v2 = −µ

2

λ
. (6.41)

We choose the real component of ϕ to carry the VEV. We again write the complex scalar in terms

of two real scalar fields with vanishing VEVs, ⟨h⟩ = ⟨ξ⟩ = 0, but, unlike the global case, it is

convenient to write the two DoF as a phase, ξ(x) and a magnitude, h(x):

ϕ(x) = eiξ(x)/v
v + h(x)√

2
. (6.42)

Note that we normalized ξ(x) such that it has mass dimension one. To linear order in the fields,

Eq. (6.42) is the same as Eq. (6.35). We usually refer to Eq. (6.42) as a non-linear realization and

to Eq. (6.35) as a linear realization.

When a symmetry is spontaneously broken and we write the Lagrangian in terms of the VEV-

less fields, the Lagrangian is no longer manifestly invariant under the broken symmetry transfor-

mation. Instead, the transformation constitutes a change of basis. We can use this change of basis

to our advantage, by choosing a basis that makes the physics of the model more transparent. This

is what we do here by choosing a specific gauge: θ(x) = −ξ(x)/v. (It is fully legitimate to choose

the phase to be related to a field.) This gauge is called the unitary gauge.

With this choice of gauge,

ϕ→ ϕ′ =
1√
2
(h+ v), Aµ → Vµ = Aµ +

1

gv
∂µξ, (6.43)

such that ϕ′ has one DoF and Vµ three. The Lagrangian in terms of h and Vµ reads

L = −1

4
VµνV

µν +
1

2
(∂µh)(∂

µh) +
1

2
(g2v2)VµV

µ − 1

2
(2λv2)h2 (6.44)

+
g2

2
VµV

µh(2v + h)− λvh3 − λ

4
h4.
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The kinetic term of the gauge boson is independent of the gauge fixing. This can be seen from the

fact that

∂µVν − ∂νVµ = ∂µAν − ∂νAµ. (6.45)

The spectrum of the model consists of a massive vector boson of mass-squared m2
V = (gv)2 and

a massive scalar of mass-squared m2
h = 2λv2. We note the following points:

1. The sign of a mass-squared term for a vector-boson is opposite sign to that of a mass-squared

term for a scalar.

2. The h scalar is called “a Higgs boson”. The related field, which acquires a VEV, in our case

ϕ, is called the Brout-Englert-Higgs (BEH) field or the Higgs field.

3. The source of the mass-squared term for the vector bosons is the kinetic term of the Higgs

field.

4. The propagator of a a massive gauge boson depends on the gauge choice. In the unitary

gauge it is given by

(−i)g
µν − (kµkν)/m2

V

k2 −m2
V

. (6.46)

We do not discuss in detail the issues of gauge fixing for massive gauge bosons.

5. The ξ field is “eaten” in order to give mass to the gauge boson. It was a convenient choice

to make the phase to be the “eaten” DoF. The total number of degrees of freedom does

not change: instead of the scalar ξ, we have the longitudinal component of a massive vector

boson.

6. In the limit g → 0 we have mV → 0. This situation describes a massless gauge boson

and a massless scalar. We see that in that limit the longitudinal component is the massless

Nambu-Goldstone boson as expected.

The interactions of the model include scalar self-interactions and interactions of the scalar with

the vector boson. We note the following points:

1. The hV V coupling is proportional to the mass-squared of the vector boson.

2. The dimensionless V V hh and hhhh couplings are unchanged from the symmetric Lagrangian.

The Lagrangian (6.39) depends on three parameters. They can be taken to be g, v, and λ.

The Lagrangian (6.44) has two mass terms and four interaction terms which depend on the same

three parameters. Thus, the six relevant terms, which would be independent in the absence of a

symmetry, obey three relations among them. This is a sign of SSB.

In the example above, we consider SSB of a local U(1) symmetry. The basic ingredients are,

however, much more generic and apply also to non-Abelian symmetries and to product groups.
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Table 6.1: Symmetries and some of their main consequences

Type Consequences

Spacetime Conservation of energy, momentum, angular momentum

Discrete Selection rules

Global (exact) Conserved charges

Global (spon. broken) Massless scalars

Local (exact) Interactions, massless spin-1 mediators

Local (spon. broken) Interactions, massive spin-1 mediators

In fact, the SM incorporates SSB of a local SU(2) × U(1) symmetry. The following lessons are

generic to all cases of spontaneous breaking of a local symmetry:

• Spontaneous symmetry breaking gives masses to the gauge bosons related to the broken

generators.

• Gauge bosons related to an unbroken subgroup remain massless, because their masslessness

is protected by the symmetry.

The following points are common to the spontaneous breaking of both local and global symmetries:

• The field that acquires a VEV (the BEH field) must be a scalar field. Otherwise its VEV

would break Lorentz invariance.

• Spontaneous breaking of a symmetry, whether global or local, can give masses also to

fermions, via Yukawa interactions.

• States with different QNs under the broken symmetry but with the same QNs under the

unbroken subgroup can mix. By “mixing” we mean that a mass eigenstate can be a linear

combination of such states. We do not elaborate on it here. Chapter 7 provides an example

of mixing among vector bosons. Chapter 14 provides an example of mixing among fermions.

6.7 Summary

Symmetries in QFT have a strong predictive, or explanatory, power. The main consequences of

the various types of symmetries are summarized in Table 6.1.

To construct a model, we provide as input the following ingredients:

(i) The symmetry;
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(ii) The transformation properties of the fermions and the scalars.

Then we write the most general Lagrangian that is invariant under the symmetry up to some order

in the fields. Unless explicitly stated otherwise, we truncate the Lagrangian at the renormalizable

level, that is, at dimension four in the fields.

The resulting Lagrangian has a finite number of parameters that we need to determine by

experiment. In principle, for a theory with N independent parameters, we need to perform N

appropriate measurements to extract the values of the parameters. Additional measurements test

the theory.

The values of the parameters can have minor or major implications. In particular, variation

of values of parameters can lead to different patterns of SSB, which result in very different phe-

nomenology. Thus, often, when we define a theory, the various SSB branches of it are given

different names.

Our process of building some model X starts with defining the imposed symmetry and the

transformation properties of fermions and scalars under this symmetry, and writing the most

general Lagrangian consistent with these definitions. At this stage, we can obtain the predictions

of model X that are independent of the values of the model parameters. Additional predictions

can be made when the values of the parameters are determined experimentally. We sometimes

use the term “a model X” for the class of models that are described by the Lagrangian, with any

possible values of its parameters, and “the model X” for the specific model with the values of the

parameters as realized in Nature (namely, as determined by experiments). In particular, we use

the terminology of “a SM” and “the SM” in this sense later in the book.

For further reading

More on the formal aspects of SSB can be found, for example, in Section 2.2 in Ref. [17], Chapters

20 and 21 of Ref. [2], Chapter 28 in Ref. [15], and Section 4 of Ref. [21].
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Problems

Question 6.1: Algebra

1. Show that, to up to linear order in all fields, Eq. (6.42) leads to Eq. (6.35).

2. Use Eqs. (6.39), (6.42), and (6.43) to derive Eq. (6.44).

Question 6.2: SSB with many scalars

Consider the following model. The symmetry is global SO(N). There is a real scalar field Φ,

in the N representation, so there are N real scalar DoF Φ = (ϕ1, ϕ2, . . . , ϕN)
T . The Lagrangian is

given by

L =
1

2
∂µΦ∂

µΦ− 1

2
µ2Φ2 − 1

4
λΦ4, (6.47)

with µ2 < 0 and λ > 0. This Lagrangian is a generalization of Eq. (6.12).

1. Show that L describes a theory with a single massive scalar of mass-squared m2 = −2µ2,

and N − 1 massless scalars.

2. What is the unbroken symmetry group?

3. Goldstone’s theorem states that the number of massless bosons is equal to the number of

broken generators. Show this explicitly for this model.

Question 6.3: Broken and unbroken symmetries

In this question we elaborate on Eqs. (6.31) and (6.32) that state that an unbroken generator

Ta annihilates the vacuum, Ta⟨ϕ⟩ = 0, while a spontaneously broken one does not, Ta⟨ϕ⟩ ̸= 0.

Consider the operation of a group element on the vacuum:

⟨ϕ′⟩ = eiTaθa⟨ϕ⟩. (6.48)
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1. Explain why the symmetry is unbroken if ⟨ϕ′⟩ = ⟨ϕ⟩ for any θa and that it is broken if there

is a θa such that ⟨ϕ′⟩ ≠ ⟨ϕ⟩.

2. Explain why the above implies that Ta⟨ϕ⟩ = 0 if Ta corresponds to an unbroken symmetry.

3. A familiar example is the case of a vector in 3d, that breaks the symmetry from SO(3) to

SO(2), that is, from rotations in 3d to rotations in the plane perpendicular to the vector.

Consider a case where we choose the normalized vector to be v⃗ = (0, 0, 1)T . Show that Lz is

still a symmetry while Lx and Ly are not. It is useful to recall the explicit representation of

Li for a vector, in the basis that corresponds to rotations in real space:

Lx = −i


0 0 0

0 0 1

0 −1 0

 Ly = −i


0 0 −1
0 0 0

1 0 0

 Lz = −i


0 1 0

−1 0 0

0 0 0

 . (6.49)

4. Now consider a generic normalized vector, v⃗ = (a, b, c) such that a2 + b2 + c2 = 1. Show that

[aLx + bLy + cLz] v⃗ = 0. (6.50)

The above shows that there is always one generator that is not broken, so indeed the unbroken

symmetry is SO(2).

5. Consider SU(2) transformations. The previous question demonstrates that a vector, that is

a 3, breaks SU(2) to U(1). Here you are asked to show that a spinor, that is a 2, breaks

SU(2) completely. In order to show this, we need to prove that there is no combination of

generators which annihilates a spinor. The SU(2) generators in the spinor representation

are the Pauli matrices. Consider the spinor s⃗ = (0, 1) and show that any non-zero linear

combination with real coefficients of the Pauli matrices does not annihilate it.

Question 6.4: More on the dark photon

We consider a model that is an extension of the one discussed in Question 3.3:

(i) The symmetry is a local U(1)EM × U(1)D. We denote the gauge bosons by Aµ and Cµ,

respectively.

(ii) There are four fermion fields:

eL(−1, 0), eR(−1, 0), dL(0,−1), dR(0,−1). (6.51)

(iii) There is a single complex scalar:

ϕ(qEM, qD). (6.52)
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We assume no kinetic mixing and use a normalization such that the coupling constants of the two

groups is the same, that is, gEM = gD = e.

1. There are five specific charge assignments that allow Yukawa interactions, that is, couplings

between ϕ and the fermions. What are these charge assignments?

From this point on, we do not consider any of the above options, that is, we consider only cases

where all Yukawa interactions are forbidden.

2. Write the scalar potential. What is the condition for ϕ to acquire a VEV? From here on,

assume that this condition is satisfied.

3. One way to make the model possibly consistent with Nature is to have partial SSB, such

that the photon Aµ is massless but the dark photon Cµ is massive. Explain why this is the

case when qEM = 0 and qD ̸= 0.

4. In the above case, that is with qEM = 0 and qD ̸= 0, write the mass of the dark photon in

terms of the model parameters.

5. We now consider a case where both qEM ̸= 0 and qD ̸= 0. In this case both U(1)EM and

U(1)D are broken. Show, however, that the breaking pattern is [U(1)]2 → U(1). We denote

the massless gauge boson A′
µ and the massive one C ′

µ.

6. Write the couplings of the fermions to A′
µ and C ′

µ.

7. We now assume that qEM ≪ qD (and gEM = gD). In this case, we can think of A′
µ as a

small deviation from Aµ, and still call it the photon. We further assume that md ∼ me.

Experimentally, a particle with a mass of order the electron mass and with EM charge larger

than about 10−3 that of the electron, is ruled out. Obtain the resulting constraint on qEM/qD.

Question 6.5: Physics of the Higgs boson

We consider the model of Section 6.3 with the Lagrangian of Eq. (6.21).

1. Draw the tree-level diagrams for the hh → hh scattering and write down the amplitude.

Note that there is more than one diagram.

2. Estimate the cross section in the limit where E ≫ v. Here E is the center of mass energy of

the collision.

3. Consider the same model but with µ2 > 0. Estimate the ϕϕ∗ → ϕϕ∗ cross section in the

limit where E2 ≫ µ2. Explain the similarity to the result of the hh → hh scattering cross

section obtained in the previous item.
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Question 6.6: The Sigma model

A classic example of spontaneous symmetry breaking with Nambu–Goldstone bosons is pro-

vided by the σ-model. It pre-dated QCD, and we now think of it as an effective theory of the

strong interactions at low energies. It aims to describe the effective strong interactions between

the nucleons — the proton p and the neutron n — via the exchange of three scalars — the pions

πa (a = 1, 2, 3).

Consider the following model:

(i) The symmetry is a global SU(2)L × SU(2)R × U(1)B.

(ii) There are two fermion fields:

NL(2, 1)+1 =

(
pL

nL

)
, NR(1, 2)+1 =

(
pR

nR

)
. (6.53)

(iii) There is a single scalar field:

Σ(2, 2)0. (6.54)

The most general Lagrangian can be written as

L = iNL∂/NL + iNR∂/NR +
1

4
Tr
[
∂µΣ

†∂µΣ
]
−
[
g(NLΣNR + h.c.)

]
− V (Σ) . (6.55)

The infinitesimal symmetry transformations on the fermion fields are chiral and given by

δNL = iϵaLT
aNL, δNR = iϵaRT

aNR. (6.56)

1. L is invariant under the above chiral symmetries. The fermion kinetic terms can be written

in terms of the Dirac field N = (NL NR)
T . Write the infinitesimal symmetry transformations

in the form

δN = iϵaT aN, δN = iγ5ϵ
a
5T

aN, (6.57)

and express ϵa and ϵa5 in term of ϵaL and ϵaR.

What you showed is that we can write the symmetry in a different basis. Instead of SU(2)L ×
SU(2)R we can write SU(2)V × SU(2)A. The SU(2)V group is also called the “diagonal SU(2)”

or “isospin symmetry”, while SU(2)A is usually called the “axial SU(2)”.

2. Show that a mass term mNN is invariant under SU(2)V but not under SU(2)A. We learn

that it is the axial symmetry that forbids fermion masses.
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The Σ field has four DoF, so we can write it in terms of four real scalar fields, σ and πa (a = 1, 2, 3):

Σ = σ + iτaπ
a, a = 1, 2, 3, (6.58)

where τa are the Pauli matrices. We aim to have a model that describes Nature, so we need to

provide masses to the proton and the neutron. This is done via spontaneous breaking of the chiral

symmetry by the Σ field acquiring a VEV.

3. The scalar potential, V (Σ), can be written as

V (Σ) =
λ

4
(Σ†Σ)2 − m2

2
(Σ†Σ). (6.59)

What are the conditions for V (Σ) to be bounded from below and for Σ to acquire a VEV?

4. Show that, up to a constant term, the potential in Eq. (6.59) is equivalent to

V (Σ) =
1

4
λ
[
σ2 + π⃗2 − F 2

π

]2
, (6.60)

with λ and Fπ real and positive. Fπ is the so called “pion decay constant” and it is the only

mass scale in the theory.

5. What are the minima of V (Σ)? Find a minimum where only σ acquires a VEV, but the πa’s

do not.

6. Rewrite L in terms of fields that do not carry a VEV, that is, NL, NR, πa, and s ≡ σ − Fπ.
What are the masses of these fields? How many DoF are massless?

7. How many generators are broken? Check your result against Goldstone’s theorem, that is,

check that the number of massless scalars is the same as the number of broken generators.

8. We denote the NNπ interaction coupling by gπNN . Show that the following relation between

masses and couplings holds:

mN = gπNNFπ. (6.61)

This relation is known as the Goldberger-Treiman relation. It is satisfied in Nature to a good

accuracy. Such a relation between masses and couplings is a signal of SSB, as discussed in the

main text.

9. In Nature the pions have small masses (compared to the nucleon), which reflect a small

explicit breaking of a symmetry. What is this broken symmetry: SU(2)V or SU(2)A?

10. In Nature there is a very small mass splitting between the proton and the neutron, while the

model predicts that they are degenerate. Thus the model provides a very good approximation

to Nature. What symmetry has to be broken to generate the splitting, SU(2)V or SU(2)A?
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We conclude that the Sigma model predicts that the proton and neutron are degenerate and that

the pions are massless. These two predictions are approximately fulfilled in Nature. The model

also predicts the existence of the s particle, which can be identified as the f0(500) resonance. We

discuss low energy QCD in more detail in Chapter 10.
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