Chapter 4
Non-Abelian symmetries

In previous chapters, we discussed Abelian symmetries, such as U(1). For this type of symmetries,
also known as commutative symmetries, the result of applying two symmetry transformations does
not depend on the order in which they are applied. In this chapter, we discuss non-Abelian sym-
metries, such as SU(2) and SU(3). For this type of symmetries, also known as non-commutative
symmetries, the result of applying two symmetry transformations might depend on the order of
which they are applied. Within the SM, and in models that extend it, both Abelian and non-

Abelian symmetries play an important role.

4.1 Introduction

In order to discuss non-Abelian symmetries, we use the language of Lie groups (we provide a short
review of the topic in Appendix . For the sake of concreteness, we focus on SU(N) groups, but
most of the results are generic and apply to any Lie group.

We are interested in internal symmetries where the symmetry transformation is unitary:
¢ — Ud, UUt=U'U =1. (4.1)

We now emphasize some of the differences between transformation laws for Abelian and non-
Abelian symmetries. Specifically, we list differences between U(1) and SU(N) symmetries.
Consider a U(1) symmetry and a field ¢ that carries charge ¢ # 0.

e The field ¢ is necessarily complex.

e The transformation law for this field is

b — %%, (4.2)

e The charge, ¢, is a real number.

o4



e Thus, for an Abelian symmetry, the transformation law is defined for each single complex
field separately. A U(1) symmetry operation changes the phase of the field proportionally to
the charge.

e For a Lagrangian to be invariant under a U(1) symmetry, each term must consist of a product

of fields such that the sum of their charges is zero.

Consider an SU(N) symmetry and a field ¢ in a representation R of dimension M > 1. Here

¢ is a vector with M components, ¢; with i =1,..., M.
e If R is a complex representation, ¢ is complex. If R is a real representation, ¢ can be real.

e The transformation law for this field is

Cbi N (eiTaOa)ij ij- (43)

Here i,j = 1,...,M and a = 1,...,(N? — 1). The T,’s are the generators of the SU(N)
algebra:
[Ta; Tb] - ifabcTc- (44)

For the field ¢ in the M-dimensional representation R, the T,’s are represented by M x M

matrices.

e Thus, for a non-Abelian symmetry, the transformation law is defined for each multiplet of
fields separately. The SU(N) symmetry operations consist of rotations among the various

components within each multiplet.

e For a Lagrangian to be invariant under a non-Abelian symmetry, each term must consist of
a product of fields such that the various representations are contracted into a singlet of the

symmetry group.

If the symmetry group is not simple, we can consider an independent rotation within each
simple subgroup. Then, it is convenient to represent the field as a vector under each of the simple
Lie subgroups. When a field undergoes a transformation under one simple subgroup, it is not
affected by the other subgroups. For example, consider an SU(3) x SU(2) group, and a field
that is a triplet under SU(3) and a doublet under SU(2). We can denote the field by ¢,;, where
a = 1,2,3 is the SU(3)-triplet index, and i = 1,2 is the SU(2)-doublet index. We can write
separately the transformation laws under an SU(3) symmetry transformation and under an SU(2)
symmetry transformation:

Boi — (e(i/maea)aﬁ i, bai — (6(1‘/2)7,,9,))”%]" (4.5)

v
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Here )\, are the eight 3 x 3 Gell-Mann matrices, so that \,/2 are the SU(3) generators in the triplet
representation, and 7, are the three 2 x 2 Pauli matrices, so that 7,/2 are the SU(2) generators in
the doublet representation.

The notation that we use is best explained by examples. For the case of an SU(3) x SU(2)
symmetry, we write the representation of a field ¢ that is an octet under SU(3) and a singlet
under SU(2) as ¢(8,1): The first number in parenthesis is the representation under SU(3), and
the second one under SU(2). When we consider product groups that include both non-Abelian
and Abelian factors, the charges under U(1) symmetries are written as sub-indices. For example, if
the symmetry is SU(3) x U(1), a field that is a triplet under SU(3) and has charge +1 under U (1)
is written as ¢(3),;. As a final example we take the symmetry to be SU(3) x SU(2) x U(1), with
a field ¢ that is an SU(3)-triplet, an SU(2)-doublet and carries U(1) charge of +1/6: ¢(3,2)41/6.

4.2 Global symmetries

As described above, in each Lagrangian term, the product of the various representations must
be contracted into a singlet of the imposed symmetry. The way we combine representations is
presented in Appendix[A.8 In most of the upcoming sections, we only make sure that the product
of representations contains a singlet, and keep the group indices of the various fields implicit. (We
can do so because, in all cases discussed in this book, there is a single way to combine the product
of representations into a singlet. In other cases, where there is more than one way to do so, it is
important to write the contraction explicitly.)

In this Section, we present three models:
1. A model that demonstrates that mass-squared terms for scalars cannot be forbidden.
2. A model that demonstrates that fermions in vectorial representations have Dirac masses.

3. A model that demonstrates that fermions in chiral and complex representations are massless.

4.2.1 Scalars and SO(N)

Consider the following model:

(1) The symmetry is a global
SO(N), (4.6)

with N > 2.

(73) There is a single scalar field in the fundamental representation,
¢(N). (4.7)
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(737) There are no fermions.

In this model there are N scalar DoF, but we combine them into an N representation and thus
we refer to it as a single scalar field.

The most general renormalizable Lagrangian is given by
1 1 1
L= 20,610% — Jm’'o — N6l (4.8)

What we mean by ¢¢ is the contraction of an (N) x (N) into a singlet of SO(N). Explicitly, the
contraction of the SO(N) indices is given by ¢ ¢;.
We note the following points:

1. There is no internal symmetry that one can impose to set m? = 0 or A\ = 0.

2. In the case of N = 2 the symmetry is Abelian, and the model is the same as the one discussed
in Section 2.1.2]

4.2.2 Vectorial fermions and U(N)

Consider the following model of vectorial fermions:

(7) The symmetry is a global
U(N)=SU(N)xU(1), (4.9)

with N > 2.
(73) There are two fermion fields in the fundamental representation:

Yr(N) 41, Yr(N)41. (4.10)

(74i) There are no scalars.

Here, similar to the model of Section |4.2.1] many DoF are combined into an irreducible represen-
tation. Given that each Weyl fermion has two DoF, the model has a total of 4N DoF. The most

general renormalizable Lagrangian is given by

L =ity Jbp + ibr D — (Mg + hoc.), (4.11)

where the group indices are implicit.

We note the following points:

e We cannot write Majorana mass terms since the fermions are charged under U(1).

e Since this model is vectorial, that is, the left-handed v, and right-handed g transform in
the same way, we can combine them into a Dirac fermion ¢ and rewrite Eq. (4.11]) as follows:

L =iy —mip. (4.12)
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4.2.3 Chiral fermions and U(N) x U(N)

Consider the following model of chiral fermions:
(1) The symmetry is a global
UN)L xU(N)r=SU(N)L x SUN)rxU(1), x U(1)g, (4.13)
with N > 2.

(7i) There are two fermion fields:
YN, D)o, Yr(L, N)o,1. (4.14)

(737) There are no scalars.

The most general renormalizable Lagrangian has only kinetic terms:

L =iy v +ibg P g (4.15)
A few comments are in order:

e As discussed in Section[2.1.5|and demonstrated here, fermion mass terms can be forbidden by
a symmetry. This stands in contrast to scalar mass-squared terms which cannot be forbidden
by a symmetry, as demonstrated in the model of Section [1.2.1]

e The reason that the mass term vanishes in the Lagrangian of Eq. is that the fermion
fields of the model are in a chiral representation of the symmetry. This stands in contrast to
the model of Section 4.2.2, where the fermion fields are in a vectorial representation of the
symmetry, and therefore the Lagrangian of Eq. includes a Dirac mass term.

e The U(N) symmetry of Eq. (4.9)) is a subgroup of the U(N ), xU(N ) symmetry of Eq. (4.13]).

It is often called “the vectorial” subgroup.

4.3 Local symmetries

Abelian local symmetries were discussed in Section 2.2 Here we discuss non-Abelian local sym-
metries, commonly called “Yang-Mills theories.” The following properties apply for both Abelian

and non-Abelian local symmetries:

e Terms that depend on scalar and/or fermion fields only, but not on their derivatives, and
which are invariant under a global symmetry, are also invariant under the corresponding

local symmetry.
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e The kinetic terms are not invariant under the local symmetry.

From here on, we consider specifically the case of SU(N), but the main points apply to all Lie
groups. To achieve invariance under a local non-Abelian symmetry, we must add gauge fields, that
we denote by G, and replace the derivative 0*¢ with a covariant derivative D¢, such that D¢

and ¢ transform in the same way:
¢ — Tl Drp — Tl D, (4.16)

The T,’s are the N2 — 1 generators of the SU(N) algebra and, for ¢ in an M-dimensional repre-
sentation, they are represented by M x M matrices.

The gauge fields that we introduce must restore the local symmetry for N? — 1 independent
rotations. Therefore, they themselves must carry an index a = 1,2, ..., N? — 1, in contrast to the
single gauge field needed for an Abelian local symmetry. Furthermore, the fields in an SU(N)-
symmetric theory must transform in a well-defined way under the symmetry. It is suggestive then
that the gauge fields G# are in the adjoint representation of SU(N). You are asked to prove that
this is indeed the case in Question 4.6l We conclude that the covariant derivative is given by

D = " + igT,G*, (4.17)

where g is the dimensionless positive coupling constant. The transformation law for G* is given

by (see Question
1
Gt — G — furcthG — ;8"%. (4.18)

The fact that the non-Abelian gauge field is in the adjoint representation of the gauge group and,
in particular, that — unlike the Abelian case — it is not a singlet, has significant consequences:
It leads to self-interactions of the gauge fields, as we discuss below.

To promote G* to a dynamical field, we must introduce a kinetic term. Similar to our treatment
of the U(1) case, Eq. (2.27), we now define the field strength G# as

[D*, D" = igT,G"". (4.19)
Inserting Eq. into Eq. , and using the SU(N) algebra, we obtain
TGy = To(0"Gy — 0"Gly — g fanc Gy GY), (4.20)
Further using tr(7,7}) o 045, we can rewrite Eq. as follows:
Gy = 0"GL — "Gl — gfanc Gy GE - (4.21)

Compared to the Abelian case, Eq. (2.28]), the non-Abelian case, Eq. (4.21)), has an extra term.

This term is the source of self-interactions of the gauge fields.
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The kinetic term of non-Abelian gauge fields is given by
1
Ly = —ZGQ“’G@W. (4.22)
Note the following points with regard to Eq. (4.22)):

e Given the kinetic term, G* is a dynamical field and its excitations are physical particles. For

example, as we show later, the gluon is associated with such excitations.
e We work in the canonically normalized basis where the coefficient of the kinetic term is 1/4.

e While a kinetic term is invariant under the gauge transformation, a mass-squared term —
%m2ijGa“ — is not. Local invariance under non-Abelian symmetry implies massless gauge

fields in the adjoint representation.

o A total derivative term of the form Gg”éw (with éa/“, = €u,0G??) is Lorentz invariant,
gauge invariant and dimension-four. For the Abelian case, we did not include such a term
in Eq. because it is not physical. For the non-Abelian case, we still do not include it
in Eq. because it is not physical at the classical level. Yet, at the quantum level, it
is physical. We briefly present the physical implications within the SM of such a term for a
local SU(3) symmetry in Section 8.A1]

The non-Abelian gauge fields couple to themselves. This can be seen by replacing G#* in Eq. (4.22))
with the explicit expression in Eq. (4.21)), which leads to interaction terms that are trilinear and
quartic in the gauge fields:

1
‘Cselffinteractions = gfabc<a,uGa1/>GlbLGZ - 192 (fachgGZ) (fadeGd,uGez/) . (423)

The self-interactions of the non-Abelian gauge fields stand in contrast to the Abelian gauge fields
which have no self-interactions. As mentioned above, the source of this difference is the fact
that U(1) gauge fields are neutral under the U(1), while SU(N) gauge fields are in the adjoint
representation of the SU(N), and thus are charged under their own group.

If the symmetry group decomposes into several commuting factors, each factor has its own
gauge fields in the corresponding adjoint representation and an independent coupling constant.
For example, if the symmetry is SU(3) x SU(2) x U(1), we must introduce three irreducible
representations of gauge fields: (8,1), representation, with coupling constant gs, to make the
Lagrangian invariant under the local SU(3); (1, 3)o, with coupling constant go, to achieve invariance

under local SU(2); and (1, 1), with coupling constant g, to achieve invariance under local U(1).

4.4 Running coupling constants

In QFT, the coupling constants depend on the energy scale. In the Physics jargon, we say that

the coupling constants run. Here we do not discuss the theoretical background for this effect
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and assume that the reader is familiar with it from a QFT course. We just present the relevant
equations and mention several important consequences.

The running — namely, the energy dependence — of a coupling g is given by the beta function:

9y
dlog

= 5(9), (4.24)

where p is the relevant energy scale. The beta function depends on the field content of the theory.
The leading order effects depend only on fields that are charged under the symmetry. The fact
that an Abelian gauge boson is neutral under the Abelian symmetry, while a non-Abelian gauge
field is charged under the corresponding non-Abelian symmetry, has important implications on the
running of the respective coupling constants.

Consider a local U(1) theory, with ny Weyl fermion fields with charge |¢| = 1. The beta

function for the coupling constant ¢, is given, to leading order, by

3
Blg1) = ;’;i; . (4.25)

(This result is often quoted for the case of ny Dirac fermions, where the factor of 1/24 is replaced
by 1/12.)

Consider a local SU(N) theory, with n; fermion fields in the fundamental representation N
and n; fermion fields in the anti-fundamental representation N. The beta function for the coupling

constant gy is given, to leading order, by

_ (2ny — 1IN g3
6(”)_( 3 )167r2'
The important difference between the running effects of the Abelian case, Eq. (4.25), and non-
Abelian case, Eq. (4.26)), is in the sign of the beta function. In the U(1) case, the beta function

is always positive. Consequently, the lower the relevant energy scale, the smaller the coupling. In

(4.26)

the SU(N) case, the beta function can assume either sign. If the number of fermions is not too
large, ny < (11N/2) (and in particular in the pure gauge case, ny = 0), the sign is negative and,
consequently, the lower the relevant energy scale, the larger the coupling. The phenomenon that
couplings become smaller at higher energies goes under the name of “asymptotic freedom.”

If a coupling grows large, one loses the ability to make accurate predictions using perturbation
theory with the coupling as the small parameter. For U(1) theories, we can use perturbative cal-
culations to make accurate predictions at low enough energy (often called “the IR”). For SU(NV)
theories, if the number of charged fermions is small, ny < 11N/2, we can use perturbative cal-
culations to make accurate predictions only at high enough energies (“the UV”), while in the IR
perturbativity is lost. We discuss the implications of this situation in the next chapter where we

present QCD — the theory of strong interactions — as a specific and important example.
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Table 4.1: Abelian vs Non-Abelian symmetries

Abelian Non-Abelian

Field Q, dn)=d;, i=1,...,n
Transformation O — 9P b, — (eiTaea)ij D,

with ¢ a real number with T}, in the irrep of ®
The gauge field A, G},
irrep of the gauge field q=0 Adjoint
Covariant derivative DF = o' 4+ igqg A* Dt = ot +igT,G*
Field strength tensor FH = grAY — QY AF | G = OFGY — 0"G* — g fup G GY
Gauge kinetic term _iF;wFW —iGmGg”
Gauge boson self-interactions No Yes
Sign of the beta function Positive Can assume either sign

4.5 Summary

We summarize the main differences between the Abelian and non-Abelian cases in Table A1

For further reading

QFT aspects of non-Abelian symmetries can be found, for example, in Chapters 15 and 16 of

Ref. [2]. More on running coupling constants can be found in, for example, Chapter 23 of Ref. [15].

62



Problems

Question 4.1: Algebra

1. Insert Eq. (4.17) into Eq. (4.19) and use the SU(N) algebra to obtain Eq. (4.20)).
2. Use the definition in Eq. (4.21)) to derive Eq. (4.23)).

3. Derive the Feynman rules for the self-interactions of the gauge fields.

Question 4.2: Constructing invariants

Consider the following model:

(7) the symmetry is a global
SU(3) x SU(2) x U(1).

(73) There are three complex scalars:

A(37 2)z7 B(T, 3)+2, C(g, 2)+1.

(74i) There are no fermions.

1. Find all possible values of x and of T" such that the term ABC' is allowed.

2. Repeat the question for a term of the form ABCT.

Question 4.3: SU(3) and a flavor symmetry

Consider the following model:

(1) The symmetry is a global
SU(3)q.
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(7i) There are N complex scalar fields that transform as

$:(3), i=1,..,N. (4.30)

(737) There are no fermions.

We call the index 7 “a flavor index”

1. What is the number of real scalar DoF in this model?

2. Take N = 3. Write the most general renormalizable Lagrangian. For each of the quadratic,
cubic, and quartic terms, state explicitly whether it has to have a special structure (symmetric

or antisymmetric or hermitian) in flavor space.

3. Take again the N = 3 case. Impose an additional global symmetry that we call flavor
SU(3)r, such that the three flavors constitute an SU(3)p-triplet ® = (¢1, ¢a, ¢3). In other
words, the scalars of this model are in the (3, 3) representation of SU(3)¢ x SU(3)r. What

are the implications of imposing the SU(3)r symmetry on the parameters of £7?

Question 4.4: Scalar Lagrangians

Consider a model with four real scalar fields ¢; (i = 1,...,4).

1. Write the kinetic terms for this model. Argue that Ly, has an SO(4) symmetry where the

four real scalars form the fundamental representation of SO(4).

2. Impose an SO(4) symmetry, with the four real scalars in the fundamental representation of
SO(4), that is, they form a vector in 4-dimensional real space, ® = (¢4, . .. ,¢4)T. Write the
most general renormalizable Lgo(4). Explain why the mass terms and the interaction terms

must be proportional to unit matrix in that space.

3. Impose a U(1) symmetry (instead of the SO(4) above, not in addition). To do so, pair the four
real scalar fields into two complex scalar fields, ¢, = (¢1 +igo)/Vv/2 and ¢y = (d3 +igs)/ V2.
The U(1) charges are g, = +1 and ¢, = +4. Write the most general renormalizable Ly)-

4. Ly has an accidental symmetry. What is it and what are the charges of ¢, and ¢, under
it?

5. Write a non-renormalizable term that breaks the accidental symmetry.
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Question 4.5: Discrete sub-symmetries

Consider the following Lagrangian for two Dirac fermions:

L = 0,[(i) — m)dijiby, (4.31)

where the flavor indices 7,7 run from 1 to 2. This Lagrangian is manifestly invariant under
some discrete symmetries in flavor space. These symmetries, however, are part of the U(2) flavor
symmetry under which (¢, ) form a doublet. For example, the symmetry operation ; — —1;
can be generated by the U(1) transformation: U = €' with o = w. Find the U(2) = SU(2) x U(1)

rotations for the following two symmetries:

(4) Yy =1, P — = (4.32)
(i) (IR

Hints: You can write your answer as a series of several rotations. The following identity can be
useful

exp(iao,) = I cosa + io, sina (4.33)

Question 4.6: Non-Abelian gauge bosons

In this question you are asked to prove that the gauge bosons belong to the adjoint represen-

tation. Consider a field ¢ that transforms as an M-dimensional representation, R:
¢ — Ud, U = ¢'Taba, (4.34)

where a runs from one to the dimension of the group (for SU(N), a = 1,2,...,N*> — 1) and U
and T are M x M matrices. We take 0, to be independent of z,,. This may seem weird, as the
whole reason to introduce the gauge fields is to let 6, depend on z,. Yet, once the gauge fields
are introduced, they must transform also under the global symmetry, so 6, = const(z,) is just a

special case. The covariant derivative is
D, = 0, +19G,, G, =G T, (4.35)
1. Show that the infinitesimal transformation is

U=1+iT,0,+0(6?). (4.36)

2. Write the infinitesimal transformation of ¢, explicitly with the group indices.
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3. In order to promote a global symmetry to a local one, D, ¢ must transform the same way as
¢, that is,
D, = UD,¢. (4.37)

Show that Eq. (4.37)) implies that

1
G, — UG,U" — ;Ta(?,ﬂa. (4.38)

4. Show that Eq. (4.38)), together with the algebra of the group, imply that for an infinitesimal
gauge transformation
a a C faoc 1 a
Go — G5+ 0°f"° G, — ga,ﬂ : (4.39)

5. Using Eq. (4.36]), argue that the irrep of the gauge field is
(Tc)ab — _,ifcab. (44())

Using this result argue that the gauge fields transform as the adjoint.
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