Chapter 1
Lagrangians

In this chapter, we review the basic tools that we use in the book. In particular, we introduce the

Lagrangian and present some simple Lagrangians involving scalar and fermion fields.

1.1 Introduction

Modern physics encodes the basic laws of nature in the action S, and postulates the principle of
minimal action in its quantum interpretation. In Quantum Field Theory (QFT), the action is
an integral over spacetime of the “Lagrangian density” or Lagrangian, £, for short. For most of
our purposes, it is enough to consider the Lagrangian, rather than the action. In this chapter we
explain how Lagrangians are “constructed”. Later in the book we discuss how the numerical values
of the parameters that appear in the Lagrangian are determined, and how to test if a Lagrangian
provides a viable description of nature.
The QFT equivalent of the generalized coordinates of classical mechanics are the fields. The
action is given by
S = / d'z L (1.1)
where d*r = da®dz'dz?da? is the integration measure in four-dimensional Minkowski space. In

general, we require the following properties for the Lagrangian:

(i) It is a function of the fields and their derivatives only.
(ii) It depends on the fields taken at one spacetime point z* only, leading to a local field theory.
(i) It is real, so that the total probability is conserved.

(iv) It is invariant under the Poincaré group, that is under spacetime translations and Lorentz

transformations.

(v) It is an analytic function in the fields. This is not a general requirement, but it is common to

all field theories that are solved via perturbation theory. In these cases, we expand around
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a minimum, and this expansion means that we consider a Lagrangian that is a polynomial
in the fields.

(vi) It is invariant under certain internal symmetry groups. The invariance of S (or of L) is
in correspondence with conserved quantities and reflects basic symmetries of the physical

system.
(vii) Every term in the Lagrangian that is not forbidden by a symmetry should appear.
We often impose an additional requirement:

(viii) Renoarmalizability. A renormalizable Lagrangian contains only terms that are of dimension

less than or equal to four in the fields and their derivatives.

The requirement of renormalizability ensures that the Lagrangian contains at most two 0, oper-
ations, and leads to classical equations of motion that are no higher than second order derivatives.
If the full theory of nature is described by a QFT, its Lagrangian should indeed be renormalizable.
The theories that we consider, however, and, in particular, the SM, are only low energy effective
theories, valid up to some energy scale A. Therefore, we must include also non-renormalizable
terms. These terms have coefficients with inverse mass dimensions, 1/A", n = 1,2,.... For most
purposes, however, the renormalizable terms constitute the leading terms in an expansion in £/A,
where FE' is the energy scale of the physical processes under study. Therefore, the renormalizable
part of the Lagrangian is a good starting point for our study. Thus, in Chapters [IH10] we consider
only renormalizable Lagrangians, unless otherwise explicitly stated. In Chapters [L1H15] where we
describe searches for physics beyond the SM, we consider also non-renormalizable Lagrangians.

Properties (i)—(v) are not the subject of this book. You should be familiar with them from
your QFT course(s). We do, however, deal intensively with the other requirements. Actually, the
most important message that we would like to convey is the following: (Almost) all experimental
data for elementary particles and their interactions can be explained by the standard model of a
spontaneously broken SU(3) x SU(2) x U(1) gauge symmetryﬂ

Writing down a specific Lagrangian is the endpoint of the process known as “model building,”
and the starting point for a phenomenological interpretation and experimental testing. In this

book we explain both sides of this modern way of understanding high energy physics.

1.2 Examples of simple Lagrangians

We next present a few examples of simple Lagrangians of scalar and fermion fields. They are

simple in the sense that we do not yet impose any internal symmetry. We use ¢(x) for a scalar

I Actually, the great hope of the high-energy physics community is to prove this statement wrong, and to find

an even more fundamental theory.

14



field and ¢ (z) for a fermion field. When we consider vector fields, as is first done in section we

use A(x) for a vector field. We do not consider higher spin fields, as it is not simple to construct

a QFT where they are fundamental.

Two comments are in order:

e All fields that we consider are functions of spacetime coordinates, ¢(x), ¥(x), A(z). We

leave this spacetime dependence implicit, except in cases where it is relevant.

e We use the notations ¢, 1 and A for the discussion of generic cases. When we refer to specific

cases, we use a different notation. For example, for the electron field, we use the notation e

instead of the generic 1.

1.2.1 Scalars

The most general renormalizable Lagrangian for a single real scalar field ¢ is given by

1

. m? n A 4
Ls= 5@;@)@%) — 7¢2 - ﬁf’ — Z¢ : (1.2)

We emphasize the following points:

1.

The term with derivatives is called the kinetic term. It is necessary if we want ¢ to be a

dynamical field, namely to be able to describe propagation in spacetime.

. The terms without derivatives are collectively denoted by —Vy. We then write Lg =

$(0,0)(0"¢) — Vs, and V}, is called the scalar potential.

We work in the “canonically normalized” basis where the coefficient of the kinetic term is
1/2. (This is true for a real scalar field. For a complex scalar field, the canonically normalized

coefficient of the kinetic term is 1.)

From here on, throughout the book, when we say “the most general Lagrangian”, we refer
to a Lagrangian where the kinetic terms are canonically normalized, but the other terms are
written in a general basis. (Question shows that there is no loss of generality in working

in the canonically normalized basis.)
We do not write a constant term since it does not enter the equation of motion for ¢.

We do not write a term linear in ¢ because, when expanding around a minimum, the linear

term vanishes.
The quadratic term (¢?) is a mass-squared term. (It is often called simply “a mass term.”)
The trilinear (¢®) and quartic (¢*) terms describe interactions.

Terms with five or more scalar fields (¢", n > 5) are non-renormalizable.
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1.2.2 Fermions

The basic fermion fields are two component Weyl fermions, 1y and ¥ g, where L and R denote,
respectively, left-handed and right-handed chirality. Each of ¢, and 1 has two degrees of freedom
and is a complex field. They are related to the four-component Dirac field v via

T+
2

L—s

VYr = Ppip = 5

v, Y =Py = Y. (1.3)

It is useful to define related left-handed Weyl fermion 1% and a right-handed Weyl fermion ¢ via
c T c -7
wR - CwR 3 1/)[/ - C¢L ) (]‘4)

where C'is the charge conjugation matrix. (The reason for this name becomes clear once we define
charge in Chapter [2])
The most general renormalizable Lagrangian for a single left-handed fermion field ¢;, and a

single right-handed fermion field g is given by

m m

Lr = T + WTaon — ("5 T vn+ “AEG Yo+ mptrgathe ) (L)

2

We emphasize the following points:

1. The derivative terms are the kinetic terms. They are necessary if we want ¢y r to be

dynamical fields.
2. We work in the canonically normalized basis where the coefficient of the kinetic term is 1.

3. Terms with an odd number of fermion fields violate Lorentz symmetry, and so they are
forbidden.

4. The quadratic terms are mass terms. The m,,; terms are called Majorana masses and the

mp terms are called Dirac masses.

5. The relative factor of 1/2 between Majorana and Dirac mass terms is the analog of the similar

factor between the mass-squared terms for a real and complex scalar fields.
6. Terms with four or more fermion fields are non-renormalizable.

7. Given the fact that Majorana mass terms are made out of a pair of identical fields, we often

write

MMR—= MMR
T YRR

VR YR. (1.6)

In case that the Majorana masses vanish, my;;, = myr = 0, Lr can be written in terms of the
Dirac fermion field :

Lp(my = 0) = i) — mppy). (1.7)
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Since v, and g are different fields, there are four degrees of freedom with the same mass, mp.
In contrast, if the Majorana masses do not vanish, there are generally only two degrees of freedom
that have the same mass. In Section we discuss these issues in more detail, and explain why

it is often the case that Majorana masses vanish.

1.2.3 Fermions and scalars

Consider the case of a single left-handed fermion vy, a single right-handed fermion 1) and a single
real scalar field ¢. The Lagrangian includes, in addition to terms that involve only the scalar,
Eq. , and terms that involve only the fermions, Eq. , terms that involve both the scalar
and the fermions. They can be obtained by replacing the mass parameters for the fermions with
a coupling times the scalar field:

Y
V2

These terms are called Yukawa interactions. The Y parameters are dimensionless and are called

L = TR+ G Y+ TG+ e (18)

2
the Yukawa couplings. Note that in Eq. (1.8)) we quote —£. This is a common practice when we

do not write the kinetic terms.

1.3 Symmetries

We always seek deeper reasons for the laws of nature that have been discovered. These reasons are
often closely related to symmetries. The term symmetry refers to an invariance of the equations
that describe a physical system. The fact that a symmetry and an invariance are related concepts
is obvious enough — a smooth ball has a spherical symmetry and its appearance is invariant under
rotation.

Symmetries are built into physics as invariance properties of the Lagrangian. If we construct
our theories to encode various empirical facts and, in particular, the observed conservation laws,
then the equations turn out to exhibit certain invariance properties. For example, if we want
to implement energy conservation into the theory, then the Lagrangian must be invariant under
time translations (and therefore cannot depend explicitly on time). From this point of view, the
conservation law is the input and the symmetry is the output.

Conversely, if we take the symmetries to be the fundamental rules, then various observed
features of particles and their interactions are a necessary consequence of the symmetry principle.
In this sense, symmetries provide an explanation of these features. In modern particle physics
(and, in particular, in this book), we often take the latter point of view, in which symmetries are
the input and conservation laws are the output.

In the following we discuss the consequences of imposing a symmetry on a Lagrangian. This is

the starting point of model building in particle physics: One defines the basic symmetries and the
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field content, and then obtains the predictions that follow from these imposed symmetries.

There are, however, symmetries that are not imposed and are called accidental symmetries.
They are outputs of the theory rather than external constraints. Accidental symmetries arise
due to the fact that we truncate our Lagrangian. In particular, the renormalizable terms in the
Lagrangian often have accidental symmetries that are broken by non-renormalizable terms. Since
we study mostly renormalizable Lagrangians, we will often encounter accidental symmetries.

There are various types of symmetries. First, we distinguish between spacetime and inter-
nal symmetries. Spacetime symmetries include the Poincaré group of translations, rotations and
boosts. They give the energy—momentum and angular momentum conservation laws. As mentioned
above, we always impose this symmetry. The list of possible spacetime symmetries includes, in
addition, space inversion (also called parity) P, time-reversal T, and charge conjugation C. (While
C' is not truly a spacetime symmetry, the way it acts on fermions and the C'PT theorem make
it simpler to include C' in the same class of operators.) The discrete spacetime symmetries are
usually covered in QFT courses, but for completeness we discuss them briefly in Appendix [I.A]

Internal symmetries act on the fields, not directly on spacetime. In other words, they act in
internal spaces which are mathematical spaces that are generated by the fields. These are the
kind of symmetries that we discuss in detail. In Chapter 2] we introduce Abelian symmetries. In

Chapter |4 we introduce non-Abelian symmetries.

1.4 Model building

As stated above, writing a Lagrangian is the endpoint of model building. Our procedure of

constructing Lagrangians goes as follows. We start by defining the following inputs:
(7) The symmetry;

(74) The transformation properties of the various scalar and fermion fields under the symmetry

operation.

Then we write down the most general Lagrangian that depends on the fields and is invariant under
the symmetry.

A renormalizable Lagrangian (or a non-renormalizable one truncated at a certain order) has a
finite number of parameters. For a theory with N parameters, we need to perform N appropriate
measurements such that additional measurements, from the (N + 1)’th and on, test the theory.
In principle, we do not really need to determine the values of the parameters, and just use exper-
imental inputs to make predictions. In practice, however, it is usually convenient to use the N
measurements to determine the values of the Lagrangian parameters and use these parameters to
make further predictions. It is important to remember that the values of the parameters are not

inputs to model building.
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For further reading

There are many books that discuss in detail the QFT-related aspects relevant to our book. For
example, some of the standard textbooks are by Peskin and Schroeder [2], Zee [13], Srednicki [14],
and Schwartz [I5]. Other textbooks that explain many of the relevant issues include Ramond [16],
Dine [17], Nagashima [I8] 19], and Petrov and Blechman [20].

With regard to some specific points, we mention the following sources:

e For a formal discussion of C' and P see, for example, Section 3.6 of Ref. [2], or Sections
11.4-11.6 of Ref. [15].

e For a discussion of the issues with quantizing theories with higher-spin fields see, for example,

Ref. [21].

e For discussion of Majorana fermions see, for example, Section 11.3 in Ref. [I5].

e For the C'PT theorem see, for example, Ref. [22].
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Appendix

1.A Discrete spacetime symmetries: C', P and T

The discrete spacetime symmetries, C', P, and T, play an important role in our understanding of
nature. Each of these three symmetries has been experimentally shown to be violated in nature,
as discussed in detail further below. The C'PT combination seems, however, to be an exact
symmetry of nature. On the experimental side, no sign of C'PT violation has been observed. On
the theoretical side, C'PT must be conserved for any Lorentz invariant local field theory. Since we
only consider such theories, we assume that C'PT holds. In this case, CP and T are equivalent.

Thus, we usually refer to C'P.

1.A.1 (C and P

We only consider C' and P in theories that involve fermions. Under C, particles and antiparticles
are interchanged by conjugating all internal quantum numbers, e.g., reversing the sign of the
electromagnetic charge, ) — —@Q. Under P, the handedness of space is reversed, ¥ — —&, and
the chirality of fermion fields is reversed, ¥y, <> ¥r. For example, a left-handed (LH) electron e,

transforms under C' into a LH positron e}, and under P into a right-handed (RH) electron ej.

1.A.2 (P violation and complex couplings

The C'P transformation combines charge conjugation C' with parity P. For example, a LH electron
ey transforms under C'P into a RH positron, ef. C'P is a good symmetry if there is a basis where
all the parameters of the Lagrangian are real. We do not prove it here but provide a simple
intuitive explanation of this statement.

Consider a theory with a single complex scalar, ¢, and two sets of N fermions, ¥} and %

(1=1,2,...,N) (we define a complex scalar in Chapter . The Yukawa interactions are given by
— Ly = Yijridvr; + Y Urio s, (1.9)

where we write the two hermitian conjugate terms explicitly. The C'P transformation of the fields

is defined as follows:

o= o, Y= Yn,  Ur— Vg (1.10)
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Therefore, a C'P transformation exchanges the operators

Yripbpj<— Vrid Vi, (1.11)

but leaves their coefficients, Y;; and Y7,
Yij = Yij.
In practice, things are more subtle, since one can define the C'P transformation in a more

general way than Eq. ((1.10)):

unchanged. This means that C'P is a symmetry of L if

R T S (1.12)

with 6, 0;;, Or; convention-dependent phases. Then, there can be complex couplings, yet C'P would
be an exact symmetry. The correct statement is that C'P is violated if, using all freedom to redefine

the phases of the fields, one cannot find any basis where all couplings are real.
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Problems

Question 1.1: Algebra

1. Draw the Feynman diagrams for the interaction terms in the Lagrangian of Eq. (1.2).

2. Starting from Eq. (1.5) and using Eq. (1.3)), derive Eq. (1.7).

3. Draw the Feynman diagrams for the Yukawa interaction terms in the Lagrangian of Eq. (1.8]).

Question 1.2: Using Natural units

In high energy physics, since relativity and quantum mechanics are essential, it is convenient

to use units where
I~ 6.58 x 1072 MeVs = 1, cr~3x10ms ! =1, hea2x 107 MeVm =1. (1.13)

One can think of this convention as a choice of a unit system where the basis is {%, ¢, eV} instead
of, for example, the {cm, g, sec} of the cgs system. In addition, it is common to make the factors
of i and ¢ implicit and measure everything in powers of eV. We reinstate the factors of i and ¢
only when converting to a different unit system. The aim of this exercise is that you gain some

practice in using these natural units.

1. The width of a particle is defined as the inverse of its lifetime. The mean lifetime for the B
meson is 7 ~ 1.64 x 1072 s. What is its width in eV?

2. Consider a particle with a width of I' = 2.3 eV. Recall that in the lab frame t = v7. What is
the average distance that such a particle travels with v = 100 before decaying (since v > 1

you can use J ~ 1.)
3. Quantum gravity effects cannot be neglected at very short distances. This happens when
the energy scale is of the order of the Planck mass,

he
Mpy = 4| — 1.14
Pl GN’ ( )
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where Gy is the Newtonian gravitational constant. (The Planck scale constitutes an upper
bound on the cut-off scale of all QFTs relevant to Nature.) Express Mp in GeV, and the
Planck length, Lp; = Mp;', in cm.

4. In oscillation experiments for neutrinos, it is important to know the oscillation length, Los. =
4 E/Am?, where Am? is the mass-squared difference between the two neutrino states. For
an experiment conducted with neutrinos of E = 1.3 GeV, find the value of Am? in units of

eV? that corresponds to Los. = 140 meters.

Question 1.3: Dimensions of terms

It is useful to understand what we refer to as the “dimension of operators” or the “dimension
of Lagrangian terms.” The action has dimensions of angular momentum. Therefore, in the natural
unit system, the action is dimensionless, and the Lagrangian has a mass-dimension of four (or,

more generally, of the number of spacetime dimensions).

1. Based on the Lagrangians of Eqs. (1.2)) and (1.5)), show that canonical scalar fields have

dimension d = 1 and canonical fermion fields have dimension d = 3/2.

2. Find the dimensions of the m? parameter in Eq. (1.2) and of the mpr, mar, and mp
parameters in Eq. (1.5).

3. What are the dimensions of  and X in Eq. (1.2) and of Y in Eq. (1.8))?

Question 1.4: Accidental symmetries

In this question, we study a classical system in order to show examples of accidental symmetries.
Consider a classical one-dimensional pendulum of length ¢. The one degree of freedom can be
chosen to be @, the angle of the pendulum. Then, the Lagrangian is given by

I me26?
2

—mgl(1 — cosf), (1.15)

Assuming small oscillations (6 < 1), we can expand the potential. Keeping only terms up to
second-order, we get '
ml20?  mglh?
L= — ,
2 2
which is the Lagrangian of a simple harmonic oscillator. It is well known that the frequency of a

(1.16)

simple harmonic oscillator does not depend on its amplitude. Below we aim to understand how

this result is related to accidental symmetries.
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1. Show that the EoM derived from the Lagrangian of Eq. ((1.16) is invariant under dilation,
0 — M, for any finite A\. (We are then saying that L of Eq. (1.16) has dilation symmetry,
despite the fact that it is only the EoM that is invariant.)

2. Does the Lagrangian of Eq. (1.15)) also have dilation symmetry?

3. Expand the Lagrangian of Eq. (1.15) up to O(#*). Show explicitly that the #* term breaks

the dilation invariance. Explain why this implies that this symmetry is accidental.

4. Without a formal proof, argue that dilation symmetry implies that the frequency cannot

depend on the amplitude.

What we have shown is that the dilation symmetry is accidental and that it is broken by higher

order terms.
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