Part |: First order expansion
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Note: the subscript alpha=s,i labels both polarisation and spatial mode (e.g. under type-ll
phase matching condition s and i are orthogonally polarised modes), while k labels the
temporal modes appearing in the Schmidt decomposition.
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Therefore, we confirmed that these kets form an orthonormal set. In fact, they form a basis for
expressing all single-photon-pair states produced by this SPDC source.
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We see that the parameter g fully determines the total probability of pair emission, and is usually
called the gain parameter.
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6) The marginal state is a statistical mixture with probability \lambda_k to find the signal
photon in temporal mode k
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The Hong-Ou-Mandel effect occurs for all terms with k=/. For terms is k \neq /, the photons
at the two input ports are in different temporal modes, they are distinguishable and don’t
interfere (therefore no bunching is observed)

8) Since \rho_{ab} represents a statistical mixture, the overall probability of having
indistinguishable photons at both inputs is simply the sum of the corresponding coefficients with
k=1,i.e.:
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9) Drawbacks: Two copies of the same state are needed for the HOM measurement => Either
pumping two exactly identical SPDC sources with the same laser, or delaying half of the photons
for a single source and overlapping them with photons emitted by the same source at a later time
(caused by a later pump pulse).



Part Il: Photon number statistics
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3 ) The Jull rmublimode quantune stale out of SPDC ce .

_ which is a tensor product of states in infinitely many modes,
= 2 A

each containing infinitely many terms (Fock states with
decreasing amplitudes)

To compare with the results from part |, we expand this tensor product and keep

only the terms to lowest order in g, which contain at most one photon pair in total
(i.e. over all temporal modes k)
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We note that the original full state was k-mode separable, but mode entanglement
emerges when measuring in the single photon pair regime.



L{-) We trace out the idler mode to find the marginal state of the signal field in
temporal mode ‘k’ :
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To a good approximation, g/ (2) is given by the ratio of double-coincidence counts to the
product of single counts on the two detectors. See this paper for full details:

7) Going back to the full multimode state, the marginal state of the signal field is:

g:: in,& with 8 = (1-0) Z5 f 10740

(tensor product of many thermal states)
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