

Problem set 10

Nonlinear Optics for Quantum Technologies

May 1, 2025

The squeezed vacuum

In this problem, we consider the properties of a single mode (\vec{k}, \vec{E}_k) whose electric field amplitude is expressed as

$$\hat{E}(\phi) = \xi_0 \left(\hat{a}e^{-i\phi} + \hat{a}^\dagger e^{i\phi} \right) \quad (1)$$

with $\xi_0 = \sqrt{\frac{\hbar\omega}{2\epsilon V}}$ and $\phi = \omega t - \vec{k} \cdot \vec{r}$

1 Field quadratures

1. Show that one can rewrite $\hat{E}(\phi) = \hat{E}_Q \cos(\phi) + \hat{E}_P \sin(\phi)$ and give the expressions of the quadrature operators \hat{E}_Q, \hat{E}_P .
2. For two operators \hat{A} and \hat{B} , the Robertson uncertainty relation imposes

$$(\Delta A)(\Delta B) \geq \frac{1}{2} \left| \langle [\hat{A}, \hat{B}] \rangle \right| \quad (2)$$

where $(\Delta A)^2 = \langle \hat{A}^2 \rangle - \langle \hat{A} \rangle^2$ is the variance characterizing the fluctuations of A .

Give a lower bound for $\Delta E_Q \times \Delta E_P$, irrespective of the quantum state of light.

3. We now define $\hat{Q} = \frac{\hat{a}^\dagger + \hat{a}}{2}$ and $\hat{P} = i\frac{\hat{a}^\dagger - \hat{a}}{2}$. Compute a lower bound for $\Delta Q \times \Delta P$ and express the free-field Hamiltonian as a function of \hat{Q} and \hat{P} . (*Hint:* compute $\hat{Q}^2 + \hat{P}^2$)

2 Vacuum state and number states

4. We consider that the field is in the ground state $|0\rangle$, corresponding to perfect vacuum.
 - Compute the variance of the electric field $(\Delta E(\phi))^2$ in this case, i.e., the vacuum fluctuations.
 - What are the fluctuations in photon number \hat{n} ?
 - Compute the product $\Delta \times Q \Delta P$ and compare with the lower bound obtained in question 3.
5. Answer the same three questions for the Fock state $|n\rangle$ with n photons. Comment the results.

3 Squeezed vacuum state

We consider a perturbation that can be modeled by the Hamiltonian:

$$\hat{H}_I = i\frac{\hbar g}{2} \left((\hat{a}^\dagger)^2 + (\hat{a})^2 \right) \quad (3)$$

where $g \in \mathbb{R}$ for simplicity.

6. In order to implement this Hamiltonian with SPDC, what experimental aspects should be satisfied ?
7. We now work in the Heisenberg picture where the operators evolve in time, $\hat{a}(t)$, and the state remains $|0\rangle$. We know that the free-field Hamiltonian yields a unitary evolution as $e^{-i\omega t}$, which we factor out, and only study the dynamics caused by the perturbation \hat{H}_I introduced above.

Write the equations of motion for $\hat{Q}(t)$ and $\hat{P}(t)$ under \hat{H}_I .

8. Express the solution at time t as a function of $\hat{Q}_0 = \hat{Q}(0)$ and $\hat{P}_0 = \hat{P}(0)$.
9. Compute $\Delta Q(t)$, $\Delta P(t)$ and $\Delta Q(t) \times \Delta P(t)$.
10. Draw the vacuum and squeezed vacuum in phase space.
11. From the results obtained in question 8, express $\hat{a}(t)$ and $\hat{a}^\dagger(t)$ as a function of $\hat{a}_0, \hat{a}_0^\dagger$.
Show that the commutation rules are preserved at all times.
12. Compute the mean photon number $\langle \hat{n}(t) \rangle$ and standard deviation $\Delta n(t)$ for the squeezed vacuum. Compare the results with those obtained for the standard vacuum.