

Problem set 07

Nonlinear Optics for Quantum Technologies

April 3, 2025

1 Optimization of second harmonic generation in a uniaxial crystal

1.1 Geometry of the experiment

We consider a uniaxial crystal (refractive indices n_o, n_e) pumped by a monochromatic plane wave of frequency ω . The wavevector $\mathbf{k}(\omega)$ makes an angle θ with the optic axis z , and the projection of $\mathbf{k}(\omega)$ onto the x, y plane makes an angle ϕ with the x axis.

- Draw $\mathbf{k}(\omega)$ and the two normal mode polarization unit vectors \mathbf{u}_o (ordinary) and \mathbf{u}_e (extraordinary) in the x, y, z coordinate system. We choose the orientations of $\{\mathbf{k}(\omega), \mathbf{u}_o, \mathbf{u}_e\}$ to form a right-handed triad.
- Express the x, y, z components of the unit vectors \mathbf{u}_o and \mathbf{u}_e as a function of θ and ϕ .
- Just at the input facet of the crystal, we write the polarization state of the pump beam

$$\mathbf{E}_{in}(\omega) = \frac{E_0}{2} \left[\cos\left(\frac{\gamma}{2}\right) \mathbf{u}_\alpha - i \sin\left(\frac{\gamma}{2}\right) \mathbf{u}_\beta \right]$$

where $\mathbf{u}_\alpha, \mathbf{u}_\beta$ are two orthogonal unit vectors in the $(\mathbf{u}_o, \mathbf{u}_e)$ plane, forming an angle α between \mathbf{u}_o and \mathbf{u}_α (and between \mathbf{u}_e and \mathbf{u}_β). What are the values of (α, γ) corresponding to the following polarization states:

- linear along \mathbf{u}_o , linear along \mathbf{u}_e
- linear diagonal (at 45° between \mathbf{u}_o and \mathbf{u}_e)
- circular

- In the following, we neglect beam walk-off by considering $\mathbf{E} \parallel \mathbf{D}$. Decompose \mathbf{E}_{in} into the normal modes of polarization as

$$\mathbf{E}_{in} = A_o(\omega) \mathbf{u}_o + A_e(\omega) \mathbf{u}_e$$

(give A_o and A_e as a function of α and γ).

1.2 Nonlinear polarization and second harmonic generation

- We note $s = \mathbf{r} \cdot \frac{\mathbf{k}}{k}$ the propagation distance along the pump beam direction. Express the pump wave $\mathbf{E}(\omega, s)$ for any $s > 0$ as a function of $\mathbf{k}_o(\omega)$ and $\mathbf{k}_e(\omega)$, considering that the amplitudes A_o, A_e remain constant (undepleted pump approximation). How are $k_o(\omega)$ and $k_e(\omega)$ related to $\frac{\omega}{c}, n_o$ and n_e ?
- Give the expression of the nonlinear polarization $\mathbf{P}^{(2)}(2\omega)$ at the second harmonic frequency for the general pump beam in 1.1.d). Why cannot we perform the tensor contraction at this stage? You may use the basis-independent notation $\mathbf{a} \cdot \chi^{(2)} : \mathbf{b} \mathbf{c}$.
- From Maxwell's equations, neglecting beam walk-off (i.e., making the approximation $\nabla \cdot \mathbf{E} = 0$) and assuming a slowly varying envelope, show that

$$\frac{\partial}{\partial s} A_o(2\omega) \propto \mathbf{u}_o \cdot \mathbf{P}^{(2)}(2\omega) e^{-i k_o(2\omega) s}$$

- d) Expand the right-hand term with the expression of $\mathbf{P}^{(2)}(2\omega)$ found in a) and identify three independent terms proportional to A_o^2 , A_e^2 and $A_o A_e$, having distinct phase mismatch values Δk_{ooo} , Δk_{oee} and Δk_{oeo} , respectively. The subscripts *ooo*, *oee*, *oeo* stand for type 0, type I and type II phase matching, respectively. What is their meaning in terms of annihilated and created photon polarization?
- e) Which term can never be phase-matched? Explain how to phase-match the other two terms. Should the crystal be positive ($n_e > n_0$) or negative ($n_e < n_0$)?
- f) Repeat questions d) and e) for the growth of the extra-ordinary wave amplitude $A_e(2\omega)$. What are the photon polarizations for type 0, type I and type II phase matching in this case?

1.3 Type I phase matching in KDP

We now consider the negative uniaxial crystal KDP (Monopotassium phosphate, point group -4 2 m) under type I phase matching, and we want to find the optimal parameters $\theta, \phi, \alpha, \gamma$ for efficient SHG.

- a) What parameter(s) is/are set by the phase matching condition? We now assume that $\Delta k_{eo0} = 0$.
- b) Using the decomposition of \mathbf{u}_o and \mathbf{u}_e in the x, y, z basis of the crystal (Sec. 1.1) and the contracted notation d_{il} compute the expression of $d_{\text{eff}} = \mathbf{u}_e \cdot \underline{\underline{d}} : \mathbf{u}_o \mathbf{u}_o$.
Reminder: for the point group -4 2 m the only non-zero tensor elements are $d_{14} = d_{25}$ and d_{36} .
- c) Deduce what parameters must be optimized and what are their optimal values to maximize the SHG intensity.
- d) (*optional*) Repeat the same analysis for type II phase matching in KDP.