

Week 06 – problem set (assignment)

Nonlinear Optics for Quantum Technologies

March 27, 2025

1 Difference frequency generation

An optical parametric amplifier (OPA) exploits difference frequency generation (DFG) in a second-order non-linear crystal to amplify a signal beam at frequency ω_s using a strong external pump beam at frequency ω_p , and generating an idler beam at frequency $\omega_i = \omega_p - \omega_s$ in the process. We consider that all beams are linearly polarized monochromatic plane waves:

$$\vec{E}_m(z, t) = \frac{1}{2}(A_m(z)e^{j(k_m z - \omega_m t)}\vec{u}_m + c.c.) \quad (1)$$

with $m = p, s, i$. (We use $j = \sqrt{-1}$ to avoid confusion with the index i for idler.) Assuming a fixed set of polarization directions $\vec{u}_{p,s,i}$, the second order nonlinear tensor can be replaced by its effective value, denoted by $\chi_{\text{eff}}^{(2)}$.

1.1 Coupled propagation equations and Manley-Rowe relations

a) Under the slowly varying envelope approximation and neglecting walk-off, show that the interaction between the three waves is given by the following system of coupled differential equations:

$$\frac{\partial A_p(z)}{\partial z} = j \frac{\omega_p}{2c n(\omega_p)} \chi_{\text{eff}}^{(2)} A_i(z) A_s(z) e^{j\Delta kz} \quad (2)$$

$$\frac{\partial A_s(z)}{\partial z} = j \frac{\omega_s}{2c n(\omega_s)} \chi_{\text{eff}}^{(2)} A_p(z) A_i^*(z) e^{-j\Delta kz} \quad (3)$$

$$\frac{\partial A_i(z)}{\partial z} = j \frac{\omega_i}{2c n(\omega_i)} \chi_{\text{eff}}^{(2)} A_p(z) A_s^*(z) e^{-j\Delta kz} \quad (4)$$

Give the expression of Δk and $\chi_{\text{eff}}^{(2)}$.

b) We define the reduced variables

$$a_m(z) = \sqrt{\frac{n_m c \varepsilon_0}{2\hbar\omega_m}} A_m(z)$$

where $m = p, s, i$ and $n_m = n(\omega_m)$. Rewrite the system of coupled equations in terms of the reduced variables. To lighten the notation, you may introduce the quantity $\xi = \sqrt{\frac{\hbar\omega_p \omega_s \omega_i}{2n_p n_s n_i \varepsilon_0 c^2}} \chi_{\text{eff}}^{(2)}$.

- c) What is the dimension of $\phi_m(z) = a_m^* a_m$? Rewrite it to let the beam intensity appear explicitly and justify thereby that it can be interpreted as the photon flux in the beam at frequency ω_m .
- d) From the coupled propagation equations, show that $\frac{d\phi_s}{dz} = \frac{d\phi_i}{dz} = -\frac{d\phi_p}{dz}$. How do you interpret this result in terms of photon annihilation or creation in the three-wave mixing process? This is called the **Manley-Rowe relation**.
- e) Express the total power in the three beams and compute its derivative with respect to z . How is the total power changing?

1.2 Phase matching and phase mismatch

a) We first assume **perfect phase matching** ($\Delta k = 0$) and neglect pump depletion ($a_p = \text{constant}$). Calculate the evolution of signal and idler beam amplitudes along the propagation direction. Express the solutions in terms of the initial amplitudes $a_m(z = 0)$ and the functions $\cosh(gz)$ and $\sinh(gz)$. What is the expression of the gain coefficient g ? What is its dimension? How to maximize it?

b) Sketch the evolution of intensities, $I_s(z)$ and $I_i(z)$, in the signal and idler beams along the propagation direction z , assuming that $|A_s(z = 0)| > 0$ and $|A_i(z = 0)| = 0$. Give their expressions in the limits (i) $z \ll g^{-1}$ and (ii) $z \gg g^{-1}$.
 For an arbitrary length z , what is the amplification factor (power gain) of the signal beam?
 What happens if signal and idler beams both have 0 power at the input?

c) In practice, we consider that the medium is a negative uniaxial bulk crystal. Explain how to achieve **type I** (co-polarized s and i fields) and **type II** (cross-polarized s and i fields) phase matching. You may draw the two situations in a diagram showing the dispersion of the refractive index and mentioning the polarization of each beam. You may consider that ω_i is close to ω_s to simplify the drawing (near degenerate DFG).

d) We now account for **non-zero phase mismatch**, i.e., $\Delta k \neq 0$, but keep the undepleted pump approximation. Perform the change of variable $\alpha_{s,i}(z) = a_{s,i}(z) \exp(i \frac{\Delta k}{2} z)$ and show that the coupled equations can be separated in two decoupled second-order equations

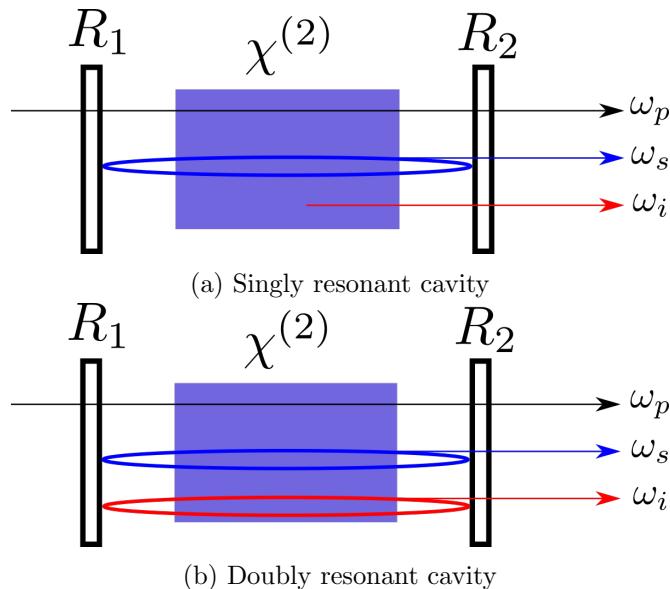
$$\frac{\partial^2 \alpha_{s,i}}{\partial z^2} - \gamma^2 \alpha_{s,i} = 0$$

with $\gamma^2 = |g|^2 - (\Delta k)^2/4$.

e) For a given phase mismatch, discuss the behavior of the solutions depending on the pump power.

1.3 Optical Parametric oscillator (OPO)

Based on the single-pass amplifier described above, it is possible to build an **optical parametric oscillator** by embedding the nonlinear crystal inside a cavity. We consider here a Fabry-Perot cavity, whose mirrors have negligible reflectivity for the pump beam.



a) Is the light amplified when it travels in both directions through the crystal?
 b) Consider a Fabry-Pérot cavity of length L (equal to the crystal length) that is resonant at the signal frequency ω_s only (Fig. a). We assume perfect phase matching and a fractional photon round-trip loss η_s at ω_s (i.e., for a circulating photon flux ϕ_s the rate of photon loss is $\eta_s \phi_s$).

Write the expression of the gain factor per round-trip. Deduce the ‘threshold condition’, which corresponds to a net amplification per round-trip.

- c) Simplify the threshold condition for small ($\ll 1$) gain and loss per round-trip. Interpret this result.
- d) Now, consider a cavity that is doubly resonant (at ω_s and ω_i). In the limit of small loss and gain per round-trip, derive an expression for the variations of the amplitudes $\Delta a_{s,i}$ over one round-trip.
- e) We define the threshold condition as $\Delta a_s = \Delta a_i = 0$. Justify this condition from the Manley-Rowe relation.
- f) Nontrivial solutions satisfying $\Delta a_s = \Delta a_i = 0$ only exist when a determinant is zero. Show that it implies a relation between $(gL)^2$ and $\eta_{s,i}$.
- g) Compare this threshold condition to the singly-resonant OPO threshold. Briefly explain some advantages and disadvantages of either system.