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1 Difference frequency generation

An optical parametric amplifier (OPA) exploits difference frequency generation (DFG) in a second-order
non-linear crystal to amplify a signal beam at frequency ωs using a strong external pump beam at
frequency ωp, and generating an idler beam at frequency ωi = ωp − ωs in the process. We consider that
all beams are linearly polarized monochromatic plane waves:

~Em(z, t) =
1

2
(Am(z)ej(kmz−ωmt)~um + c.c.) (1)

with m = p, s, i. (We use j =
√
−1 to avoid confusion with the index i for idler.) Assuming a fixed set

of polarization directions ~up,s,i, the second order nonlinear tensor can be replaced by it’s effective value,

denoted by χ
(2)
eff .

1.1 Coupled propagation equations and Manley-Rowe relations

a) Under the slowly varying envelope approximation and neglecting walk-off, show that the interaction
between the three waves is given by the following system of coupled differential equations:

∂Ap(z)
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j∆kz (2)
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∗
i (z)e
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∂Ai(z)
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∗
s(z)e

−j∆kz (4)

Give the expression of ∆k and χ
(2)
eff .

b) We define the reduced variables

am(z) =

√
nm c ε0

2~ωm
Am(z)

where m = p, s, i and nm = n(ωm). Rewrite the system of coupled equations in terms of the reduced

variables. To lighten the notation, you may introduce the quantity ξ =
√

~ωpωsωi

2npnsniε0c2
χ

(2)
eff .

c) What is the dimension of φm(z) = a∗mam? Rewrite it to let the beam intensity appear explicitly and
justify thereby that it can be interpreted as the photon flux in the beam at frequency ωm.

d) From the coupled propagation equations, show that dφs
dz = dφi

dz = −dφp
dz . How do you interpret this

result in terms of photon annihilation or creation in the three-wave mixing process? This is called
the Manley-Rowe relation.

e) Express the total power in the three beams and compute its derivative with respect to z. How is the
total power changing?
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1.2 Phase matching and phase mismatch

a) We first assume perfect phase matching (∆k = 0) and neglect pump depletion (ap = constant).
Calculate the evolution of signal and idler beam amplitudes along the propagation direction. Express
the solutions in terms of the initial amplitudes am(z = 0) and the functions cosh(gz) and sinh(gz).
What is the expression of the gain coefficient g? What is it’s dimension? How to maximize it?

b) Sketch the evolution of intensities, Is(z) and Ii(z), in the signal and idler beams along the propagation
direction z, assuming that |As(z = 0)| > 0 and |Ai(z = 0)| = 0. Give their expressions in the limits
(i) z � g−1 and (ii) z � g−1.

For an arbitrary length z, what is the amplification factor (power gain) of the signal beam?

What happens if signal and idler beams both have 0 power at the input?

c) In practice, we consider that the medium is a negative uniaxial bulk crystal. Explain how to achieve
type I (co-polarized s and i fields) and type II (cross-polarized s and i fields) phase matching.
You may draw the two situations in a diagram showing the dispersion of the refractive index and
mentioning the polarization of each beam. You may consider that ωi is close to ωs to simplify the
drawing (near degenerate DFG).

d) We now account for non-zero phase mismatch, i.e., ∆k 6= 0, but keep the undepleted pump
approximation. Perform the change of variable αs,i(z) = as,i(z) exp

(
i∆k

2 z
)

and show that the coupled
equations can be separated in two decoupled second-order equations

∂2αs,i
∂z2

− γ2αs,i = 0

with γ2 = |g|2 − (∆k)2/4.

e) For a given phase mismatch, discuss the behavior of the solutions depending on the pump power.

1.3 Optical Parametric oscillator (OPO)

Based on the single-pass amplifier described above, it is possible to build an optical parametric
oscillator by embedding the nonlinear crystal inside a cavity. We consider here a Fabry-Perot cavity,
whose mirrors have negligible reflectivity for the pump beam.

(a) Singly resonant cavity

(b) Doubly resonant cavity

a) Is the light amplified when it travels in both directions through the crystal?

b) Consider a Fabry-Pérot cavity of length L (equal to the crystal length) that is resonant at the signal
frequency ωs only (Fig. a). We assume perfect phase matching and a fractional photon round-trip
loss ηs at ωs (i.e., for a circulating photon flux φs the rate of photon loss is ηsφs).
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Write the expression of the gain factor per round-trip. Deduce the ‘threshold condition’, which
corresponds to a net amplification per round-trip.

c) Simplify the threshold condition for small (� 1) gain and loss per round-trip. Interpret this result.

d) Now, consider a cavity that is doubly resonant (at ωs and ωi). In the limit of small loss and gain per
round-trip, derive an expression for the variations of the amplitudes ∆as,i over one round-trip.

e) We define the threshold condition as ∆as = ∆ai = 0. Justify this condition from the Manley-Rowe
relation.

f) Nontrivial solutions satisfying ∆as = ∆ai = 0 only exist when a determinant is zero. Show that it
implies a relation between (gL)2 and ηs,i.

g) Compare this threshold condition to the singly-resonant OPO threshold. Briefly explain some advan-
tages and disadvantages of either system.
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