


Problem set 04

Nonlinear Optics for Quantum Technologies

March 13, 2025

Nonlinear response of a two-level system (TLS)

We consider a two level system, e.g an atom, as schematically depicted below:

We recall the notation for the density operator $\hat{\rho}$, in the basis of eigenstates $|a\rangle$, $|b\rangle$:

$$\hat{\rho} = \begin{pmatrix} \rho_{aa} & \rho_{ab} \\ \rho_{ab}^* & \rho_{bb} \end{pmatrix} \quad (1)$$

Note in particular that $\rho_{ba} = \rho_{ab}^*$

1. Write the time-independent term \hat{H}_0 and perturbation term $\hat{H}_1(t)$ of the Hamiltonian when an external field $\vec{E}(t) = E_0 \cos(\omega t) \vec{e}_x$ interacts with the dipole moment operator $\hat{\mu}_x$ of the atom.

Hints:

- Introduce the Rabi frequency Ω_1 , defined as $\Omega_1 = -\mu_{ab}E_0/\hbar$.
- Write the explicit definition of μ_{ab} .

2. We recall that the unitary evolution of the system is described by $i\hbar\dot{\rho} = [\hat{H}, \hat{\rho}]$. Write the 4 corresponding equations for the matrix elements $\rho_{ij}(t)$.
3. What is the value of $\frac{d}{dt}(\rho_{aa} + \rho_{bb})$? Interpret in terms of $Tr[\hat{\rho}]$. How many of the equations derived in question 2 are independent?
4. In the limit $\Omega_1 = 0$, what is the time evolution of each component $\rho_{ij}(t)$?
5. Make the change of variable $\rho'_{ab} = \rho_{ab}e^{-i\omega t}$ and rewrite the equations obtained in question 2. Expand $\cos(\omega t)$ in complex form and retain only slow rotating terms when $\omega \approx \omega_0$ to simplify the equations. This approximation is known as the **rotating-wave approximation**. When is it valid? Justify the change of variable used above.
6. For a closed TLS, relaxation is modeled by additional terms in the time evolution of the density matrix:

$$\{\dot{\rho}_{bb}\}_{rel} = -\Gamma_{sp} \rho_{bb} \quad (2)$$

$$\{\dot{\rho}_{ab}\}_{rel} = -\gamma \rho_{ab} \quad (3)$$

with $\Gamma_{sp}, \gamma \in \mathbb{R}$. What is the physical meaning of $\{\dot{\rho}_{bb}\}_{rel}$ and $\{\dot{\rho}_{ab}\}_{rel}$? What about $\{\dot{\rho}_{aa}\}_{rel}$ and $\{\dot{\rho}_{ba}\}_{rel}$?

7. Include relaxation terms from question 6 into the equations for ρ_{aa} , ρ_{bb} and ρ'_{ab} .
8. Find the steady-state solutions for ρ_{bb} and ρ'_{ab} .

Hint: the term $\Omega_1^2\gamma/\Gamma_{\text{sp}}$ should appear in the result.

9. Going back from ρ'_{ab} to ρ_{ab} , express the expectation value of the dipole moment $\langle \hat{\mu}_x \rangle = \text{Tr} [\hat{\rho} \hat{\mu}_x]$. Check that you obtain a real number.
10. For a dilute gas with N/V atoms per unit volume, express the real χ' and imaginary χ'' parts of the susceptibility.
11. How do the expressions above depend on the external field ? What happens to absorption upon increasing power?

Reminder: $n(\omega) = \sqrt{1 + \chi(\omega)} \approx 1 + \frac{1}{2}\chi(\omega)$

12. The rates γ and Γ_{sp} are actually related as follows:

$$\gamma = \Gamma_{\text{sp}}/2 + \gamma_{\text{pd}} \quad (4)$$

where γ_{pd} is called the pure dephasing rate.

How does the value of $\gamma/\Gamma_{\text{sp}}$ impact the nonlinear response? For what value of γ_{pd} is the nonlinear response easiest to observe? What processes can cause $\gamma_{\text{pd}} \neq 0$?