Remarks on Time-ordering

Theory of quantum frequency conversion and type-Il parametric down-conversion in the high-gain regime

0FC=TCXP [—%fdt fl}:c(t)]

Andreas Christ et al (2013) New J. Phys. 15 053038 https://iopscience.iop.org/article/10.1088/1367-2630/15/5/053038
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Remarks on Time-ordering
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Effects of time ordering in quantum nonlinear optics

N. Quesada and J. E. Sipe Phys. Rev. A 90, 063840 (2014)

Diagrams representing the
terms of increasing order in
the Magnus expansion
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It is necessary to go to third order in the expansion to see a correction to the
SPDC and SFWM states

Corrections due to time ordering vanish exactly if the phase-matching
function is sufficiently broad
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Joint Spectral Amplitude and non-separability

Toy model: comparing joint spectral intensities and the resulting heralded single photon states
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In General, considering a pure joint state of two modes (or particles):
* Ifitis entangled (non-separable), the marginal states of each mode are mixed

* Ifitis separable, the marginal states are pure
Pioneering papers:

* Continuous Frequency Entanglement: Effective Finite Hilbert Space and Entropy Control
C. K. Law, I. A. Walmsley, and J. H. Eberly Phys. Rev. Lett. 84, 5304 (2000) https://doi.org/10.1103/PhysRevLett.84.5304

* Eliminating frequency and space-time correlations in multiphoton states
W. P. Grice, A. B. U'Ren, and I. A. Walmsley Phys. Rev. A 64, 063815 (2001) https://doi.org/10.1103/PhysRevA.64.063815 | cop

Joint spectral amplitude: tuning it

Pump distribution Phasematching function Joint spectral amplitude
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Figure 3.2: SPDC process with positive phasematching slope.
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Figure 3.3: SPDC process with positive phasematching slope and matched pump width.
Andreas Eckstein PhD thesis (2012) Kontrolle iiber Quantenlichtpulse durch nichtlineare Interaktion inWellenleitern
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Example

PHYSICAL REVIEW LETTERS 127, 180502 (2021)
Editors Suggestion [l _ Featured in Physics |

Phase-Programmable Gaussian Boson Sampling Using Stimulated Squeezed Light

This photonic quantum computer, Jiuzhang 2.0, yields a Hilbert
space dimension up to ~10%3, and a sampling rate ~1024 faster
than using brute-force simulation on classical supercomputers.
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Example

PHYSICAL REVIEW LETTERS 127, 180502 (2021)
Eators Suggestion I Festured in Physics ]

Phase-Programmable Gaussian Boson Sampling Using Stimulated Squeezed Light

“We customize the poling scheme of PPKTP crystals to i

eliminate the unwanted frequency correlation.” 1560 0.8

“We measured a spectral purity of 0.98 without using o e

any narrowband filters, which indicates that almost all 04
photons are in the Schmidt decomposition major mode.” (&b

0.2

2k, (who + wvo) = kn'(wno) + kv'(wvo) 0.0

1550 1561
Wavelength (nm)

Wavelength (nm)

For many quantum information/communication applications, we want photons
produced by several nonlinear crystals to interfere with each other; i.e. they must
be indistinguishable in all degrees of freedom.

It only occurs if the joint biphoton wavefunction at the output of each source is
separable, meaning it contains no frequency correlations.

2025 Christophe Galland EPFL 6
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Schmidt decomposition

The Schmidt decomposition consists in writing the joint spectral amplitude (JSA)
as a sum of factorised JSA with decreasing weights:

f@u0) = Y m FP @I Q@) A >0, Y Ay =1

The Schmidt number K is defined as: 71 =Ym /lmz = purity
(K measures the number of populated modes)
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Using periodic poling to engineer the JSA
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https://arxiv.org/pdf/2111.10981.pdf
Generation of spectrally factorable photon pairs via multi-order quasi-phase-matched spontaneous parametric downconversion
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