

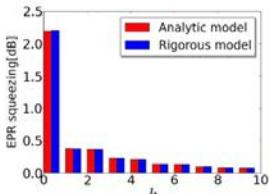
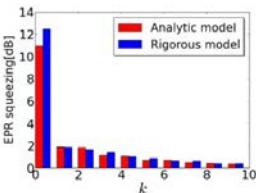
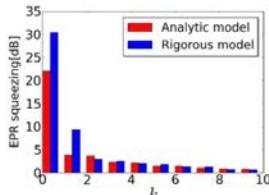
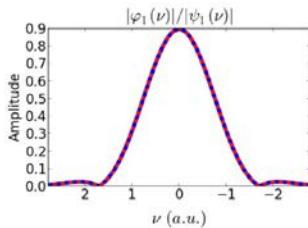
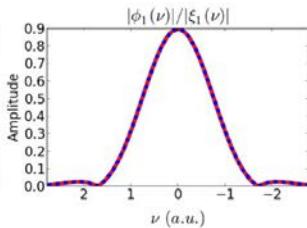
Remarks on Time-ordering

$$\hat{U}_{\text{FC}} = \mathcal{T} \exp \left[-\frac{i}{\hbar} \int dt \hat{H}_{\text{FC}}(t) \right]$$

Theory of quantum frequency conversion and type-II parametric down-conversion in the high-gain regime

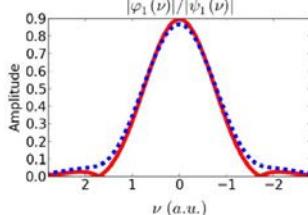
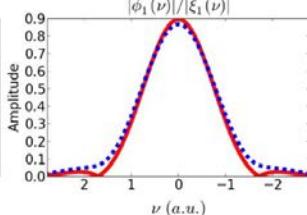
Andreas Christ et al (2013) *New J. Phys.* 15 053038 <https://iopscience.iop.org/article/10.1088/1367-2630/15/5/053038>

$-10 \log_{10}(e^{-2r_k})$

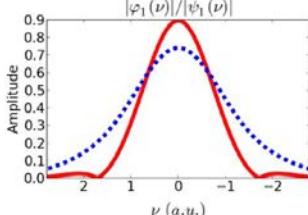
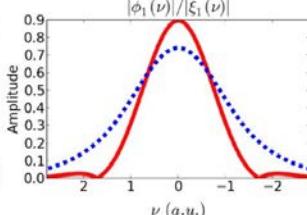


$$\langle n \rangle = \sum_k \sinh^2(r_k)$$

$$\langle n \rangle = 0.07/0.07$$



$$\langle n \rangle = 2.80/4.08$$



$$\langle n \rangle = 39.39/279.87$$

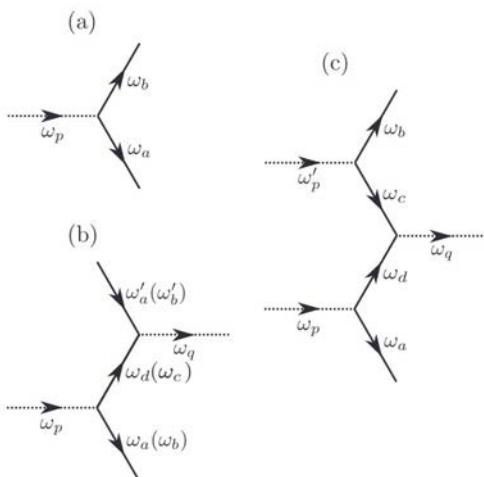
Pump power

Remarks on Time-ordering

Effects of time ordering in quantum nonlinear optics

N. Quesada and J. E. Sipe *Phys. Rev. A* 90, 063840 (2014)

Diagrams representing the terms of increasing order in the Magnus expansion



- It is necessary to go to third order in the expansion to see a correction to the SPDC and SFWM states
- Corrections due to time ordering vanish exactly if the phase-matching function is sufficiently broad

Summary of Week 11

Under the following approximations

- * Neglect losses (already needed for canonical quantize)
- * Low gain regime (< 1 photon pair emitted per pulse on average)
- * Quasi-monochromatic approx. (> 100 fs pulse duration)
 - ↳ neglect dispersion within each mode
- * Strong pump \rightarrow classical, undepleted
- Weak nonlinearity

The effective interaction Hamiltonian :

$$H_I = i\hbar g \int d\omega_s \int d\omega_i f(\omega_s, \omega_i) \hat{a}_s^\dagger(\omega_s) \hat{a}_i^\dagger(\omega_i) + \text{h.c.}$$

$\hookrightarrow TE_{00}, TM_{00} \dots$

with the gain

$$|g|^2 \propto N_p |\gamma_{\text{eff}}^{(2)}|^2 \propto \frac{N_p}{\pi} |\chi_{\text{eff}}^{(2)}|^2$$

and the joint spectral amplitude
(JSA)

$$f(\omega_s, \omega_i) = \tilde{\eta}(\omega_s, \omega_i) \times \alpha(\omega_s + \omega_i)$$

phase matching function

pump enveloppe

6) Biphoton wave-function

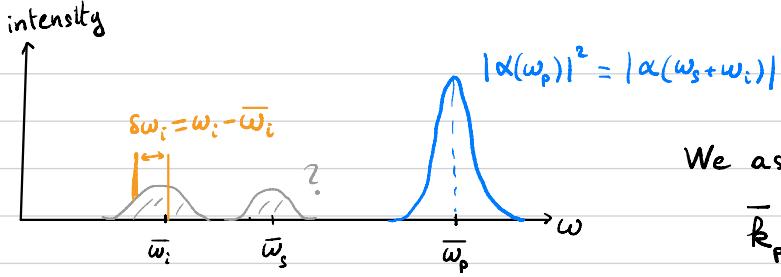
Initially : $|\Psi(t=-\infty)\rangle_{s,i} = |\text{vac}\rangle_{s,i}$

To first order in g : $\hat{U} = \exp\left(-\frac{i}{\hbar} H_I\right) \approx \mathbb{1} - \frac{i}{\hbar} H_I$

Thus : $|\Psi\rangle_{s,i} = \hat{U} |\text{vac}\rangle = |\text{vac}\rangle + g \underbrace{\int d\omega_s \int d\omega_i f(\omega_s, \omega_i) |s, i\rangle}_{\text{Biphoton wavefunction}}$

Here $|s, i\rangle = |s\rangle_s \otimes |i\rangle_i$ with $|s\rangle_s \equiv \hat{a}_s^\dagger(\omega_s) |\text{vac}\rangle$

II) Joint Spectral Amplitude



We assume that $\bar{k}_p - \bar{k}_s - \bar{k}_i = 0$

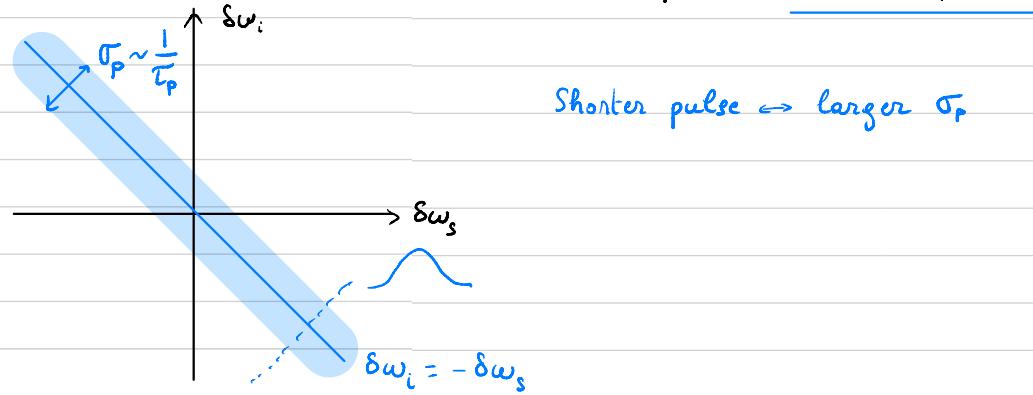
$$\bar{k}_p = k_p(\bar{\omega}_p)$$

Def.: Joint spectral Intensity $|f(\omega_s, \omega_i)|^2 = |\alpha(\omega_s + \omega_i)|^2 \cdot |\tilde{\eta}(\omega_s, \omega_i)|^2$

Normalized : $\int d\omega_s \int d\omega_i |f(\omega_s, \omega_i)|^2$

1) Pump spectrum

Gaussian pulse : $\alpha(\omega_s + \omega_i) = \exp \frac{(\omega_s + \omega_i - \bar{\omega}_p)^2}{\sigma_p^2} = \exp \frac{(\delta\omega_s + \delta\omega_i)^2}{\sigma_p^2}$

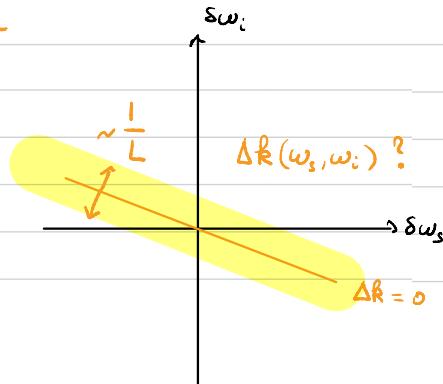


2) Phase matching

Typically : $\tilde{\eta}(\Delta k) \propto \text{sinc} \left(\frac{L}{2} \Delta k \right)$

To first order around $\bar{\omega}_s, \bar{\omega}_i$:

$$k_s(\omega_s) = \bar{k}_s + \delta\omega_s \frac{\partial k_s}{\partial \omega_s} \Big|_{\bar{\omega}_s} = \bar{k}_s + k'_s \delta\omega_s$$



where $k'_s = \frac{1}{v_g^{(s)}}$ with $v_g^{(s)} = \frac{\partial \omega_s}{\partial k_s} \Big|_{\bar{\omega}_s}$ is the group velocity

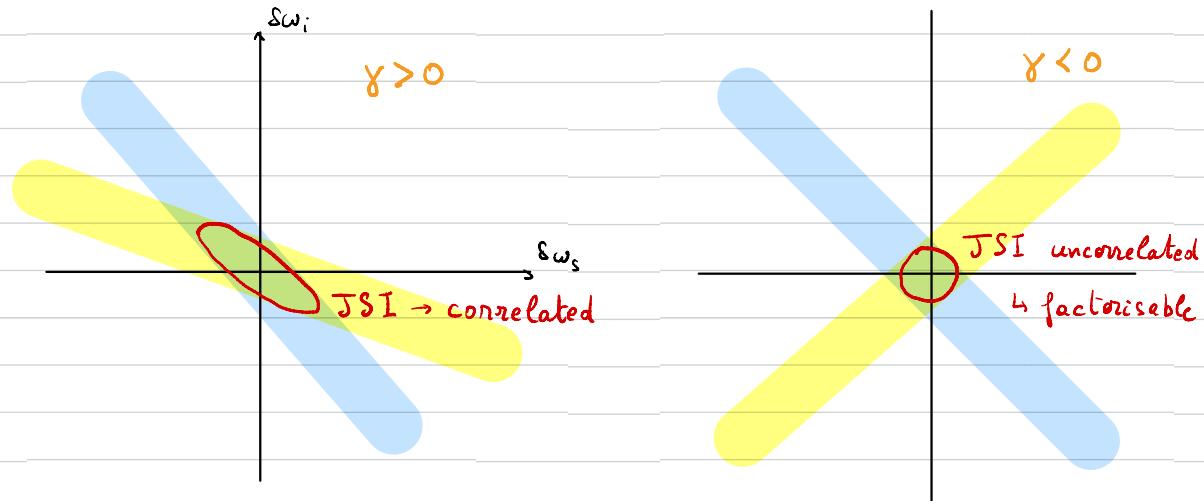
$$\begin{aligned} \text{Then : } \Delta k &= k'_p \delta \omega_p - k'_s \delta \omega_s - k'_i \delta \omega_i \quad \text{but } \delta \omega_p = \delta \omega_s + \delta \omega_i \\ &= \delta \omega_s (k'_p - k'_s) + \delta \omega_i (k'_p - k'_i) \end{aligned}$$

$$\text{Thus } \Delta k = 0 \Leftrightarrow \delta \omega_i = -\gamma \delta \omega_s \quad \text{where}$$

$$\gamma = \frac{k'_p - k'_s}{k'_p - k'_i}$$

• If $k'_p > k'_s, k'_i$ then $\gamma > 0$

• If $k'_s > k'_p > k'_i$
 $k'_i > k'_p > k'_s$ then $\gamma < 0$

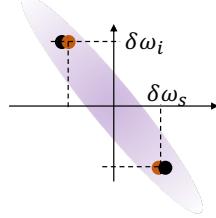


$$f(\omega_s, \omega_i) = f^{(s)}(\omega_s) \cdot f^{(i)}(\omega_i)$$

Joint Spectral Amplitude and non-separability

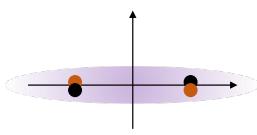
Toy model: comparing joint spectral intensities and the resulting heralded single photon states

Correlated frequencies $|\psi\rangle_{s,i} = |\delta\omega_s\rangle \otimes |-\delta\omega_i\rangle + |-\delta\omega_s\rangle \otimes |\delta\omega_i\rangle$, $\hat{\rho}_{s,i} = |\psi\rangle\langle\psi|$



$$\begin{aligned} \text{Tr}_i\{\hat{\rho}_{s,i}\} &= \langle\delta\omega_i|\hat{\rho}_{s,i}|\delta\omega_i\rangle + \langle-\delta\omega_i|\hat{\rho}_{s,i}|-\delta\omega_i\rangle \\ &= |-\delta\omega_s\rangle\langle-\delta\omega_s| + |\delta\omega_s\rangle\langle\delta\omega_s| \quad \text{Marginal state is mixed} \end{aligned}$$

Uncorrelated frequencies $|\psi\rangle_{s,i} = |\delta\omega_s\rangle \otimes |0\rangle + |-\delta\omega_s\rangle \otimes |0\rangle$



$$= \underbrace{(|\delta\omega_s\rangle + |-\delta\omega_s\rangle)}_{\text{Marginal state is pure}} \otimes |0\rangle$$

In General, considering a pure joint state of two modes (or particles):

- If it is entangled (non-separable), the marginal states of each mode are mixed
- If it is separable, the marginal states are pure

Pioneering papers:

• *Continuous Frequency Entanglement: Effective Finite Hilbert Space and Entropy Control*
C. K. Law, I. A. Walmsley, and J. H. Eberly *Phys. Rev. Lett.* 84, 5304 (2000) <https://doi.org/10.1103/PhysRevLett.84.5304>

• *Eliminating frequency and space-time correlations in multiphoton states*
W. P. Grice, A. B. U'Ren, and I. A. Walmsley *Phys. Rev. A* 64, 063815 (2001) <https://doi.org/10.1103/PhysRevA.64.063815>

EPFL

3

Joint spectral amplitude: tuning it

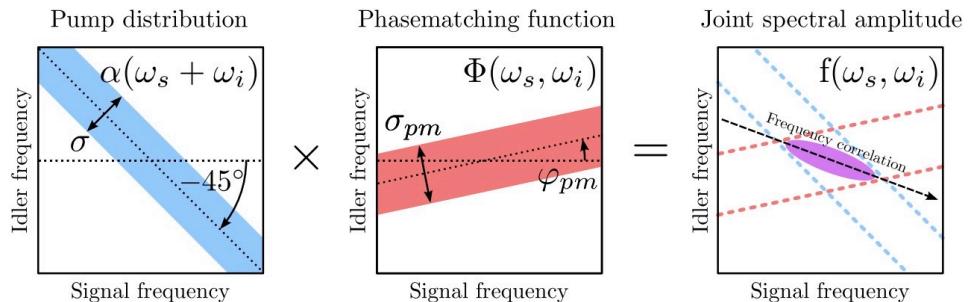


Figure 3.2: SPDC process with positive phasematching slope.

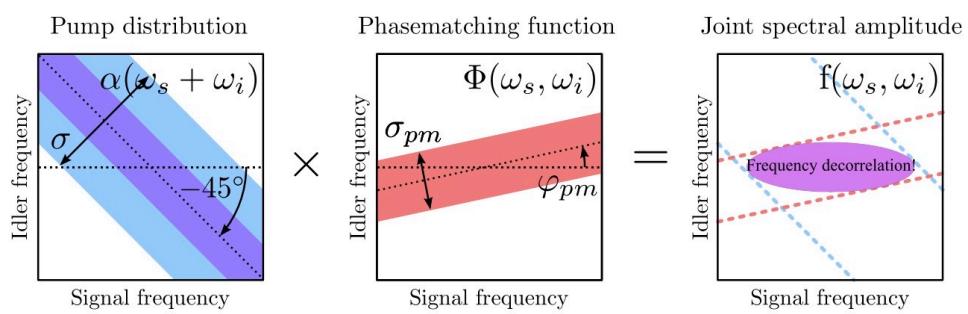


Figure 3.3: SPDC process with positive phasematching slope and matched pump width.

Example

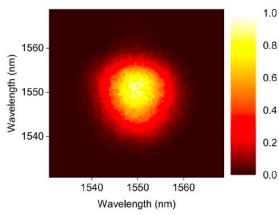
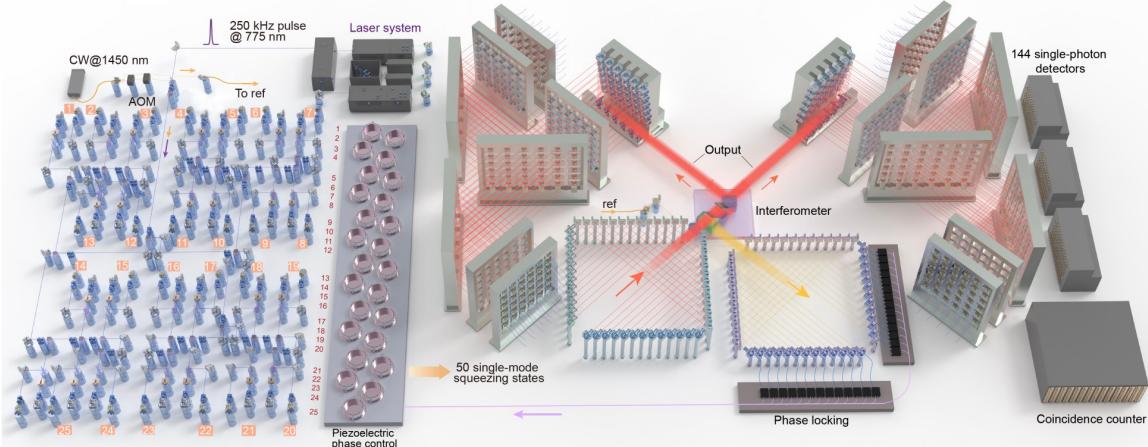
PHYSICAL REVIEW LETTERS 127, 180502 (2021)

Editors' Suggestion

Featured in Physics

Phase-Programmable Gaussian Boson Sampling Using Stimulated Squeezed Light

This photonic quantum computer, Jiuzhang 2.0, yields a Hilbert space dimension up to $\sim 10^{43}$, and a sampling rate $\sim 10^{24}$ faster than using brute-force simulation on classical supercomputers.



2025

Christophe Galland EPFL

5

Example

PHYSICAL REVIEW LETTERS 127, 180502 (2021)

Editors' Suggestion

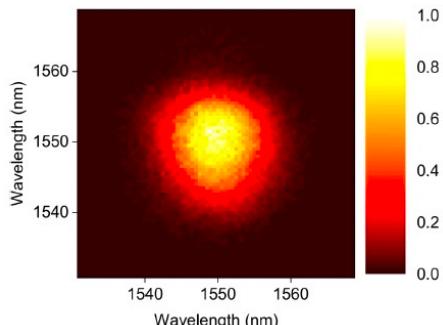
Featured in Physics

Phase-Programmable Gaussian Boson Sampling Using Stimulated Squeezed Light

"We customize the poling scheme of PPKTP crystals to eliminate the unwanted frequency correlation."

"We measured a spectral purity of 0.98 without using any narrowband filters, which indicates that almost all photons are in the Schmidt decomposition major mode."

$$2k_p'(\omega_{H0} + \omega_{V0}) = k_H'(\omega_{H0}) + k_V'(\omega_{V0})$$



For many quantum information/communication applications, we want **photons produced by several nonlinear crystals to interfere with each other**; i.e. they must be **indistinguishable** in all degrees of freedom.

It only occurs if the joint biphoton wavefunction at the output of each source is separable, meaning it contains no frequency correlations.

III) Full wavefunction after SPDC

$$\left| \psi_{s,i} \right\rangle_{vac} \xrightarrow{\hat{U}} \boxed{\hat{U}} \rightarrow \left| \psi \right\rangle_{s,i} = \hat{U} \left| \psi_{vac} \right\rangle \text{ where } \hat{U} = \exp\left(-\frac{i}{\hbar} \hat{H}_I\right)$$

\uparrow
 $g, f(\omega_s, \omega_i)$

1) Schmidt decomposition (\sim singular value decomposition in algebra)

We can always write $f(\omega_s, \omega_i) = \sum_m \sqrt{\lambda_m} f_m^{(s)}(\omega_s) \cdot f_m^{(i)}(\omega_i)$

with $\lambda_m \in \mathbb{R}^+$, $\sum_m \lambda_m = 1$, $\lambda_1 > \lambda_2 > \dots$ Temporal modes

and $\int d\omega_s f_m^{(s)}(\omega_s) f_{\ell}^{(s)}(\omega_s) = \delta_{m\ell}$ same for $f_m^{(i)}(\omega_i)$

2) Schmidt number K with

$$\frac{1}{K} = \sum_m \lambda_m^2$$

→ purity of the heralded single photon

Ex: For M equally populated pairs of modes: $\lambda_m = \frac{1}{M}$ for $1 \leq m \leq M$

Then $\frac{1}{K} = \sum_{m=1}^M \left(\frac{1}{M}\right)^2 = \frac{1}{M}$ so $K = M$

↳ in general, K counts the number of excited mode pairs

↳ For a given JSA, K is unique.

3) Evolution operator

$$\hat{U} = \exp\left(-\frac{i}{\hbar} \sum_m \hat{H}_m\right) \text{ with } \hat{H}_m = i \hbar g \sqrt{\lambda_m} \underbrace{\int d\omega f_m^{(s)}(\omega) \hat{a}_s^\dagger(\omega)}_{\hat{A}_m^\dagger} \cdot \underbrace{\int d\omega f_m^{(i)}(\omega) \hat{a}_i^\dagger(\omega)}_{\hat{B}_m^\dagger}$$

Creation operators for the Temporal modes $\leftarrow \hat{A}_m^\dagger \rightarrow \hat{B}_m^\dagger$

Schmidt decomposition

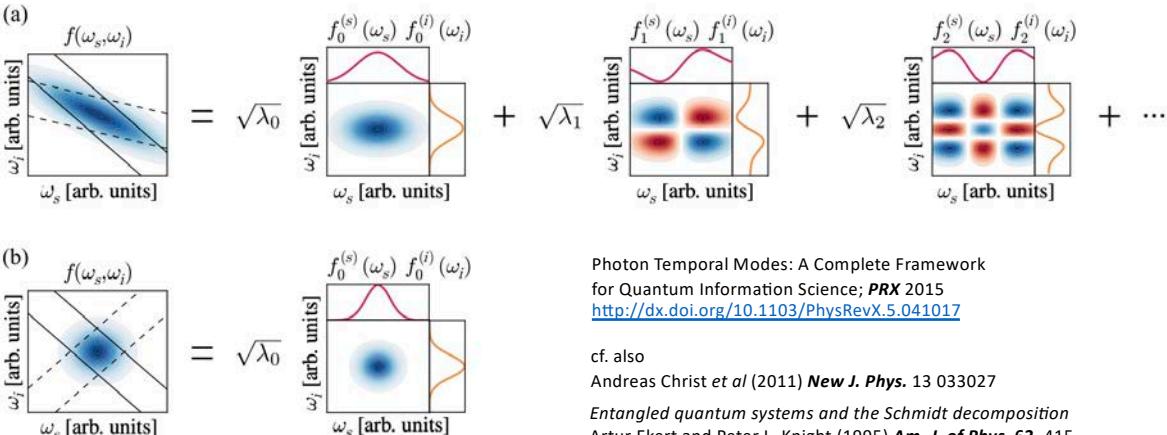
The **Schmidt decomposition** consists in writing the joint spectral amplitude (JSA) as a sum of factorised JSA with decreasing weights:

$$f(\omega_s, \omega_i) = \sum_m \sqrt{\lambda_m} f_m^{(s)}(\omega_s) f_m^{(i)}(\omega_i) \quad \lambda_m > 0, \quad \sum_m \lambda_m = 1$$

The **Schmidt number** K is defined as: $\frac{1}{K} = \sum_m \lambda_m^2 = \text{purity}$

(K measures the number of populated modes)

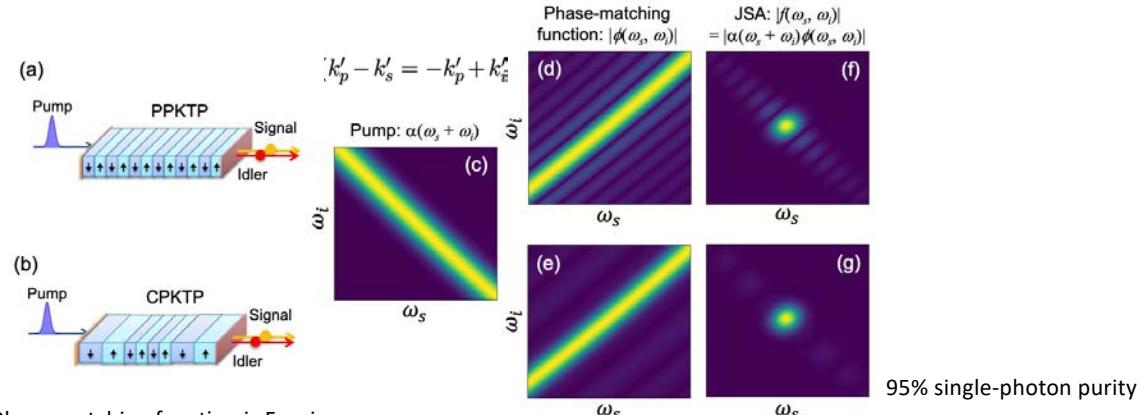
Graphical view:



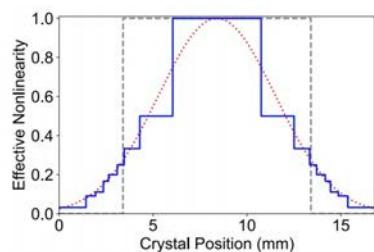
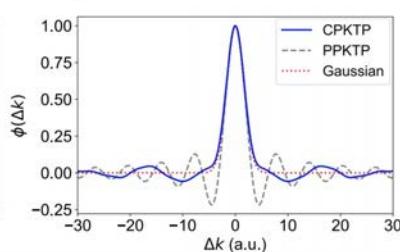
2025

7

Using periodic poling to engineer the JSA



Phase matching function is Fourier transform of the $\chi^{(2)}$ profile: $\phi(\Delta k) = \int_{-\infty}^{\infty} dz \chi^{(2)}(z) e^{i\Delta k z}$



$$\chi^{(2)}(z) = \sum_{m=-\infty}^{\infty} \frac{2}{m\pi} \sin^2(\pi m D) \sin \frac{2\pi m}{\Lambda} z$$

$$\Delta k(\Omega_s, \Omega_i) = 2\pi m/\Lambda$$