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RF-optical link: Why?

[2] P. L. McMahon, The physics of optical computing, Nat Rev Phys 1 (2023).

- Low propagation loss  transmission over long distance
- Low thermal noise  low error rate in communication/computing/sensing
- Modulation/demodulation of signals  processing
- Large bandwidth  faster signals
- Multiplexing  SWaP

[1] D. Marpaung, J. Yao, and J. Capmany, Integrated microwave photonics, Nature Photonics 13, 2 (2019).
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RF-optical link: How?

https://www.newport.com/f/standard-phase-modulators

https://www.thorlabs.com/images/TabImages/EO_Phase_Modulator_RF_Source_Option.pdf

Phase modulation, sideband generation and Bessel functions

Modulation depth

Typical fiber-coupled phase modulator

https://www.newport.com/f/standard-phase-modulators
https://www.thorlabs.com/images/TabImages/EO_Phase_Modulator_RF_Source_Option.pdf
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RF-optical link: How?

[2] D. B. Horoshko, M. M. Eskandary, and S. Y. Kilin, Quantum model for traveling-wave electro-optical phase modulator, J. Opt. Soc. Am. B, JOSAB 35, 2744 (2018).

[3] I. Kim and A. A. Demkov, Linear electro-optic effect in trigonal $\mathrm{LiNb}{\mathrm{O}}_{3}$: A first-principles study, Phys. Rev. Mater. 8, 025202 (2024).

[1] A. Yariv, Quantum Electronics, 2nd Edition (Wiley, New York, NY, 1975).

Typical electro-optic material used in phase 
modulators: lithium niobate 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑂𝑂3

Broken inversion symmetry  three-wave mixing process enabled

Link between the second order susceptibility 
coefficient and the Pockels coefficients:

Modification of the optical indicatrix through Pockels effect 
 electric field induced optical phase retardation
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RF-optical link: How?

[1] R. C. Alferness, Waveguide Electrooptic Modulators, IEEE Transactions on Microwave Theory and Techniques 30, 1121 (1982).

Optical impermeability change:

Optical refractive index change:

Average index change:

Influence of the mode volume
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Optically driven microwave qubit operations

Optical readout

[1] A. Youssefi, I. Shomroni, Y. J. Joshi, N. R. Bernier, A. Lukashchuk, P. 
Uhrich, L. Qiu, and T. J. Kippenberg, A Cryogenic Electro-Optic 
Interconnect for Superconducting Devices, Nat Electron 4, 326 (2021).

[2] F. Lecocq, F. Quinlan, K. Cicak, J. Aumentado, S. A. Diddams, 
and J. D. Teufel, Control and Readout of a Superconducting 
Qubit Using a Photonic Link, Nature 591, 575 (2021).

Optical control Remote state transfer

[3] Sh. Barzanjeh, M. Abdi, G. J. Milburn, P. Tombesi, 
and D. Vitali, Reversible Optical-to-Microwave Quantum 
Interface, Phys. Rev. Lett. 109, 130503 (2012).
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RF-optical link: Quantum networks

[2] D. Awschalom et al., Development of Quantum Interconnects (QuICs) for 
Next-Generation Information Technologies, PRX Quantum 2, 017002 (2021).

[4] X. Xu et al., Optomechanical Microwave-to-Optical Photon Transducer Chips: Empowering the Quantum Internet Revolution, Micromachines 15, 4 (2024).

[1] H. J. Kimble, The quantum internet, Nature 453, 7198 (2008).

[3] S. Krastanov, H. Raniwala, J. Holzgrafe, K. Jacobs, M. Lončar, M. J. Reagor, and D. R. Englund, Optically 
Heralded Entanglement of Superconducting Systems in Quantum Networks, Phys. Rev. Lett. 127, 040503 (2021).
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Coherent interconnect for quantum networking

Quantum 
repeater/memory 

node(s)

• Microwave O(109–1010 Hz), 
fragile against thermal noise

• Fast gates
• Large non-linearity

• Optics O(1014 Hz), good 
flying qubit, robust against 
thermal noise

• Quantum-limited detection
and photon counter

• Mature fiber-optic 
infrastructure

• Direct conversion
(“beam splitter”)

• Teleportation
(“squeezer”)

• Valid for both discrete
and CV encoding

• Added noise < ℏ𝜔𝜔𝑀𝑀𝑀𝑀
• Bidirectionality required for 

entanglement distribution
• Cryogenic compatibility
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Quantum network without transducers?

[1] P. Magnard et al., “Microwave Quantum Link between Superconducting Circuits Housed in 
Spatially Separated Cryogenic Systems,” Phys. Rev. Lett., vol. 125, no. 26, p. 260502 (2020)
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Cryogenic (classical) interconnects for microwave qubits

Courtesy of IBM

Issues with Coaxial cables
• High thermal conductance
• High loss
• Space limitation

• High electron mobility transistors
• Typical added noise ~ 10 quanta/s.Hz
• Bandwidth ~ 4-8 GHz
• Working at 3K
• Typically, 10mW heating
• Each coaxial cable adds 1mW heat load

[1] A. Youssefi, I. Shomroni, Y. J. Joshi, N. R. Bernier, A. Lukashchuk, P. Uhrich, L. Qiu, and T. J. Kippenberg, 
A Cryogenic Electro-Optic Interconnect for Superconducting Devices, Nat Electron 4, 326 (2021).
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Added noise in a transducer

[1] C. M. Caves, Quantum limits on noise in linear amplifiers, Phys. Rev. D 26, 1817 (1982).

Uncertainty relation:

Conventional squeezing example:

Amplifier/transducer input/output:

Requirements to satisfy bosonic 
commutation relations:

Added noise during the 
amplification/conversion process:

Uncertainty limit for amplifiers/transducers:
- phase insensitive
- phase sensitive 

Amplifier/TransducerMicrowave Light
Reminder on squeezing and the uncertainty limit:
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Input-output formalism in quantum optics

[1] C. W. Gardiner and M. J. Collett, Input and output in damped quantum systems: Quantum stochastic differential equations and the master equation, Phys. Rev. A 31, 3761 (1985).

Bosonic system coupled to a bath Bosonic commutation relation for the bath operator Langevin equations of motion:

Formal solution of the dynamics of the bath Definition of the 
input/output bath field:

Definition of the output bath field:

Standard form of the Heisenberg-Langevin equation of motion 
for a bosonic mode coupled to a single bath including losses

Input-output relation for a damped quantum system:
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Example: parametric amplifier

[1] A. A. Clerk, M. H. Devoret, S. M. Girvin, F. Marquardt, and R. J. Schoelkopf, Introduction to quantum noise, measurement, and amplification, Rev. Mod. Phys. 82, 1155 (2010).

TransducerMicrowave Light

Parametric amplifierMicrowave Light

signal/idler signal/idler

Noise!

Amplifier output with added noise:

Bound on the added noise:

Noise operator:
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Example: parametric amplifier

[1] A. A. Clerk, M. H. Devoret, S. M. Girvin, F. Marquardt, and R. J. Schoelkopf, Introduction to quantum noise, measurement, and amplification, Rev. Mod. Phys. 82, 1155 (2010).

Three-wave mixing Hamiltonian:

Strong classical pump limit:

Multi-photon coupling rate:

Interaction in the rotating frames for the signal and idler:

Equations of motion without loss (cf exercise session):

Langevin equations with loss and external coupling: Steady state coupled mode system:

Input-output relation: Cooperativity (square root):

Gain/efficiency:
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Cavity electro-optics for microwave-optical transduction

[1] M. Tsang, Cavity Quantum Electro-Optics, Phys. Rev. A 81, 063837 (2010).

Pockels effect:

Optical indicatrix:

Optical impermeability:

[2] H. A. Haus and W. Huang, Coupled-Mode Theory, Proceedings of the IEEE 79, 1505 (1991).

Phase shift:

Voltage operator:

Electro-optic interaction:

MicrowaveLight Transducer

Cavity perturbation:

“How large is the frequency shift induced on the optical cavity by a single microwave photon?”
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Electro-optic interaction

• Average amplitude

• Fluctuations
•

•

• Neglected (at least factor |�𝑎𝑎|)

Voltage shift

Linearized EO Hamiltonian

Electro-optic interaction Linearization

Frequency shift per volt

Radiation pressure-induced polarization Average voltage shift

Optical resonance shift
Voltage shift
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Optomechanical interaction

• Average amplitude

• Fluctuations
•

•

• Neglected (at least factor |�𝑎𝑎|)

Shift of the displacement origin

Linearized OM Hamiltonian

Displacement shift
Frequency shift per displacement

Average radiation pressure force Average mechanical shift

Optical resonance shift

Optomechanical interaction Linearization

[1] M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Cavity Optomechanics, Rev. Mod. Phys. 86, 1391 (2014).
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Radiation pressure interaction

Laser-cavity detuning

Optomechanical interaction

Effective coupling strength

Linearized optical field amplitude

[1] M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Cavity Optomechanics, Rev. Mod. Phys. 86, 1391 (2014).

QND measurement

Direct conversion (“beam splitter”)

Entanglement (“two-mode squeezing”)
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Direct conversion/”beam-splitter” (anti-Stokes process)

[1] M. Tsang, Cavity Quantum Electro-Optics. II. Input-Output Relations between Traveling Optical and Microwave Fields, Phys. Rev. A 84, 043845 (2011).

Normal mode 
splitting
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Two-mode squeezing (Stokes process)

[1] M. Tsang, Cavity Quantum Electro-Optics. II. Input-Output Relations between Traveling Optical and Microwave Fields, Phys. Rev. A 84, 043845 (2011).

Non-classicality parameter
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Transducer internal dynamics

Equations of motion:

Susceptibilities:

Fourier transform:

MicrowaveLight Transducer

Frequency domain:

For an alternative approach using rotating frames, see the Supplementary material of
[1] T. Blésin, W. Kao, A. Siddharth, R. N. Wang, A. Attanasio, H. Tian, S. A. Bhave, and T. J. Kippenberg, Bidirectional microwave-optical 
transduction based on integration of high-overtone bulk acoustic resonators and photonic circuits, Nat Commun 15, 6096 (2024).
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Signal flow graph – Link to internal dynamics

Fundamental added noise Transmission Conversion High order terms

[1] T. Blésin, H. Tian, S. A. Bhave, and T. J. Kippenberg, Quantum coherent microwave-optical transduction using high-overtone bulk acoustic resonances, Phys. Rev. A 104, 052601 (2021).

MicrowaveLight Transducer

Internal dynamics:

Input-output relations:
(in transmission)

(in reflection)
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Signal flow graph – Feedback loops

2 nodes 4 nodes

Anti-Stokes process Stokes process Cross-talk between Stokes and anti-Stokes processes
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Signal flow graph – Up-conversion forward paths

[1] T. Blésin, H. Tian, S. A. Bhave, and T. J. Kippenberg, Quantum coherent microwave-optical transduction using high-overtone bulk acoustic resonances, Phys. Rev. A 104, 052601 (2021).

Direct conversion (anti-Stokes) Two-mode squeezing (Stokes)

Microwave-to-optical scattering coefficient
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Simple model: Doubly resonant transducer (anti-Stokes process)

C. Caves Physical Review D 26 1817-1839 (1982)

Quantum amplifiers 
uncertainty relation

Converted signal

Added noise

Figures of merit of transducers:
- Conversion efficiency
- Added noise
- Conversion bandwidth
- Heat load/power consumption

Conversion bandwidth:

On-chip conversion efficiency:

Extraction efficiencies: Cooperativity:
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Up-conversion efficiency

Direct conversion (anti-Stokes) Two-mode squeezing (Stokes)

TransducerMicrowave Light
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Summary: Radiation pressure interaction for transduction

Optomechanical interaction

Effective coupling strength

Linearized optical field amplitude

[1] M. Aspelmeyer, T. J. Kippenberg, and
F. Marquardt, Cavity Optomechanics,
Rev. Mod. Phys. 86, 1391 (2014).Laser-cavity detuning

Anti-Stokes process: direct conversion (“beam splitter”) Stokes process: Entanglement (“two-mode squeezing”)

Conversion efficiency:

Added noise:

Conversion gain:

Added noise:

[1] T. Blésin, W. Kao, A. Siddharth, R. N. Wang, A. Attanasio, H. Tian, S. A. Bhave, and T. J. Kippenberg, Bidirectional microwave-optical 
transduction based on integration of high-overtone bulk acoustic resonators and photonic circuits, Nat Commun 15, 6096 (2024).
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Lithium niobate bulk transducer (IST Austria)

[2] W. Hease, A. Rueda, R. Sahu, M. Wulf, G. Arnold, H. G. L. Schwefel, and J. M. Fink, Bidirectional 
Electro-Optic Wavelength Conversion in the Quantum Ground State, PRX Quantum 1, 020315 (2020).

[1] A. Rueda, W. Hease, S. Barzanjeh, and J. M. Fink, Electro-optic entanglement 
source for microwave to telecom quantum state transfer, Npj Quantum Inf 5, 1 (2019).
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Lithium niobate bulk transducer (IST Austria)

[2] W. Hease, A. Rueda, R. Sahu, M. Wulf, G. Arnold, H. G. L. Schwefel, and J. M. Fink, Bidirectional 
Electro-Optic Wavelength Conversion in the Quantum Ground State, PRX Quantum 1, 020315 (2020).

[1] A. Rueda, W. Hease, S. Barzanjeh, and J. M. Fink, Electro-optic entanglement 
source for microwave to telecom quantum state transfer, Npj Quantum Inf 5, 1 (2019).
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Lithium niobate bulk transducer (IST Austria)

[1] R. Sahu, L. Qiu, W. Hease, G. Arnold, Y. Minoguchi, P. Rabl, and J. M. Fink, Entangling microwaves with light, Science 380, 718 (2023).
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Lithium niobate bulk transducer (IST Austria)

[1] G. Arnold, T. Werner, R. Sahu, L. N. Kapoor, L. Qiu, and J. M. Fink, All-optical superconducting qubit readout, Nat. Phys. 21, 393 (2025).
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Lithium niobate integrated transducer (Stanford)

[1] T. P. McKenna et al., Cryogenic microwave-to-optical conversion using a triply resonant lithium-niobate-on-sapphire transducer, Optica, OPTICA 7, 1737 (2020).
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Lithium niobate integrated transducer (Harvard)

[1] J. Holzgrafe, N. Sinclair, D. Zhu, A. Shams-Ansari, M. Colangelo, Y. Hu, M. Zhang, K. K. Berggren, and M. Lončar, 
Cavity electro-optics in thin-film lithium niobate for efficient microwave-to-optical transduction, Optica 7, 1714 (2020).
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Lithium niobate integrated transducer (EPFL)

[1] M. Churaev et al., A heterogeneously integrated lithium niobate-on-silicon nitride photonic platform, Nat Commun 14, 1 (2023).
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f

Direct conversion (“beam splitter”)

Entanglement (“two-mode squeezing”)

Photoelastic effect:

Moving boundaries:

Piezo-optomechanical photon-photon interface (EPFL)

• Microwave transmission line piezoelectrically coupled to 
high-overtone bulk acoustic resonances

• Entangled microwave-optical pair generation: large 
transduction bandwidth

• Microwave photonics: pump-power handling

• Design simplicity
• CMOS-compatible fabrication processes
• No superconducting element required

[1] T. Blésin, W. Kao, A. Siddharth, R. N. Wang, A. Attanasio, H. Tian, S. A. Bhave, and T. J. 
Kippenberg, Bidirectional microwave-optical transduction based on integration of high-
overtone bulk acoustic resonators and photonic circuits, Nat Commun 15, 6096 (2024).
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Microwave-optical transducers at cryogenic temperatures (EPFL)

Microwave I/O

Optical I/O

Chip view

Package
Dilution fridge 

mounting
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