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RF-optical link: Why?
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- Low propagation loss = transmission over long distance
- Low thermal noise = low error rate in communication/computing /sensing
- Modulation/demodulation of signals = processing
- Large bandwidth = faster signals
- Multiplexing 2 SWaP
[1] D. Marpaung, J. Yao, and J. Capmany, Integrated microwave photonics, Nature Photonics 13, 2 (2019).
[2] P. L. McMahon, The physics of optical computing, Nat Rev Phys 1 (2023).
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RF-optical link: How? =PrL

Typical fiber-coupled phase modulator Phase modulation, sideband generation and Bessel functions

En(t) = Eacos(Znﬁ,t + gbﬂsin(ZHfmt)),

Modulation depth

En(t) = Re{E,exp(i2nf,t)exp(ig,sin2nf,t)} Lo

s 2V
¥ Em(t) = Eo Yoo Jn(@o) cos[(2nfy + n2mfen)t]
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https: //www.thorlabs.com/images/Tablmages/EQ Phase Modulator RF Source Option.pdf

https://www.newport.com/f/standard-phase-modulators
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RF-optical link: How? =PrL

Z | Optical axis

Broken inversion symmetry = three-wave mixing process enabled

€;iC;

Link between the second order susceptibility d., = —
i fle 4e, Tijks

coefficient and the Pockels coefficients:

Modification of the optical indicatrix through Pockels effect
—> electric field induced optical phase retardation

Mii(€) = m5(0) + ZrijkEi::-
k

Typical electro-optic material used in phase
modulators: lithium niobate LINbO;
[1]1 A. Yariv, Quantum Electronics, 2nd Edition (Wiley, New York, NY, 1975).
[2] D. B. Horoshko, M. M. Eskandary, and S. Y. Kilin, Quantum model for traveling-wave electro-optical phase modulator, J. Opt. Soc. Am. B, JOSAB 35, 2744 (2018).
[3] I. Kim and A. A. Demkoyv, Linear electro-optic effect in trigonal $\mathrm{LiNb}{\mathrm{O}} _{3}$: A first-principles study, Phys. Rev. Mater. 8, 025202 (2024).
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RF-optical link: How? =PrL

Optical impermeability change:
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[1] R. C. Alferness, Waveguide Electrooptic Modulators, IEEE Transactions on Microwave Theory and Techniques 30, 1121 (1982).

I icrowave-optical frequency conversion - EPFL 15/05/2025 5



I
Optically driven microwave qubit operations =P-L

Optical readout Optical control Remote state transfer

a Standard coaxial approach b Photonic link approach
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[1]1 A. Youssefi, I. Shomroni, Y. J. Joshi, N. R. Bernier, A. Lukashchuk, P. [2] F. Lecocq, F. Quinlan, K. Cicak, J. Aumentado, S. A. Diddams, [3] Sh. Barzanjeh, M. Abdi, G. J. Milburn, P. Tombesi,
Uhrich, L. Qiu, and T. J. Kippenberg, A Cryogenic Electro-Optic and J. D. Teufel, Control and Readout of a Superconducting and D. Vitali, Reversible Optical-to-Microwave Quantum
Interconnect for Superconducting Devices, Nat Electron 4, 326 (2021).  Qubit Using a Photonic Link, Nature 591, 575 (2021). Interface, Phys. Rev. Lett. 109, 130503 (201 2).
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RF-optical link: Quantum networks =Pr-L
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[1] H. J. Kimble, The quantum internet, Nature 453, 7198 (2008).

[2] D. Awschalom et al., Development of Quantum Interconnects (QuiCs) for
Next-Generation Information Technologies, PRX Quantum 2, 017002 (2021).

[3] S. Krastanov, H. Raniwala, J. Holzgrafe, K. Jacobs, M. Lonéar, M. J. Reagor, and D. R. Englund, Optically
Heralded Entanglement of Superconducting Systems in Quantum Networks, Phys. Rev. Lett. 127, 040503 (2021).

[4] X. Xu et al., Optomechanical Microwave-to-Optical Photon Transducer Chips: Empowering the Quantum Internet Revolution, Micromachines 15, 4 (2024).
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I
Coherent interconnect for quantum networking EPFL

*  Microwave O(10°-10'° Hz),
fragile against thermal noise

* Fast gates
* Large non-linearity

* Direct conversion
(“beam splitter”)

* Teleportation
A (“squeezer”) 1
*  Valid for both discrete *  Optics O(10'* Hz), good
and CV encoding flying qubit, robust against
thermal noise
*  Quantum-limited detection
and photon counter i I.;I'ﬂ?qﬁ
*  Mature fiber-optic * Added noise < hwyy
infrastructure * Bidirectionality required for
| , entanglement distribution
N\ A . Crxogenl compqhblll’ry
Quantum
—— repeater/memory -
R node(s) s
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Quantum network without transducers? EPFL
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[1] P. Magnard et al., “Microwave Quantum Link between Superconducting Circuits Housed in
Spatially Separated Cryogenic Systems,” Phys. Rev. Lett., vol. 125, no. 26, p. 260502 (2020)
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Cryogenic (classical) interconnects for microwave qubits

Issues with Coaxial cables

»  High thermal conductance
Coaxial cable
P_=1mW

heat”

Optical fiber

+  High loss P,..= 10uW

*  Space limitation

[1] A. Youssefi, I. Shomroni, Y. J. Joshi, N. R. Bernier, A. Lukashchuk, P. Uhrich, L. Qiu, and T. J. Kippenberg,
A Cryogenic Electro-Optic Interconnect for Superconducting Devices, Nat Electron 4, 326 (2021).

I icrowave-optical frequency conversion - EPFL

Ny, [quanta]

=Pr-L

High electron mobility transistors
Typical added noise ~ 10 quanta/s.Hz
Bandwidth ~ 4-8 GHz

Working at 3K

Typically, 10mW heating

Each coaxial cable adds 1mW heat load
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Added noise in a transducer

Reminder on squeezing and the uncertainty limit:

Ve
g
Uncertainty relation: R=R,+iR, ) | B
¥
[AR |*> 3 [{[R,RD) | ‘
Conventional squeezing example:
a=X,+iX; [X1.X3]=i/2
Eit) Xz
AX | AX, > ¢
|Aa | 2=(AX,P+(AX,)?> + Al * H d

[1] C. M. Caves, Quantum limits on noise in linear amplifiers, Phys. Rev. D 26, 1817 (1982).

Microwave-optical frequency conversion - EPFL

=Pr-L

Amplifier /Transducer

bﬂ=Y|+iY2

Amplifier /transducer input /output:

bo=Ma; +La; +.5

Requirements to satisfy bosonic l=|M|2=|L |2 4+[5F,5 1
commutation relations: [|AF | “pz >4 11— |M |2+ |L ||

Added noise during the Abg | =G | Aay | - | A7 | nnz

amplification /conversion process: . 1 P
P / P A= |AF | /G A>7 1367

| Abp |2=G(|Agy |24 4)> G+~ | G=1]

Uncertainty limit for amplifiers /transducers:

- phase insensitive g4 >~ |1-G ! |

) - : ~
phase sensitive AAy > - 11-(G,G,) 12

A

15/05/2025 11



Input-output formalism in quantum optics EPFL

Bosonic system coupled to a bath Bosonic commutation relation for the bath operator Langevin equations of motion:
H=Hy +Hg+H,, , [bie),bY(@)]=8w—w') b(w)=—iwb(w)+klo) ,
Hy=# [~ doob'(0hb (),

H, =ifi f_: do k)b (@) —c'blw)],

a=— %[ﬂ,ﬂm]-l- f dmx{m}{bT(m)[ﬂ,c]

—[a,c"1b(w)]
Formal solution of the dynamics of the bath Definition of the First Markov approximation:
—iwlt — , input/output bath field:
b(w)=e bolw) +x(w) f: e = (t)dt . input/output bath fie K@)=V7y /2T .
; ’ b; [t}z——l—— fdmehm“q”}bo(m} - | Vy
d=mé[a,H5ﬂ]+ [ doxt){e™" bl wia,c) ! Vam J dob@)=bu(0+ 5 cl)
- o [Bin(0),b1,(1")]=5(t —1") | Ay
_{ﬂiff]"? “bolw)] Definition of the output bath field: a=— E[a!Hs}Ps]_ [a,c'] 5 € +Vybiu(1)
t X , 1 : )
+ | do[k(w))? [ dt'{e’®* ="t )a,c] bout)=—7— [ dwe " p (w)
f J..I'ﬂ { | | ou V;E'rr f - ‘ztff+1“/_}’b:-=(t] {H,C}
—[a,cT]e‘h""”“”cft'll} . :

Standard form of the Heisenberg-Langevin equation of motion Input-output relation for a damped quantum system:
for a bosonic mode coupled to a single bath including losses

buut“}"bin[”:’vﬁ_’f (1)

4= —iwy -Jé—a — Vb, (1)

[1] C. W. Gardiner and M. J. Collett, Input and output in damped quantum systems: Quantum stochastic differential equations and the master equation, Phys. Rev. A 31, 3761 (1985).
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12



Example: parametric amplifier

Transducer

Amplifier output with added noise:

Bound on the added noise:

~ ~
~ ~ ~
S Parametric amplifier m
S ~

4 N\
e N

signal /idler v . signal /idler Noise operator:

=Pr-L

A

b= JEE“%—E;
(ABY’IG = (Aa)* + 5.

(AbY? = G(Aa)? + {4 F, Fy = G(Aa)? + L[((F,F)|

= G(Aa)* + |G - 1]12. (5.9)
F=\JG-1d' [F.7]=1-G

l.Elll'l

f—

¥ AT - At a AT a - AT AT A
Hy = fiwplpdp + widbd) + wgisig) + ifipldyddp

— dgdgd)). (5.13)

N
o, out -

input line

amplifier

output line

Noisel

[1] A. A. Clerk, M. H. Devoret, S. M. Girvin, F. Marquardt, and R. J. Schoelkopf, Introduction to quantum noise, measurement, and amplification, Rev. Mod. Phys. 82, 1155 (2010).

Microwave-optical frequency conversion - EPFL
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Example: parametric amplifier

=Pr-L

Three-wave mixing Hamiltonian: Multi-photon coupling rate: A= 5ifip.
3 at at o atay  ex_gatata oo ~f - sta N L sz atat i t
Hﬂ‘j's = ﬁ{{ﬂpa;;ap + m;a}a;+ m_ga}ag) +ih ’l?{a};-ﬂiﬂp Hﬁys = ﬁ(‘-‘*[alﬂl + fﬂsﬂsﬂs) + Eﬂh(asa]e i{wp+ay)
— ). (5.13) — dgdgetirosity

Interaction in the rotating frames for the signal and idler:

Strong classical pump limit: ﬁp = %ffpe_im’d: lﬁpt’-_f(m'm‘i]f, A X At At o a
Vgys = th\(dgd; — dgsdy).

e e
Equations of motion without loss (cf exercise session): Input-output relation: Ei'nut _ 5q o+ VKgds. Cooperativity (square root):

SN - NN > > o

dg=+M\ay, a;=+A\ag, O =2\ KiKs

Langevin equations with loss and external coupling: Steady state coupled mode system:
3 . - dg= (2N Kg)dl — (2INKg)byg
dg=—(kg/2)dg+ hu:r - \{;Sbs,im s=( s)a; = ( \/_"’} §,in> Gain/efficiency:

of _ A 58
ﬁ'[i’ — (KI!Z)&T + h&.q_ \/’;]b-'tin- ap = {2}"!"{[)”5 {ZH\I/;[)EJL[H'

. Q*+1 . 20 .
b..'}',l.)u[ = Qz _ lh.ﬁ',ln + Qz _ 1 {,iﬂ

~Gy=(@*+1)I(Q*- 1)
IF"A.Ei,\\:rut = J(T{]E.S,in - UGU . 1‘i’;if,irr

[1] A. A. Clerk, M. H. Devoret, S. M. Girvin, F. Marquardt, and R. J. Schoelkopf, Introduction to quantum noise, measurement, and amplification, Rev. Mod. Phys. 82, 1155 (2010).
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Cavity electro-optics for microwave-optical transduction

Pockels effect: Ani;
1
Optical impermeability: 1 = —
n

ng—l

Optical indicatrix:

2€0

Cavity perturbation:
P %

EO _
90~ = Vzpr 5y =

= > . TiikEk

m Transducer
/
P ~

’
’
’
¢ II (
|

/
&out ’ a — J_—
'_—vﬂ— x? —H i
Ain o
L

_w [[[ (D| 2% |D)dv
JTT (Ele[EYdV

_ [ hwy w, O fffZijk:DiorwkEijdv
2C 260 oV fff Zij EfeijE;?dV

|—> How large is the frequency shift induced on the optical cavity by a single microwave photon?’

Heo = ~hgfPata (b4 )

[1] M. Tsang, Cavity Quantum Electro-Optics, Phys. Rev. A 81, 063837 (2010)

IVI|crowave

O(bGHz)

[2] H. A. Haus and W. Huang, Coupled-Mode Theory, Proceedings of the IEEE 79, 1505 (1991)
Microwave-optical frequency conversion - EPFL

=Pr-L

Electro-optic interaction:
A 1 A ~ ~
Hgo = —h a'a
‘Tround—trip ]
Y

Phase shift:

¢ _ woptn er

Voltage operator:

Y

O(200THz)

15/05/2025
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Electro-optic interaction =P-L

Electro-optic interaction Linearization

Heo = —hgoa'a(b + b") a~a-+oda
hgoata(bh + bT) ~ hgo [al2—+ daisa + asal + a*sa] (b + b) + Average amplitude G = (@)
~ ~ *  Fluctuations <5d> = O
o th |a|2(b + bT) Voltage shift
. th&T&(lAj + BT) — th [dé&T + d*&&] (l; + BT) Linearized EQO Hamiltonian
- hgoéa,T(S&(b |- bT) Neglected (at least factor |a|)
Voltage shift Frequency shift per volt Optical resonance shift
. Owcav . _90 new __ , ,old [/
G = —Dean — g0 Wi = o0l 4 GV
Radiation pressure-induced polarization Average voltage shift
Voo — —12 7 _ __Qrp
QRP = hG|CL| 5V — (ngn)—l
_ Microwave-optical frequency conversion - EPFL 15/05/2025 16




Optomechanical interaction

Optomechanical interaction Linearization

I:IQM = —hg()&T&(i) + IA)T) a =~ a4+ da
hgoata(b 4 bt) = hgo Hal2—+daise 4+ asa’ + a*dal (b + bf) -
g hgo |C_l|2 ([; —+ [;T) Shift of the displacement origin

o th&T&(lAj + BT) — th [dd&T + 6*5&] (l; + BT) Linearized OM Hamiltonian

. hgod&T(S&(b + bT) Neglected (at least factor |a|)

Displacement shift : : : :

Displacement shift Frequency shift per displacement Optical resonance shift
- OWecav _ 90 new __ old =

G = —S5m = WY = w2 + Gox
Average radiation pressure force Average mechanical shift

n _ — |2 ~ _ _Frp
FRP = hG|a| 0xr = Mottw?,

[1]1 M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Cavity Optomechanics, Rev. Mod. Phys. 86, 1391 (2014).

Microwave-optical frequency conversion - EPFL

Average amplitude

Fluctuations

15/05/2025
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Radiation pressure interaction

_ . FEPFL

Optomechanical interaction I:IOM = —hg()&Td (i) + [A)T) = —ﬁg (5& -+ 5&T) ([A) —+ I;T)
4
Linearized optical field amplitude a ~ VN + da \ /
Effective coupling strength g = v/Nc90
aser-cavity detunin — _ WoPt
Direct conversion (‘““beam splitter”) L fy detuning A WL — %o
A A
~(BS A+T A7 =>
QND measurement o o . . .
OM TzpF © OPt A=-Q., A =0 A =+4+Q,
Entanglement (“two-mode squeezing”)
A ~ ~ beam-splitter squeezer
A=w, — (()q;\/IMS) — —hg ((5&_b—l— (E@T_b_T) (cooling) QND (entgnglement)
saTb+bT6a a2y  a'b' 4 béa

[1]1 M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Cavity Optomechanics, Rev. Mod. Phys. 86, 1391 (2014).

Microwave-optical frequency conversion - EPFL
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Direct conversion /”beam-splitter” (anti-Stokes process) =Pr-L

Normal mode
splitting

w

0 1
In(I“b/I"a)

[1] M. Tsang, Cavity Quantum Electro-Optics. Il. Input-Output Relations between Traveling Optical and Microwave Fields, Phys. Rev. A 84, 043845 (2011).

Microwave-optical frequency conversion - EPFL

15/05/2025

19



Two-mode squeezing (Stokes process)

Ims,

S —

4 X L 5
w 2w, 2 2

0 0.2 0.4 0.6 0.8 1

C

2.57

1.5¢

0.57

=Pr-L

Non-classicality parameter

A =log (4C/ (1+C)?)

0.2 04 06 08 1

C

[1] M. Tsang, Cavity Quantum Electro-Optics. Il. Input-Output Relations between Traveling Optical and Microwave Fields, Phys. Rev. A 84, 043845 (2011).

I icrowave-optical frequency conversion - EPFL
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U
Transducer internal dynamics EPFL

m

HEO ~ —hg (6a + dal) (b + bT)

Y R —

Equations of motion:

La(t) = (~iwopy, — ") a(t) +ig (B(t) + B(1)) + /Foprentin(t) |

: . . L - > ./T(i&(t)) (W] = —iwa|w]
Lb(t) = (—iwm — 22) b(t) +ig*a(t) + iga' (t) + \/Fm,exbin(t) dt
d F @Ol = Gle) =]
Frequency domain: &[w] = Xopt [w] (7;9_[;_[(’8]__'_ Eg_b:f_[ _]- + mam[ ]) § [:]us:eptibilitiei‘s:
bl = xemle] (iga] + igaT (0] +  Frmembinbinli]) o D
ml¥] = o—wm) 2

For an alternative approach using rotating frames, see the Supplementary material of
[1] T. Blésin, W. Kao, A. Siddharth, R. N. Wang, A. Attanasio, H. Tian, S. A. Bhave, and T. J. Kippenberg, Bidirectional microwave-optical
transduction based on integration of high-overtone bulk acoustic resonators and photonic circuits, Nat Commun 15, 6096 (2024).

_ Microwave-optical frequency conversion - EPFL 15/05/2025 21



.
Signal flow graph — Link to internal dynamics =P-L

m Transducer
’
’ \

Internal dynamics:

alw] = Xopelw] (igblu] + igh![w] + yRexiunlw])
blu] = xmlw] (ig"alw] + iga [w] + Foxbinbinle]

1
Input-output relations:
&out — CALin — IieXCAL (in transmission)
bout - _bin + V’Yexb (in reflection) 1

Xm Xo

o1

N el R e I i (|Saoutain 24155, a8t |2) al ain + (\Saout,;m 24 |Sdout,;3n|2> bl bin + . ..

\ ] |\ ] \ )
| | | LYJ

Fundamental added noise Transmission Conversion High order terms

[1] T. Blésin, H. Tian, S. A. Bhave, and T. J. Kippenberg, Quantum coherent microwave-optical transduction using high-overtone bulk acoustic resonances, Phys. Rev. A 104, 052601 (2021).
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Signal flow graph — Feedback loops =P-L
afw] = Xopelt] (igblw] + igh'[w] + \/Foprextinle]

bw] = Yan ] (z’g*&[w] +igal[w] + \/Frmeebinbin [w])

2 191% X |21 X0 |2

19)% x¢m 2] X0

2 nodes | 4 nodes
I
Anti-Stokes process Stokes process I Cross-talk between Stokes and anti-Stokes processes
I
I
Xm Xo Xm X: I Xm Xo Xm Xo
I
I
, . I
g —1g I
[
ig* 1g |
I
5 I
— 2. % [
91 Xoxm |91 X5 Xm |
——————— —-ZZ-Z==Z !
I
I
I
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I
I
I
I
I
[
I
I
I
I
I

_______ 912X o X0
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N
Signal flow graph — Up-conversion forward paths =P-L

Direct conversion (anti-Stokes) Two-mode squeezing (Stokes)

Xm Xo
Xm Xo

Yex g

_i\//ieX\/’YengOXm

Xm Xo

i\/’ieX\//Yexg|g‘2|X0‘2|Xm|2

Microwave-to-optical scattering coefficient

—iy/Fax/Tex9XoXm (1= 91> X5x5 )

S,

Goutbin ~— 14[92XoXm 1912 XEXE, — 192 XEXm —191° Xo X5 =219 [Xm |?X0]|?

[1] T. Blésin, H. Tian, S. A. Bhave, and T. J. Kippenberg, Quantum coherent microwave-optical transduction using high-overtone bulk acoustic resonances, Phys. Rev. A 104, 052601 (2021).
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D
Simple model: Doubly resonant transducer (anti-Stokes process) EPFL

Figures of merit of transducers: R A A

- Conversion efficiency Converted signal dlout [w] ~ \/7_7 (bin [W] + fadded [w])

- Added noise ; o~ . ) ; X ;

_ Conversion bandwidth Added noise VT fadded|w] = Gagpan, [W]0Gin [w] + Gaoutfopt [w] foptw] + Ga . Farw [w] farw [w]

- Heat load/power consumption

Xm Xo

|2 ~ "feX'YeX|g|2|XO|2|Xm|2
11+|g]2XoXm|?

.S

aoutbin

Quantum amplifiers
uncertainty relation

Nadded = % |1 - 77_1|

C. Caves Physical Review D 26 1817-1839 (1982)
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On-chip conversion efficiency:

o~ 4C Rex X Yex Xm 2 2
Tlon—chip ~ TloptTlm (1+C)2 e}i © 1 |g| XOXm|
Conversion bandwidth: Extraction efficiencies: Cooperativity:
_ 49> Tlopt — Frex Nm = ex _ 498 _ 4¢% _ 4987%
F—’Y‘F_ﬁ Kk Y CO_H—’Y C_K'—FY_KJ—'Y
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Up-conversion efficiency

A
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Direct conversion (anti-Stokes)
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Two-mode squeezing (Stokes)
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Summary: Radiation pressure interaction for transduction

Optomechanical interaction I:]OM — —hg()CALTCAL (i) + [A)T)
Linearized optical field amplitude @ = \/ﬁ_c + 0a

9 = VNecgo

A = Wi,

Effective coupling strength

Laser-cavity detuning — Wopt

Anti-Stokes process: direct conversion (““beam splitter’)

A=— 168 = —hg (8ab + dabt )

 ———

«Mechanics Optics Conversion efficiency:
— w ] A Tt Fexm 404
................. K K 1+ C)2
ol V%M% o m (150)
» Added noise:

W W,

0(3 GHz) 0(190 THz) Nadd = 0
1/2 1/2

e . . ol
N i
& 9+ <&,

ou Ig* _“/\/\/\/V\/V_’é t
= +
1/2 1/2
Ke>{m 'Ke>{+

=Pr-L

A A

o

£ #\ > * Ir‘

> ]

o o

w w
beam-splitter QND squeezer [1] M. Aspelmeyer, T. J. Kippenberg, and
(cooling) (entanglement) F. Marquardt, Cavity Optomechanics,

satb +btoa T, sathl 4 bog  Rev-Mod. Phys. 86, 1391 (2014).

Stokes process: Entanglement (‘“two-mode squeezing”)

A =uw,,

 ——

<«—Mechanics

/\

[W%

Optics

K.— || — K+—>

TOIMS) _ _pg (5&6 + 5&%1‘)

Conversion gain:

W] ~ Kex,— Kex,m  4C_—

_ K (1=C_)2

Wm
0(3 GHz) 190 THz)
Keim
cA:in
— - -1 .
T [ Cout
Keim

[1] T. Blésin, W. Kao, A. Siddharth, R. N. Wang, A. Attanasio, H. Tian, S. A. Bhave, and T. J. Kippenberg, Bidirectional microwave-optical
transduction based on integration of high-overtone bulk acoustic resonators and photonic circuits, Nat Commun 15, 6096 (2024).
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Lithium niobate bulk transducer (IST Austria)

(a) "1 LINbO, — Microwave signal
I I Bulk metal —— Microwave E-field
"’WW\—| | w [ Thin-film supercond. > Microwave currents
Q | ° 1 Gold # Optical WGM
L C eJ\PP®$vf

édiw W,
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.///\EEE;::EEJ:Efi/h\M_
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X ¥
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[1] A. Rueda, W. Hease, S. Barzanjeh, and J. M. Fink, Electro-optic entanglement
source for microwave to telecom quantum state transfer, Npj Quantum Inf 5, 1 (2019).

A

[2] W. Hease, A. Ruedaq, R. Sahu, M. Wulf, G. Arnold, H. G. L. Schwefel, and J. M. Fink, Bidirectional
Electro-Optic Wavelength Conversion in the Quantum Ground State, PRX Quantum 1, 020315 (2020).
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Lithium niobate bulk transducer (IST Austria)
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[1] A. Rueda, W. Hease, S. Barzanjeh, and J. M. Fink, Electro-optic entanglement
source for microwave to telecom quantum state transfer, Npj Quantum Inf 5, 1 (2019).

[2] W. Hease, A. Ruedaq, R. Sahu, M. Wulf, G. Arnold, H. G. L. Schwefel, and J. M. Fink, Bidirectional
Electro-Optic Wavelength Conversion in the Quantum Ground State, PRX Quantum 1, 020315 (2020).
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Lithium niobate bulk transducer (IST Austria)
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[1] R. Sahy, L. Qiu, W. Hease, G. Arnold, Y. Minoguchi, P. Rabl, and J. M. Fink, Entangling microwaves with light, Science 380, 718 (2023).
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Lithium niobate bulk transducer (IST Austria) EPFL

a — Microwave-microwave
— Microwave-optical
— Optical>optical

E Microwave-optical transducer —— Microwave cable b Microwave amplifier M- Microwave attenuator

m cQED system —— Optical fibre @ Microwawve circulator Microwave filters t (IJ.S)

[1] G. Arnold, T. Werner, R. Sahuy, L. N. Kapoor, L. Qiu, and J. M. Fink, All-optical superconducting qubit readout, Nat. Phys. 21, 393 (2025).
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Lithium niobate integrated transducer (Stanford) =PrL
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[1] T. P. McKenna et al., Cryogenic microwave-to-optical conversion using a triply resonant lithium-niobate-on-sapphire transducer, Optica, OPTICA 7, 1737 (2020).
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Lithium niobate integrated transducer (Harvard) EPFL
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[1] J. Holzgrafe, N. Sinclair, D. Zhu, A. Shams-Ansari, M. Colangelo, Y. Hu, M. Zhang, K. K. Berggren, and M. Lonéar,
Cavity electro-optics in thin-film lithium niobate for efficient microwave-to-optical transduction, Optica 7, 1714 (2020).
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B
Lithium niobate integrated transducer (EPFL)

Wafer bonding

¥ ¥ ¥
Electrode Electrode

LiNbOs

[1] M. Churaev et al., A heterogeneously integrated lithium niobate-on-silicon nitride photonic platform, Nat Commun 14, 1 (2023).
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* Microwave transmission line plezoelectrlcally coupled 'ro s Design simplici’ry
high-overtone bulk acoustic resonances * CMOS-compatible fabrication processes

* Entangled microwave-optical pair generation: large * No superconducting element required

transduction bandwidth
* Microwave photonics: pump-power handling

Op

Direct conversion (“beam splitter”) m

ff(()BN?) = —hg (5&”3 + 5€LI;T) | Km—s \ K—-:— Kes \

Entanglement (“two-mode squeezing’) W,
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Wm w4
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Piezoelectric Electrodes
A I - p \/ .
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Moving boundaries:

Substrate

[1] T. Blésin,.W.-Kao, A. Siddharth, R.-N.-Wang, A. Attanasio, H. Tian, S..A. Bhave, and'T.-J.
Kippenberg, Bidirectional-microwave-optical transduction based-on integration of high-
overtone bulk acoustic resonators and photonic-circuits, Nat-Commun-15,:6096(2024).
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Microwave-optical transducers at cryogenic temperatures (EPFL)
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