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Reminder: Linear Hamiltonian and mode expansion

After applying the canonical quantization procedure, an arbitrary real field can be
expanded in a normal mode basis as

D(r,t) = 3 (3a(t)Da(r) + aL(t)D;(r)) (1)

[e3

(rt) = > (3(t)Ba(r) + 3L(1)B;(r)) ()

«
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with the equal-time commutation relations

[8a(2), 85(8)] = [85(£), 85()] =0 and  [4a(t), 85(£)] = bap
The linear medium Hamiltonian can then be expressed compactly as

HY ()= %(él(t)éa(f) + 8a(t)a(1) — Y hwadl(t)aa(t)

(o3

where we used the commutation rule and removed the zero-point energy from the
last expression.



Example: waveguide modes

A straight waveguide along x is characterized by the permittivity e(r) = e(y, z):

H El(r) =

El(yiz)

Dy (r) = —,k\(/!—/[': z)e'kz

By(r) = b—'k(yli Z)e"".

For a finite length L and periodic boundary conditions along x, the modes can be
decomposed as

’)(;;‘3:70 eikx eikx
Dn() = dr(y,z)—= and  Bri() = bru(y,2) —=
mode v\ o \/Z \/Z
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Example: waveguide modes

which is a product of a “one-dimensional plane wave” with wave-vector k along x
and a two-dimensional mode profile d7«(y, z), brx(y, z) in the transverse plane,
with mode index labeled by T. Note that the mode profile explicitly depends on k
(geometric dispersion).

Any general solution of Maxwell's equation can then be expanded as

» fiw A ikx
D(r.t)=>" ,/TLT"aTk(t)di(y,z)ek +H.c. (3)
T,k

and similarly for B. Next, we take the continuum limit when L — oo by

substituting
2 2
TF Ek s /dk and A 1/%57(/()

where the last substitution is to conserve the proper commutation rules

[a7(k, t),al, (K", t)] = 67r 6(k — K') 6(t — t)



Example: waveguide modes

The final form of the field operators expanded on the waveguide modes is

D(r,t) = Z/dk\/ h(:;k ar(k,t)dr(y, z,k)e™ 4+ H.c.
B(r,t) = /dk,/ r(k, t) br(y, z, k)e™ + H.c.

and the linear Hamiltonian is

_ Z/h‘”” st (k, t)ar(k, t) dk
T

(4)

(5)



Nonlinear interaction Hamiltonian

Neglecting dispersion in the nonlinear response, the displacement field writes

Di(r. t) = eoe, (r)Ei(r, t) + PO(r, t) = eoc, (r)Ei(r, t) + eox) (r) Ei(r, t)Ei(r, t)

Since we want to express the Hamiltonian in terms of D, this expression is inverted:

2
Di(r.t)  T3(r)

E,'(I’7 t) = Dj(r, t)Dk(r, t)

606,(") €0
with @
r@(p) = Xk (r)
ijk eoe3(r)

from which the nonlinear interaction Hamiltonian can be obtained

A~ 1 ~ ~ A
fi(t) = _3€f r . Bi(r, ) By(r, t)Delr, 1) - dor (6)
0 e
where : ... : indicates normal ordering of the creation and annihilation operators.
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