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Lagrangian mechanics

The Lagrangian! L(t, q(t), g(t)) is a function of the dynamical vectors ¢ = {q;}
(where j = 1...N runs over the system's N degrees of freedom) and v = g in the
2N-dimensional configuration space, constructed so as to recover the equations of
motion when using the Euler-Lagrange equation:

d /0 0 ma
it (5) a5t 0 .

The canonical momentum associated with each generalized coordinate g;(t) is

Example 1: For a massive but charge-less point particle, moving in the potential
U(r), the Lagragian is
1

L= Emr'2 — U(r)

(kinetic energy — potential energy) and the canonical momentum is

p=mr=mv

LIn field theories, the Lagrangian is the volume integral of a Lagrangian density



Lagrangian mechanics

Example 2: For a charged particle in an electromagnetic field

A
E:—V(;ﬁ—%—t . B=VxA

where ¢ and A are the scalar and vector potentials, the Lagragian is
1, .
L:Emr +qr-A—q¢
and the canonical momentum is
oL
= — =mr A
p= g7 =i+ Az me
The Euler-Lagrange equation yields the correct Lorentz-Coulomb force

mi¥ = q(E + v x B)



Hamiltonian mechanics

From the Lagrangian, we define a new function called the Hamiltonian

(t.q,p) qupj L(t,q,p) (2)

One can show that the Euler-Lagrange equation (1) is equivalent to two sets of

equations
OH OH
qJ 8PJ pJ aqj ( )

Equation of Motion: Any function f(t, q,p) (e.g. an observable like the photon
number, the field intensity, etc.) evolves in time according to

df f
= *)

where we defined the Poisson brackets

{f’H}:Z(afaH_afaH> (5)

6qj 5‘pj apj 8qj



Remark: connection with Lie algebra

A Lie algebra over C is a vectorial space V over C equipped with a Lie bracket,
that is, a bilinear application {f,g} : V x V — V that verifies

{f,f} = 0 Alternating property  (6)
{f.{g,h}} +{h {f.g}} +{g,{h,f}} = 0 Jacobi identity @)

Bilinearity and the alternating property imply anti-commutativity
{fvg} = _{gv f}

Exercise: verify that the Poisson brackets defined in eq. 5 satisfy the properties of
a Lie algebra over C.



Canonical quantization

Once a dynamical theory is expressed in the Hamiltonian formalism, canonical

quantization simply consists in the substitution

{, }Hl—lh[] where [A,B] = AB— BA

In the case of electrodynamics in a dielectric medium, the generalized coordinate is
the four-vector potential (Ag = ¢, A) from which the E and B field are derived as

0A
E 1
To recover Maxwell’s equations, the appropriate Lagrangian density in a
time-independent linear medium is?

E=_-VA — B=VxA

1

L=Z(E*-B?
(B BY)
The canonical momentum is the four-vector (Mg, IT) with
L L
0 oL _ 0 and ;= a— = —D; (displacement field)

T 0A 0A;

2
D. Mlodinow; Phys. Rev. A (1984)

see, e.g., Quantization of electrodynamics in nonlinear dielectric media, Mark Hillery, Leonard



Linear Hamiltonian and mode expansion

In terms of D and B = V X A, the Hamiltonian in a linear medium is3

Ly L D(r,t)- D(r,t) B(r,t)- B(r,t) 3,
HY(t) = 2/V< () + o )d (9)

where V is the entire volume over which the field may exist. We want to expand
the fields D and B on a basis of stationary (= monochromatic) solutions of
Maxwell's equations: the normal modes (for a loss-less system), satisfying

Coulomb %G.u.%b

V x By(r)] w2
V x |:€(r):| = ?Ba(r) and V. Ba(r) =0 (10)
For each mode « the displacement field is uniquely defined as
i .
D, (r) = V x By(r) (Maxwells eq. 11
(1) = -V X Bu(r) ) (1)

The normal modes are orthogonal, and we also take them to be normalized as:
D* -D . B* -B . hiwg,
/ a(r) 5(") ddr — / o/(r) 5(’) dsr — L 60{,8 (12)
v €oe(r) v o 2

3The following notes follow: N. Quesada, L. G. Helt, M. Menotti, M. Liscidini, and J. E. Sipe,
Adv. Opt. Photon. 14, 291-403 (2022)




Linear Hamiltonian and mode expansion

After applying the canonical quantization procedure, an arbitrary real field can be
expanded in the normal mode basis as/ classically - compler numbers

D(r,t) = > (3a(t)Da(r) + 81,(t)D(r)) (13)

[e3

(rt) = > (3(t)Ba(r) + 3L(1)B;(r)) (14)

«

(ve ]

with the equal-time commutation relations
[8a(2), 85(8)] = [85(), 85()] =0 and  [4a(t), 85(8)] = bap
The linear medium Hamiltonian can then be expressed compactly as

HY ()= %(él(t)éa(f) + 8a(t)a(1) — Y hwdal(t)aa(t)

(o3

where we used the commutation rule and removed the zero-point energy from the
last expression.
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