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Lagrangian mechanics

The Lagrangian1 L(t,q(t), q̇(t)) is a function of the dynamical vectors q = {qj}
(where j = 1...N runs over the system’s N degrees of freedom) and v = q̇ in the
2N-dimensional configuration space, constructed so as to recover the equations of
motion when using the Euler-Lagrange equation:
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The canonical momentum associated with each generalized coordinate qj(t) is

pj(t) =
@

@q̇j
L

Example 1: For a massive but charge-less point particle, moving in the potential
U(r), the Lagragian is

L =
1

2
mṙ 2 � U(r)

(kinetic energy � potential energy) and the canonical momentum is

p = mṙ = mv
1
In field theories, the Lagrangian is the volume integral of a Lagrangian density



Lagrangian mechanics

Example 2: For a charged particle in an electromagnetic field

E = �r�� @A
@t

; B = r⇥ A

where � and A are the scalar and vector potentials, the Lagragian is

L =
1

2
mṙ 2 + qṙ · A � q�

and the canonical momentum is

p =
@L

@ ṙ
= mṙ + qA 6= mv

The Euler-Lagrange equation yields the correct Lorentz-Coulomb force

mr̈ = q(E + v ⇥ B)



Hamiltonian mechanics

From the Lagrangian, we define a new function called the Hamiltonian

H(t,q,p) =
NX

j=1

q̇jpj � L(t,q,p) (2)

One can show that the Euler-Lagrange equation (1) is equivalent to two sets of
equations

q̇j =
@H

@pj
; ṗj = �@H

@qj
(3)

Equation of Motion: Any function f (t,q,p) (e.g. an observable like the photon
number, the field intensity, etc.) evolves in time according to

df

dt
= {f ,H}+ @f

@t
(4)

where we defined the Poisson brackets

{f ,H} =
X

j
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Remark: connection with Lie algebra

A Lie algebra over C is a vectorial space V over C equipped with a Lie bracket,
that is, a bilinear application {f , g} : V ⇥ V �! V that verifies

{f , f } = 0 Alternating property (6)

{f , {g , h}}+ {h, {f , g}}+ {g , {h, f }} = 0 Jacobi identity (7)

Bilinearity and the alternating property imply anti-commutativity

{f , g} = �{g , f }

Exercise: verify that the Poisson brackets defined in eq. 5 satisfy the properties of
a Lie algebra over C.



Canonical quantization

Once a dynamical theory is expressed in the Hamiltonian formalism, canonical
quantization simply consists in the substitution

{ , } �! 1

i~ [ , ] where [A,B] = AB � BA

In the case of electrodynamics in a dielectric medium, the generalized coordinate is
the four-vector potential (A0 = �,A) from which the E and B field are derived as

E = �rA0 �
@A
@t

; B = r⇥ A

To recover Maxwell’s equations, the appropriate Lagrangian density in a
time-independent linear medium is2

L =
1

2
(E 2 � B2) (8)

The canonical momentum is the four-vector (⇧0,⇧) with

⇧0 =
@L

@Ȧ0

= 0 and ⇧j =
@L

@Ȧj

= �Dj (displacement field)

2see, e.g., Quantization of electrodynamics in nonlinear dielectric media, Mark Hillery, Leonard

D. Mlodinow; Phys. Rev. A (1984)



Linear Hamiltonian and mode expansion

In terms of D and B = r⇥ A, the Hamiltonian in a linear medium is3

H
L(t) =

1

2

Z

V

✓
D(r , t) · D(r , t)

✏0"(r)
+

B(r , t) · B(r , t)
µ0

◆
d3r (9)

where V is the entire volume over which the field may exist. We want to expand
the fields D and B on a basis of stationary (= monochromatic) solutions of
Maxwell’s equations: the normal modes (for a loss-less system), satisfying
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B↵(r) and r · B↵(r) = 0 (10)

For each mode ↵ the displacement field is uniquely defined as

D↵(r) =
i

µ0 !↵
r⇥ B↵(r) (11)

The normal modes are orthogonal, and we also take them to be normalized as:
Z

V

D⇤
↵(r) · D�(r)
✏0"(r)

d3r =

Z

V
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2
�↵� (12)

3
The following notes follow: N. Quesada, L. G. Helt, M. Menotti, M. Liscidini, and J. E. Sipe,

Adv. Opt. Photon. 14, 291-403 (2022)



Linear Hamiltonian and mode expansion

After applying the canonical quantization procedure, an arbitrary real field can be
expanded in the normal mode basis as

D̂(r , t) =
X

↵

�
â↵(t)D↵(r) + â

†
↵(t)D⇤

↵(r)
�

(13)

B̂(r , t) =
X

↵

�
â↵(t)B↵(r) + â

†
↵(t)B⇤

↵(r)
�

(14)

with the equal-time commutation relations

[â↵(t), â�(t)] = [â†↵(t), â
†
�(t)] = 0 and [â↵(t), â

†
�(t)] = �↵�

The linear medium Hamiltonian can then be expressed compactly as

H
L(t) =

X

↵

~!↵

2
(â†↵(t)â↵(t) + â↵(t)â

†
↵(t)) �!

X

↵

~!↵â
†
↵(t)â↵(t)

where we used the commutation rule and removed the zero-point energy from the
last expression.








