
Second order susceptibility

The previous calculation can be generalized to higher-order terms in perturbation
theory; in particular, one finds for the second-order susceptibility, in the limit of
negligible absorption:
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where the total symmetrization operator ST implies a summation over the six
permutations of the pair (↵,�!�), (�,!1), and (�,!2), with !� = !1 + !2 as
usual.

For the third-order susceptibility one arrives at
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Contracted notation

When the two excitation frequencies !1,!2 are far below resonance, or when they
are close to each other, we can neglect dispersion in the �(2) tensor, meaning that
it is invariant upon permutation of !1,!2 without touching the spatial indices:

�(2)
↵��(�!� : !1,!2) = �(2)

↵��(�!� : !2,!1) = �(2)
↵��(�!� : !1,!2)

In the last equality, we used intrinsic permutation symmetry to show that �(2)

remains invariant when the last two spatial indices are permuted. This reduces the
number of independent elements from 33 = 27 to 18, and the third-rank
susceptibility tensor can be represented in a contracted form as a 3⇥ 6 matrix dil
with l taking values from 1 to 6 according to the correspondence:

l 1 2 3 4 5 6
jk x y z zy , yz zx , xz xy , yx

Conventionally, a factor 1/2 is also introduced, defining the tensor d = 1
2�

(2)



Contracted notation under Kleinman symmetry

Using this contracted notation, the second-order polarization vector writes
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Under the stronger assumption of Kleinman symmetry (permutation of all 3
indices) the number of independent elements reduces to 10, as we have the
following equalities:

d12 = d26 ; d13 = d35 ; d14 = d25 = d36 ; d15 = d31 ; d16 = d21

d23 = d34 ; d24 = d32



E↵ective nonlinear susceptibility �(2)
e↵ and de↵

We consider two monochromatic fields at !1 and !2 whose amplitudes are
E (!j) = Ejej where Ej is a scalar amplitude and ej is the unit polarization vector.
For example, e1 = 1p

2
(ux + iuy ) corresponds to a circularly polarized beam at !1.

Applying the matrix product of eq. (5), we can write a compact expression for the
second-order polarization component projected on a unit vector e�:

P(2)
� = P(2)(!�) · e� = 2"0K (�!� : !1,!2) de↵ E1E2 (6)

where the e↵ective d-coe�cient is a scalar parameter defined by
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Using tensor notation this relation is compactly expressed as

�(2)
e↵ (�!� : !1,!2) = e� · �(2)(�!� : !1,!2) : e1e2 (8)

In the notation above, it should be understood that de↵ and �(2)
e↵ are functions of

the polarization directions (e�, e1, e2), which are typically defined by the phase
matching condition and belong to {eo , e✓}.



Spatial symmetries

Let R be an orthogonal matrix representing a proper (detR = 1) or improper
(detR = �1) rotation of space. If we apply this rotation to a nonlinear crystal, it
can be shown that the nonlinear susceptibility tensor transforms according to
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where the summation on ↵,�, � is implicit. A fundamental postulate in physics,
known as Neumann’s principle, states that all physical properties of a system
(e.g., a crystal) remain invariant under any coordinate transformation that
leaves the system unchanged; i.e., the symmetry elements of any physical
property must include the symmetry elements of the system’s point group. Here,
each tensor component is counted as a physical property.
The simplest example is when the inversion symmetry (improper rotation) belongs
to the system’s point group:

R =
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�1 0 0
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Spatial symmetries

Inserting R in eq. (9) leads to the equation

�(2)0

ijk = (�1)n+1�(2)
ijk

Neumann’s principle imposes �(2)0

ijk = �(2)
ijk , which implies that �(2) = 0 for all even

values of n, and in particular for n = 2.

This method can be applied to all the symmetry elements of a given crystal’s point
group to reduce the number of independent components of the nonlinear
susceptibility tensor (of any order), but it is a mathematically demanding
procedure.



Spatial symmetries
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Isotropic crystal classes

Uniaxial crystal classesBiaxial crystal classes

triclinic monoclinic

monoclinic orthorhombic

orthorhombic

cubic

trigonal

trigonal

trigonal

hexagonal

hexagonal

hexagonal

hexagonal

tetragonal

tetragonal

hexagonal tetragonal

tetragonal

tetragonal

Butcher & Cotter Appendix 4 + Boyd Chapter 1

Solid line: equal elements
Open circle: opposite sign
Square: zero under Kleinman symmetry
Dashed line: equal under Kleinman symmetry

Common nonlinear crystals
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Rhombohedral/trigonal 
(uniaxial)
Point group: 3m

• Barium borate (BBO)

Solid line: equal elements
Open circle: opposite sign
Dashed line: equal under 
Kleinman symmetry

• Lithium niobate (LiNbO3)

!!! ∼ 20 − 40 pm/V
!!" ∼ 5 pm/V
!## ∼ 2 − 3 pm/V

https://www.tydexoptics.com/materials1/mater
ials_for_nonlinear_optics/lithium_niobate/ 

!!" < 0.1 pm/V
!## ∼ 2 − 3 pm/V

https://www.mt-berlin.com/frames_cryst/descriptions/bbo.htm 



Common nonlinear crystals
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Potassium niobate (KNbO3)
• Orthorhombic (biaxial)
• Point group: mm2

Potassium dihydrogen phosphate (KDP)
• Tetragonal (uniaxial)
• Point group: -4 2 m

!!$ ∼ !"% = !#& ∼ 0.3 − 0.7 pm/V

!!" ∼ !"& ∼ −16 pm/V
!!# ∼ !#% ∼ −18 pm/V
!!! ∼ −28 pm/V

https://www.sciencedirect.com/topics/chemistry/
second-order-nonlinear-optical-susceptibility 
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History: second harmonic generation
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Generation of Optical Harmonics
P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich
Phys. Rev. Lett. 7, 118 – Published 15 August 1961







Phase mismatch in SHG
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Crystal length

SH intensity

For a fixed crystal length

sin Δ4 52
Δ4 52
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Quasi phase matching
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Lithium niobate (LiNbO3)

Periodically poled crystal:

Source: Boyd Ch. 2.4

Ultrahigh-efficiency wavelength conversion in nanophotonic 
periodically poled lithium niobate waveguides
Cheng Wang et al. Optica Vol. 5, pp. 1438-1441 (2018)
https://doi.org/10.1364/OPTICA.5.001438



Effect of pump depletion
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Phase matching types in three-wave mixing 
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- Type-I The two lowest-frequency beams have the same polarization

- Type-II The two lowest-frequency beams have orthogonal polarizations

- Type-0 All three waves have the same polarization
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Ex: negative uniaxial crystal

Source: Manuel Joffre, Coursera






