Second order susceptibility

The previous calculation can be generalized to higher-order terms in perturbation
theory; in particular, one finds for the second-order susceptibility, in the limit of
negligible absorption:
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where the total symmetrization operator St implies a summation over the six
permutations of the pair (o, —w,), (B,w1), and (v, w2), with w, = w1 + wy as
usual.

For the third-order susceptibility one arrives at
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Contracted notation

When the two excitation frequencies wq,w, are far below resonance, or when they
are close to each other, we can neglect dispersion in the x(?) tensor, meaning that
it is invariant upon permutation of wy,w, without touching the spatial indices:

Xagv( Wo - w17w2) = XQBW( Wo - w27w1) = X(a»iﬁ( —Wq - w17w2)

Yk

In the last equality, we used intrinsic permutation symmetry to show that y(?)
remains invariant when the last two spatial indices are permuted. This reduces the
number of independent elements from 33 =27+to Bi and the third-rank
susceptibility tensor can be represented in a contracted form as a 3 x 6 matrix dj
with / taking values from 1 to 6 according to the correspondence:

/‘1 2 3 4 5 6
jk‘x Yy z zy,yz zX,XZ XY,yX

Conventionally, a factor 1/2 is also introduced, defining the tensor d = %K(z)
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Contracted notation under Kleinman symmetry

Using this contracted notation, the second-order polarization vector writes
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Under the stronger assumption of Kleinman symmetry (permutation of all 3
indices) the number of independent elements reduces to 10, as we have the
following equalities:

do=dy ; diz=dss ; diu=dxs=dg ; dis=d3 ; dig=dy
d23 = d34 ; d24 = d32



Effective nonlinear susceptibility ng) and d.f

We consider two monochromatic fields at w; and w, whose amplitudes are

E(w;j) = Ejej where Ej is a scalar amplitude and e; is the unit polarization vector.
For example, e; = %(ux + iuy) corresponds to a circularly polarized beam at wy.
Applying the matrix product of eq. (5), we can write a compact expression for the

second-order polarization component projected on a unit vector e,:
E V=

P((72) = P(z)(wg) c €y = 2€0K(7w0 . LLJ]_,CUQ) deff E1E2 é;ﬂ -% (6)

where the effective d-coefficient is a scalar parameter defined by e— 73
1 ) = CJBB
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ijk
Using tensor notation this relation is compactly expressed as
2
Xif)(fwg fwi,wp) = €y X(z)(fwg fwi,wy)  ere; (8)

In the notation above, it should be understood that des and ng) are functions of
the polarization directions (e, €1, €), which are typically defined by the phase
matching condition and belong to {e,, e }.



Spatial symmetries

Let R be an orthogonal matrix representing a proper (det R = 1) or improper
(det R = —1) rotation of space. If we apply this rotation to a nonlinear crystal, it
can be shown that the nonlinear susceptibility tensor transforms according to

iji) = Ria RjﬁRk'y XS%,Y (9)
where the summation on «, 3,7 is implicit. A fundamental postulate in physics,
known as Neumann'’s principle, states that all physical properties of a system
(e.g.. a crystal) remain invariant under any coordinate transformation that
leaves the system unchanged; i.e., the symmetry elements of any physical
property must include the symmetry elements of the system's point group. Here,
each tensor component is counted as a physical property.
The simplest example is when the inversion symmetry (improper rotation) belongs
to the system'’s point group:




Spatial symmetries

’
Inserting R in eq. (9) leads to the equation %"" _ (—I)M v (
. . .
XUk _ ( 1)n+1 :(Jk)
Neumann's principle imposes X(Jk)l = ijk), which implies that x(? = 0 for all even

values of n, and in particular for n = 2.

This method can be applied to all the symmetry elements of a given crystal’s point
group to reduce the number of independent components of the nonlinear
susceptibility tensor (of any order), but it is a mathematically demanding
procedure.



Spatial symmetries

Biaxial crystal classes
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Common nonlinear crystals
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Rhombohedral/trigonal

(uniaxial) class 3m

Point group: 3m

Solid line: equal elements
Open circle: opposite sign
- Dashed line: equal under

e - . . Kleinmansymmetry

* Lithium niobate (LiNbQO,)

d33 ~ 20 - 4‘0 pm/V
ds; ~ 5 pm/V
d22 ~ 2 - 3 pm/V

https://www.tydexoptics.com/materials1/mater
ials for nonlinear optics/lithium niobate/

week 05

» Barium borate (BBO)

ds; < 0.1 pm/V
dzz ~ 2 - 3 pm/V

https://www.mt-berlin.com/frames_cryst/descriptions/bbo.htm
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Common nonlinear crystals

Potassium dihydrogen phosphate (KDP) L \
+ Tetragonal (uniaxial) classd2m . . . . N .
* Point group: -4 2 m . & 8o B

d36 ~ d14_ - d25 ~ 03 - 07 pm/V

https://www.sciencedirect.com/topics/chemistry/
second-order-nonlinear-optical-susceptibility

Potassium niobate (KNbO3) R
* Orthorhombic (biaxial) class mm2 . .//::. .
+ Point group: mm2 e

d31 ~ d15 ~ _16 pm/\/
d32 ~ d24 ~ _18 pm/V
d33 ~ _28 pm/V
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History: second harmonic generation
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FIG. 1. A direct reproduction of the first plate in which there was an indication of second harmonic. The
wavelength scale is in units of 100 A. The arrow at 3472 A indicates the small but dense image produced by the
second harmonic. The image of the primary beam at 6943 A is very large due to halation.

Generation of Optical Harmonics
P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich

Phys. Rev. Lett. 7, 118 — Published 15 August 1961
Christophe Galland EPFL 2025 4
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Phase mismatch in SHG

SH intensity

Crystal length

Quasi phase matching

Periodically poled crystal:

sin Ak =

Ak >

I >
) Ak

For a fixed crystal length
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Lithium niobate (LiINbO3)

R

(a) with perfect phase-matching
(b) with quasi-phase-matching

(c) with a wavevector
mismatch

field amplitude

r<

Source: Boyd Ch. 2.4

Ultrahigh-efficiency wavelength conversion in nanophotonic
periodically poled lithium niobate waveguides

Cheng Wang et al. Optica Vol. 5, pp. 1438-1441 (2018)
https://doi.org/10.1364/OPTICA.5.001438

Christophe Galland EPFL 2025



Effect of pump depletion ;). tank "(¢'3)
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Phase matching types in three-wave mixing

- Type-l The two lowest-frequency beams have the same polarization
- Type-ll The two lowest-frequency beams have orthogonal polarizations

- Type-0 All three waves have the same polarization

Fr SPDC

Qf)mtavteau.s

s rmmc(’/wc

w,
down coaneengceon

Ex: negative uniaxial crystal hﬁl"'I ‘o Po&/u:) A
= e
ehat‘ov\ PAI:A-S

Refractive index

k‘éfﬁl'. = Chosg rofm_

N u" vow’\ I J—
conveNSion
Lo

Source: Manuel Joffre, Coursera

Wy,

Wavelength [pm] Christophe Galland EPFL 2025 8



ﬁ) P/ﬂagg Mat—ﬁcll‘,'h‘ ugins &”“fu“o\enu_
1) Collineon
* T‘*&P&I SHG v nasahve, u,vu'.ax\:o.e chgta,e

nw) .

N, (w) = Ny(2w)






