Nonlinear response function

To account for the nonlinear response of the polarization density P under an
applied electric field E we perform a Taylor expansion with

P(E) = PM(E) + PA(E) + .... Here, P("(E) is proportional to a product of n
electric field components. The first order term was treated in Lecture 02; the
second order term has the general expression below for a local, homogeneous
and time-translation invariant medium:

PA (1) :eo/dTl/dTZ RO (71, ) Ei(t — ) Ee(t — 72) (1)

where the subscripts /, j, k take values among 3 orthogonal direction x, y, z along
the principal axes. We substitute each real field by its Fourier decomposition
Ei(t) = fdw Ei(w)e™ @t

I. —so/dwl/de/dTl/de Ruk (11, 72)

Ej(w1) Ex(w2) exp [—i {w1 (t — 71) + w2 (t — 72)}] (2)
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Nonlinear response susceptibility

In the last expression, we can identify the term in parenthesis with the
second-order (quadratic) nonlinear susceptibility

X (—wo wn,wn) = // dridry RG) (11, mp)efrmtienme (4)

which is the two-dimensional Fourier transform of the second-order polarization
response function. We introduced a short-hand notation:

W = W1 +wy = g We
(a7

that will become useful when discussing permutation symmetries.

Taking the Fourier Transform 2L [ dt P()(t)e“* of eq. (3) and using the identity
% [ dt el(“=w)t = §(w — w, ) we find the expression for each complex frequency
component of the polarization density:

Pl.(z)(w) = g9 // dwidws iji)(_wa;w17w2)Ej(wl)Ek(w2)5(w - We) (5)



Intrinsic permutation symmetry

We can swap the pairs of variables (w1, /) and (wy, k) in the mathematical
expressions above without changing their physical meaning; the nonlinear
susceptibility must, therefore, satisfy the so-called intrinsic permutation
symmetry:
2 2
ngk)(—wg:wl,wz) = ng}(—wa;wszl)
Moreover, if losses can be neglected, the x(?) tensor remains invariant upon any
permutations of (—wy, ), (w1,/) and (w2, k) (full permutation symmetry) for
example
2 2 2

X (~woiwi,w2) = X wni —wa,w2) = X (—wiiwr + w2, —wp)
The leftmost susceptibility corresponds to sum-frequency generation between w;
and wo while the rightmost corresponds to difference frequency generation between
w1 + wo and wy



Generalization to P(")
If we introduce the notation & = (wq, ...,w,) we have
PO (w) = e / XD, (~tt D) oy (61)- By (0n)0( — )

The fact that P(")(t) is real implies that complex conjugate of the susceptibility
satisfies

[xé"il.,.a"(—wa: ﬁ)} = Xfjon..., (W ~)

The right-hand term can be generalized to ngl...an(w;; —*) for complex

frequencies used to model losses under near-resonant conditions.

Often, the exciting field can be approximated by a finite set of monochromatic
waves E(t) = 237, E(wx)e ™! + c.c. whose Fourier components are

E(w) = Z <;E(wk)5(w —wk) + %E(wk)*é(w + wk)>
k



General expression under multiple monochromatic pumps

It can be shown! that the frequency components of the resulting nt"-order
polarization are

P (wo) = K(~woi @) X0, o (~wai &) Eay (w1)-.. Ea, (wn) (6)

where K(—w,;@) = 2"9~™p is the degeneracy factor for a specific process:
» n is the order of the nonlinear process
» & =1 in general, except for optical rectification (w, = 0) where 6 =0
> m is the number of applied d.c. (w, = 0) fields
» pis the number of distinguishable permutation of &

Example: Compute K and verify this expression for second-harmonic generation,
sum-frequency generation, and difference frequency generation.

Lef. P. Butcher & D. Cotter, The elements of nonlinear optics;p. 23



—> - _iw g —iu(:
Ex E(r)- LE AN LB e e
( Elw) - ( Slu-a) +E. Slwr) By Sw-e ) E, Swey)

(2
o\u)lj dwa %I)§ (’ wg-iw| /"‘Jz> Ej(wl) E.& (w2> S(w_{d(r)‘

0 -0 \

) (€, Slb-w)-E, () - By Sy ) By (i) )

(E, ¢ §() Erg — ) Sl

Le Swn e& L"*(("’ PRCYPICN tC/LVVLS
(‘f“’a,\;) (Xf‘\

* —[j W, + w, — -Ze,(‘/s look ak H’\c Sum :f)\ealu,enc‘& w, - w

b

(2) g 2)
* X;&('w““’““’\») CaBles Xf;k(‘% 1 )“Je> EL.A Ea,&

— ( +u)) (PRVRITR u) q [—: - K= |
({ ") 16 b, & SEG-
Remant : P(‘ Wq"*}b) = (2) ( CAENH “a )wh)t/

At the ol[Mechv\ce, ﬁleo] u,emcg W, - W, (li W, > wL)

)

and ?L('L) (wm—wb) = %ijﬁ <’(‘Ua'%)f W | _wh> oK

(2)
P( (wb'wa) = F;m (wq‘wb)a

s SEConJ elq;\vwmuac 3eny\.ql.‘con_ a.(‘ qu

(&) ) Q (
P (3 wq) = z x‘d& (—?UJK', Wa ,u),;) E;,’)Ea,k — K: -



Process " —W, Wy, .y Wy K
Linear absorption /emission and refractive 1 -wiw 1
index
. N 1
Optical rectification (optically-induced 2 0w, ~w 2
d.c. field)
Pockels effect (linear electrooptic effect) 2 ~w;0,w 2
] 1
Second-harmonic generation 2 “Wwiww 7
Sum- and difference-frequency mixin
) BES DSy Ik 2 —wywi, Tw, 1
parametric amplification and oscillation
d.c. Kerr effect (quadratic electrooptic 3 -w;0,0,w 3
effect)
; it i Yy 3
d.c.-induced second-harmonic generation 3 2030, w, w 3
Process Or:lcr Wy s Wy, ey Wy K
Third-harmonic generation 3 ~3wiw, w,w f
. 3
General four-wave mixing 3 — Wy Wy, Wy, Wy )
. 3
Third-order sum- and difference- 3 Wy 2wy, Wy, Wy ry
frequency mixing
. . . 3
Conherent anti-Stokes Raman scattering 3 TWaAs,Wp, Wp, TWg
Optical Kerr effect (optically-induced
birefringence), cross-phase modulation, 3 o 3
stimulated Raman scattering, e 2
stimulated Brillouin scattering
Intensity-dependent refractive index,
optical Kerr effect (self-induced
and cross-induced birefringence), 3 it = 3
self-focusing, self-phase and e = 4
cross-phase modulation, degenerate
four-wave mixing
I 3
Two-photon absorption/ionisation il 2
/emission 3 or 3
W TW, W, w 'z'

Butcher & Cotter, p. 26
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Perturbative quantum treatment for a N-level system?

We consider N,/ V particles per unit volume, each modeled as a multi-level
system. The linear susceptibility is

« B @ B
) ) N, 0) [T o I
Xaﬁ( w - “) Veoh ;m Phn Q A o (7)

mn — W — IYmn an+w+”ymn

Far from resonances, when loss is negligible (y's = 0), the linear susceptibility

takes a simpler form
(0) p’nm Hmn 8
{Zp (fim w)} 0

where the total symmetrization operator St means that we sum over all possible
permutations of the pairs (a, —w) and (8, w).

Often, only a single ground state n = 0 is populated at room temperature, i.e.
pf,?,) = d,—0 and the summation is on m only. Moreover, if w ~ Q19 (near
resonance with state n = 1) we can simplify the expression to

XD (w:w) =

Np  pG /ifo
W) o Vth QlO — W (9)

2Butcher & Cotter, The elements of nonlinear optics, Ch. 4




Connection with the Lorentz oscillator model

We consider all atoms in the ground state n =0 in an isotropic medium with the
excitation field along x, so that i, 1% = |1m|* = %|pom|*> = 112 We also
define the oscillator strength for the 0 <> m transitlon as

2nﬂ'eQmO’u?nO

f =
mo 3he?

where m, is the electron mass. If we make the approximation 72, < Q2
(moderate loss) we can rewrite eq. (7) as

1
mi - 10
X“'B( w:w) Vsome mz: OQ2 — w? — 2 mow (10)

which is equivalent to the classical expression obtained in the Lorentz oscillator
model.



