
Nonlinear response function
To account for the nonlinear response of the polarization density P under an
applied electric field E we perform a Taylor expansion with
P(E ) = P(1)(E ) + P(2)(E ) + .... Here, P(n)(E ) is proportional to a product of n
electric field components. The first order term was treated in Lecture 02; the
second order term has the general expression below for a local, homogeneous
and time-translation invariant medium:
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where the subscripts i , j , k take values among 3 orthogonal direction x , y , z along
the principal axes. We substitute each real field by its Fourier decomposition
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Nonlinear response susceptibility
In the last expression, we can identify the term in parenthesis with the
second-order (quadratic) nonlinear susceptibility
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which is the two-dimensional Fourier transform of the second-order polarization
response function. We introduced a short-hand notation:
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that will become useful when discussing permutation symmetries.
Taking the Fourier Transform 1
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component of the polarization density:
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Intrinsic permutation symmetry

We can swap the pairs of variables (!1, j) and (!2, k) in the mathematical
expressions above without changing their physical meaning; the nonlinear
susceptibility must, therefore, satisfy the so-called intrinsic permutation
symmetry:
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Moreover, if losses can be neglected, the �(2) tensor remains invariant upon any
permutations of (�!�, i), (!1, j) and (!2, k) (full permutation symmetry) for
example
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The leftmost susceptibility corresponds to sum-frequency generation between !1

and !2 while the rightmost corresponds to di↵erence frequency generation between
!1 + !2 and !2



Generalization to P(n)

If we introduce the notation ~! = (!1, ...,!n) we have
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The fact that P(n)(t) is real implies that complex conjugate of the susceptibility
satisfies h
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frequencies used to model losses under near-resonant conditions.

Often, the exciting field can be approximated by a finite set of monochromatic
waves E (t) = 1
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General expression under multiple monochromatic pumps

It can be shown1 that the frequency components of the resulting nth-order
polarization are
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where K (�!�; ~!) = 2n+��mp is the degeneracy factor for a specific process:

I n is the order of the nonlinear process

I � = 1 in general, except for optical rectification (!� = 0) where � = 0

I m is the number of applied d.c. (!↵ = 0) fields

I p is the number of distinguishable permutation of ~!

Example: Compute K and verify this expression for second-harmonic generation,
sum-frequency generation, and di↵erence frequency generation.

1cf. P. Butcher & D. Cotter, The elements of nonlinear optics, p. 23





Butcher & Cotter, p. 26











Perturbative quantum treatment for a N-level system2

We consider Np/V particles per unit volume, each modeled as a multi-level
system. The linear susceptibility is
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Far from resonances, when loss is negligible (�’s = 0), the linear susceptibility
takes a simpler form
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where the total symmetrization operator ST means that we sum over all possible
permutations of the pairs (↵,�!) and (�,!).
Often, only a single ground state n = 0 is populated at room temperature, i.e.

⇢(0)nn = �n=0 and the summation is on m only. Moreover, if ! ' ⌦10 (near
resonance with state n = 1) we can simplify the expression to
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2Butcher & Cotter, The elements of nonlinear optics, Ch. 4



Connection with the Lorentz oscillator model

We consider all atoms in the ground state n = 0 in an isotropic medium with the
excitation field along x , so that µx
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where me is the electron mass. If we make the approximation �2
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(moderate loss) we can rewrite eq. (7) as
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which is equivalent to the classical expression obtained in the Lorentz oscillator
model.


