|. Motivation: Second Harmonic Generation (SHQG)

In Ex. 1 this week we have seen that a quadratic term in the response function P(E)
induces a polarization density in the medium oscillating at frequency 2w, under an
external drive at frequency w.
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l. The problem of “phase matching”

* The polarization wave P, (2) at 2w is phase-locked to the excitation field E,(2)

with phase velocity ﬁ

* But the radiation E,, (z) generated by P, propagated with phase veIocityT;w)

* In general, n(2w) > n(w) : the radiation E,,, generated at the beginning of the
medium interferes destructively with one generated by P,,, some distance further

* No build up of power at 2w !
nw) ¢ n(w)
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Il.  Isotropic vs. anisotropic media

Crystals Amorphous materials (glasses)

Tetragonal Orthorhombic
a=bzc azbzc
a=p=y =90 ) a=p=7=90

Cry(sQ'alllne SiO,

Monoclinic
. azb#c Triclinic
. a=y=9 = azbzc
a=Pey

+ Three-fold

+ Rotation Axis

.

A Trigonal Hexagonal
. E '4 a=b=c a=b#c
N a=B=y <120 ,290 a=p=9

y =120

Molecular (organic) materials

Liquid Crystal (Mesophases)

Liquid

N Y Y
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- Anisotropic - Anisotropic - Anisotropic - Isotropic
- 3D Lattice - 1 or 2D Lattice - No Lattice - No Lattice
- Positional Order - No Positional Order - No Positional Ord - No Positional Order
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Il.  The seven primitive crystal systems

Y Y
T . z TJ .
z
Isometric (or cubic) Tetragonal Orthorhombic Hexagonal
All three axes are equal Two of the three axes All three axes are Of four axes, three are
in length, and all are are equal in length, and all unequal in length, and  of equal length, are
perpendicular to one three axes are perpendicular all are perpendicular separated by equal
another. to one another. to one another. angles, and lie in the

same plane. The fourth
axis is perpendicular to
the plane of the other

Y
v X\ / three axes. Hexagonal
/ / cells have lattice points

X 3
R in each of the two
/Y _— 7/Z\ ; Z// v six-sided faces.

X gl ‘ / .
z—/ : «_ \

&= \: &
Triclinic Monoclinic Rhombohedral (or trigonal)*
All three axes are All three axes are unequal All three axes are of equal
unequal in length, and in length, and two axes length, and none of the axes is
none is perpendicular are perpendicular to perpendicular to another, but
to another. each other. the crystal faces all have the

same size and shape.

© Encyclopaedia Britannica, Inc. *Some sources do not separate the hexagonal and rhombohedral (trigonal) systems. 5
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Table 2.1 Refractive indices of some
Driscoll & Vaughan (1978).
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Hexagonal
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Triclinic
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azPry
1 Three-fold
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a=y=90 #f
+ Rotaton Axis.
.
a=b#c
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Lo / a=b=
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uniaxial crystals possess a single optic axis,
which is usually taken to be the z axis.

» Ordinary directions: xandy

» Extraordinary direction: z

el
an

Y\&aahve uniagyial n£<r\°

A. Yariv, P. Yeh (p 84)
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common uniaxial crystals at 580.3 nm. Data from

Crystal Chemical structure  Symmetry class Type N, Ne

Ice HoO trigonal positive 1309 1.313
Quartz Si0O2 trigonal positive 1544 1.553
Beryl BegAla(SiOg)g hexagonal negative 1581 1.575
Sodium nitrate  NaNOsg trigonal negative 1584 1.336
Calcite CaCOgq trigonal negative 1.658 1.486
Tourmaline complex silicate trigonal negative 1.669 1.638
Sapphire AlaOg trigonal negative 1.768 1.760
Zircon ZrSiO4 tetragonal positive 1923 1.968
Rutile TiO9 tetragonal positive 2616 2903

From Mark Fox - Optical Properties of Solids (2010)
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. Examples of uniaxial nonlinear crystals

Lithium niobate (LINbO3, LN) B-Barium borate (BBO)  qeqf"
» Rhombohedral/trigonal o

PO » Rhombohedral/trigonal

Potassium dihydrogen phosphate (KDP) Gallium(ll) selenide (GaSe)

Jive
» Tetragonal “e%a\( e » Hexagonal negeFt

(b) o Ga @ Se

e ‘% 3755 A
Van der \\“u;'l-::';;cc —
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00
™ o p (001)
° K Christophe Galland EPFL 2025 8
. Examples of biaxial nonlinear crystals
Potassium Niobate (KNbO5) Potassium Titanyl Phosphate (KTP)
> Orthorhombic » Orthorhombic
OPotassium

Q Niobium
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. Anisotropic materials - definitions Saleh & Teich, Ch. 6.3

Crystals in which the three principal refractive indices are different are
termed biaxial.

* For crystals with certain symmetries, namely a single axis of threefold,
fourfold, or sixfold symmetry, two of the refractive indices are equal

(n« = ny) and the crystal is called uniaxial.
* In this case, the indices are usually denoted n, = n,= n, and n, = n,, which
are known as the ordinary and extraordinary indices.
* The crystal is said to be positive uniaxial if n, > n,, and negative uniaxial if
Ne < Ny .

+ The z axis of a uniaxial crystal is called the optic axis.

* In crystals with greater symmetry (those with cubic unit cells), all three

indices are equal and the medium is optically isotropic.

week 03 Christophe Galland EPFL 2025 10

. The index ellipsoid

The index ellipsoid is a geometrical representation of the relative permittivity

tensor, defined by the equation: £+y—2 + i —1 3 . 2§ 23 _ :
z T2 T2 = B e
7. ny ny Nz 1 2 3
JJ n i Other notation for coordinates
?'T. 1 Ne . . .
Ak T L1 It is the quadratic representation of
LAY the electric impermeability tensor
— ¢ -1
n=g"
Zm-j xix =1
Lj
Along the principal axes:
n.g n = i = =
‘ (o) o ‘ Nocx T2 etc.
% y

Zada (§L+
Born & Wolf, Ch. XV; Saleh & Teich, Ch. 6.3 / -U“ {:-/l- / ‘8
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. The index ellipsoid

Propagation along an arbitrary direction
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. Phase matching of SHG in a uniaxial crystal

. .. 15 sin? @ i cos? 6
Positive uniaxial ne > no Luo n(0) = 2
" S
n, (w) - Dwé (x,(a)
4 >
W
Negative uniaxial ° dw,

N o ( « ) extraendinany

Wave_
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Macroscopic Maxwell’s equations

We remind the macroscopic Maxwell’s equations in a non-magnetic medium
without external charges, written in reciprocal space (after Fourier transform), with
B = poH and D = ¢E:

k-B =0 —  BHLk (1)
kxE-wB = 0 = BHLE (2)
k x H+wD 0 = D1 kH (3)

k-D 0 = D1k (4)

If € # € I3, there is no reason to expect that k- E = 0, and in general E is not a
transverse field (unless the light is polarized exactly along one of the principal
axes).

From egs. (2) and (3) we can obtain an eigenvalue equation on E:

(k- E)k — K’E + w’pocE =0 (5)



Dispersion relation in a uniaxial or biaxial media

Since the first term of eq. (5) does not cancel in general, the dispersion relation
k(w) is not only a function of w but also of the polarization direction of the field.

We take x, y, z along the principal axes and write

n, 0 O w
wpoe=k§ |0 n, 0 where ko = wy/Jtoco = = (6)
0 0 ng

from which eq. (5) can be recast in a matrix form as

(kgn2 — k2 — K2) keky kks Ex
kky (Kn2 — k2 — k2) k, ks E | =0 (7)
keks ky ks (2 —Kk2— k)| |E

Non-zero solutions for the E field exist only if the determinant of the matrix is zero



Dispersion relation in a uniaxial media

We now restrict ourselves to uniaxial media where n, = n, = n, and n, = n..
Equaling to zero the determinant of the matrix in eq. (7) yields after simplification

K2+ k2 k2
(kz—n§k§=0)< - +——k0 =0 (8)

e o

which has two solutions:
2 . .
> ’;—2 = kg —  k(w) lies on a sphere of radius nokg = no for waves
polarized in the x,y plane (ordinary waves)
Ik

k22 2 . . . .. .
TR ki —> k(w) lies on an ellipsoid of principal semi-axes

> ng along k, (wave propagating exactly along z must be polarized in the x,y

plane)
> n. along ks and k, (extraordinary waves propagating along x or y are polarized

exactly along z).



. Dispersion relation in a uniaxial crystal

k2+Kk2 K2
(k? — n2k2) ( 1n2 2 +n—§—k§) =0
-
ne k3/k0“
Mo g
n(6)
"o k/k;,
0
i n, e kJk,
X y
Index ellipsoid Dispersion ellipsoid
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I1l.  Double refraction (birefringence)

It is possible to show that the Poynting vector and the Ray propagation direction
are normal to the k surface for the corresponding normal mode polarization

S
E,D o
kylk, a k
n,
P S
E,D | > Wk,
K:\ynn -
(a) Ordinary (b) Extraordinary Saleh & Teich, Ch. 6.3
S . dw
1
oTemPo nu.e wave Pac&el’g - P"[“' N 300(‘1’ Veeoc((l& l‘l.—;" - dw

2k
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Birefringence and beam

~k surface

walk-off

o5

Ordinz

D rzli‘;,dfy

Extraordinary\ ¢
ray .

Crystal

Saleh & Teich, Ch. 6.3
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(a) Wollaston prism

Cemented uniaxial prism with
propagation along o direction,

with prism where propagation is

along the o direction but with

the other two axes rotated,

that both polarization
components are refracted,
almost symmetrically.
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Extraordinary ray

Air

For calcite the beam displacement
can be up to 10% of the thickness
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Applications of birefringent crystals
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(b) Rochon prism (c) Glan-Thompson prism

Cemented prism with propagation
along the ordinary axis, based on
total internal reflection (and a
different refractive index for both
polarizations). Air spaced prism
gives a larger angular acceptance.

Cemented uniaxial prism
with propagation along e
direction, (essentially
isotropic) with prism where
propagation is along the o
direction, so that one
polarization component is

refracted. 10N7
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Typical extinction ratios are 1015 —
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