
I. Motivation: Second Harmonic Generation (SHG)
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In Ex. 1 this week we have seen that a quadratic term in the response function !(#) 
induces a polarization density in the medium oscillating at frequency 2&, under an 
external drive at frequency &. 

I. The problem of “phase matching”
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• The polarization wave !!"(') at 2& is phase-locked to the excitation field #"(') 
with phase velocity #

$(")

• But the radiation #!"(') generated by !!" propagated with phase velocity #
$(!")

• In general, ( 2& > ( &  : the radiation #!" generated at the beginning of the 
medium interferes destructively with one generated by !!" some distance further

• No build up of power at 2& !



II. Isotropic vs. anisotropic media
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Crystals

Molecular (organic) materials

Amorphous materials (glasses)

II. The seven primitive crystal systems
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A. Yariv, P. Yeh (p 84)

uniaxial crystals possess a single optic axis, 
which is usually taken to be the z axis.
Ø Ordinary directions: x and y
Ø Extraordinary direction: z
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From Mark Fox - Optical Properties of Solids (2010)



II. Examples of uniaxial nonlinear crystals

week 03 Christophe Galland EPFL 2025 8

Lithium niobate (LiNbO3, LN)
Ø Rhombohedral/trigonal 

Potassium dihydrogen phosphate (KDP)
Ø Tetragonal

*-Barium borate (BBO)
Ø Rhombohedral/trigonal

Gallium(II) selenide (GaSe)
Ø Hexagonal

II. Examples of biaxial nonlinear crystals
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Potassium Titanyl Phosphate (KTP) 
Ø Orthorhombic

Potassium Niobate (KNbO3) 
Ø Orthorhombic



II. Anisotropic materials - definitions
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• Crystals in which the three principal refractive indices are different are 

termed biaxial.

• For crystals with certain symmetries, namely a single axis of threefold, 

fourfold, or sixfold symmetry, two of the refractive indices are equal 

(nx = ny) and the crystal is called uniaxial. 

• In this case, the indices are usually denoted nx = ny = no and nz = ne, which 

are known as the ordinary and extraordinary indices. 

• The crystal is said to be positive uniaxial if ne > no , and negative uniaxial if 

ne < no . 

• The z axis of a uniaxial crystal is called the optic axis. 

• In crystals with greater symmetry (those with cubic unit cells), all three 

indices are equal and the medium is optically isotropic.

Saleh & Teich, Ch. 6.3

II. The index ellipsoid
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x y

z

The index ellipsoid is a geometrical representation of the relative permittivity 

tensor, defined by the equation:      

Born & Wolf, Ch. XV; Saleh & Teich, Ch. 6.3
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Other notation for coordinates

It is the quadratic representation of 
the electric impermeability tensor
0 = 1*+,:

2
-,/
3-/ +- +/ = 1

Along the principal axes: 
3'' = 0

1!!
= 0

$!"
    etc.



II. The index ellipsoid
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x y

z

Propagation along an arbitrary direction

Saleh & Teich, Ch. 6.3

y

z

II. Phase matching of SHG in a uniaxial crystal
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Positive uniaxial

Negative uniaxial





Macroscopic Maxwell’s equations

We remind the macroscopic Maxwell’s equations in a non-magnetic medium
without external charges, written in reciprocal space (after Fourier transform), with
B = µ0H and D = "E :

k · B = 0 =) B,H ? k (1)

k ⇥ E � !B = 0 =) B,H ? E (2)

k ⇥ H + !D = 0 =) D ? k ,H (3)

k · D = 0 =) D ? k (4)

If " 6= " I3, there is no reason to expect that k · E = 0, and in general E is not a
transverse field (unless the light is polarized exactly along one of the principal
axes).
From eqs. (2) and (3) we can obtain an eigenvalue equation on E :

(k · E )k � k2
E + !2µ0"E = 0 (5)



Dispersion relation in a uniaxial or biaxial media

Since the first term of eq. (5) does not cancel in general, the dispersion relation
k(!) is not only a function of ! but also of the polarization direction of the field.

We take x , y , z along the principal axes and write

!2µ0" = k2
0

2

4
nx 0 0
0 ny 0
0 0 nz

3

5 where k0 = !
p
µ0"0 =

!

c
(6)

from which eq. (5) can be recast in a matrix form as

2

4
(k2

0n
2
x � k2

y � k2
z ) kxky kxkz

kxky (k2
0n

2
y � k2

x � k2
z ) kykz

kxkz kykz (k2
0n

2
z � k2

x � k2
y )

3

5 ·

2

4
Ex

Ey

Ez

3

5 = 0 (7)

Non-zero solutions for the E field exist only if the determinant of the matrix is zero.



Dispersion relation in a uniaxial media

We now restrict ourselves to uniaxial media where nx = ny = no and nz = ne .
Equaling to zero the determinant of the matrix in eq. (7) yields after simplification

�
k2 � n20k

2
0 = 0

�
 
k2
x + k2

y

n2e
+

k2
z

n20
� k2

0

!
= 0 (8)

which has two solutions:

I k2

n20
= k2

0 �! k(!) lies on a sphere of radius n0k0 = n0
!
c for waves

polarized in the x , y plane (ordinary waves)

I k2
x+k2

y

n2e
+ k2

z

n20
= k2

0 �! k(!) lies on an ellipsoid of principal semi-axes

I n0 along kz (wave propagating exactly along z must be polarized in the x , y
plane)

I ne along kx and ky (extraordinary waves propagating along x or y are polarized
exactly along z).



III. Dispersion relation in a uniaxial crystal
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x y

z

Index ellipsoid Dispersion ellipsoid

III. Double refraction (birefringence)
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It is possible to show that the Poynting vector and the Ray propagation direction 
are normal to the k surface for the corresponding normal mode polarization

Saleh & Teich, Ch. 6.3



III. Birefringence and beam walk-off
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Saleh & Teich, Ch. 6.3

For calcite the beam displacement 
can be up to 10% of the thickness

III. Applications of birefringent crystals
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Cemented prism with propagation 
along the ordinary axis, based on 
total internal reflection (and a 
different refractive index for both 
polarizations). Air spaced prism 
gives a larger angular acceptance.
Typical extinction ratios are 10^5 – 
10^7

Cemented uniaxial prism 
with propagation along e 
direction, (essentially 
isotropic) with prism where 
propagation is along the o 
direction, so that one 
polarization component is 
refracted.

Cemented uniaxial prism with 
propagation along o direction, 
with prism where propagation is 
along the o direction but with 
the other two axes rotated, so 
that both polarization 
components are refracted, 
almost symmetrically.


