
Microscopic Maxwell’s equations

We consider the microscopic fields e(r , t) and b(r , t) existing in vacuum, together
with a distribution of charges and currents described by ⇢(r , t) and j (r , t).
Maxwell’s equations are:

r · b = 0 no magnetic monopole (1)
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("0e) = j Ampere’s law with displ. current (3)

r · ("0e) = ⇢ Gauss’ law (4)

We see that eqs. (3) and (4) contain the source terms.



Reminder: Fourier Transform

We define the direct and inverse Fourier transforms as follows:
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Properties of the derivation:
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e(r , t)  ! ikxe(k ,!) (8)

r · e(r , t)  ! ik · e(k ,!) (9)

r⇥ e(r , t)  ! ik ⇥ e(k ,!) (10)



Longitudinal and transverse fields

Helmholtz decomposition

Any physically relevant field A can be decomposed as a sum A = Ak + A? where

I Ak is the longitudinal field satisfying Ak(k ,!) k k , or r⇥ Ak(r , t) = 0

I A? is the transverse field satisfying A?(k ,!) ? k , or r · A?(r , t) = 0

Remark

For any scalar field f and vectorial field A we have the identities

I r⇥ (rf ) = 0 (The longitudinal field is the gradient of a scalar potential)

I r · (r⇥ A) = 0 (The transverse field is the curl of a vector potential)

Properties of the electric field

I A static electric field is purely longitudinal (eq. 2)

I The radiated field in vacuum is purely transverse (eq. 4)



Charge conservation



Wave equation in vacuum without sources (j and ⇢ zero)

Let’s first define the vector Laplacian

r2
A = r(r · A)�r⇥ (r⇥ A) = (r2Ax ,r2Ay ,r2Az)

where the Laplacian is r2f = @f
@x + @f

@y + @f
@z . Taking the curl of eq. (2) and using

eqs. (3,4) we obtain

0 = r⇥ (r⇥ e) + "0µ0
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We defined 1
c2 = "0µ0, the electromagnetic wave velocity in vacuum. Eq. (13) is

the wave equation for e.



Dispersion relation



Macroscopic Maxwell’s equations

The number of microscopic charges and currents in a medium is untractable. We
will average the microscopic fields over a length scale L much larger than the
interatomic distance a but much smaller than the optical wavelength �. We
introduce a normalized smoothing function f (r) that varies slowly over distances
on the order of a, but whose support is much smaller than �.

The shape of a smoothing function in real and reciprocal space. ⌘(k) illustrates
the behavior of a microscopic field 1.

Definition of the macroscopic fields

E (r , t) =
RRR +1

�1 du3 f (u) e(r � u, t) = he(r , t)i (average over a ball of radius L)

1cf. Jackson (Ch. 6.6) and Vanderlinde (Ch. 8.1)



Macroscopic Maxwell’s equations

All partial derivatives of the macroscopic fields satisfy @E
@x = h@e(r ,t)

@x i, etc., and by
the linearity of Maxwell’s equations we obtain the macroscopic version:

r · B = 0 (14)

r⇥ E +
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= 0 (15)
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("0E ) = hj (r , t)i (16)

r · ("0E ) = h⇢(r , t)i (17)

Then, we distinguish the induced charges and currents (due to the ‘internal’ or
‘intrinsic’ charges in the medium) ⇢ind and jind, from the external charges and
currents controlled by an independent mean, ⇢ext and jext. In this lecture, unless
stated otherwise, we will always consider the latter to be zero.



Macroscopic Maxwell’s equations

From Problem Set 01, we introduce the induced polarisation density inside the
medium P(r , t) satisfying r · P = �⇢ind. From eq. (17) we get

r · ("0E ) = �r · (P) () r · ("0E + P) = 0 () r · D = 0

where we defined the electric displacement field D = "0E + P

The macroscopic Maxwell’s equations eventually writes

r · B = 0 r⇥ E +
@B

@t
= 0

r · D = 0 r⇥ H � @D

@t
= 0

together with two constitutive equations for the medium

D = "0E + P(E ) (18)

B = µ0(H + M) ⇡ µ0H (no magnetic response) (19)
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https://refractiveindex.info/?shelf=main&book=Si&page=Franta-10K 

n = 1


