Microscopic Maxwell’s equations

We consider the microscopic fields e(r, t) and b(r,t) existing in vacuum, together
with a distribution of charges and currents described by p(r, t) and j(r,t).
Maxwell’s equations are:

Vb = 0 no magnetic monopole (1)
ob
V xe + — =0 Faraday’s law of induction (2)
1
<b> soe = g Ampere's law with displ. current  (3)
1
-(e0€) = p Gauss’ law (4)

We see that egs. (3) and (4) contain the source terms.
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Reminder: Fourier Transform

We define the direct and inverse Fourier transforms as follows:

e(r,t) = ///+Oodk3/+oodwe wyexplik - r — wt)]
e(k,w) = ///m dr /W & er ) el itk - r—wt)

Properties of the derivation:

0 :
ate(r t) +— —iwe(k,w)
0 ,
&e(r, t) +— ikee(k,w)
V-e(r,t) +— ik-e(k,w)
V xe(r,t) +— ik xe(k,w)



Longitudinal and transverse fields

Helmholtz decomposition

Any physically relevant field A can be decomposed as a sum A = A + A, where
> A is the longitudinal field satisfying A (k,w) || k, or V x A(r,t) =0
> A, is the transverse field satisfying A, (k,w) L k,or V-A (r,t)=0

Remark
For any scalar field f and vectorial field A we have the identities

> V x (V) =0 (The longitudinal field is the gradient of a scalar potential)
> V- (V x A) =0 (The transverse field is the curl of a vector potential)

Properties of the electric field

> A static electric field is purely longitudinal (eq. 2)
> The radiated field in vacuum is purely transverse (eq. 4)



Charge conservation
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Wave equation in vacuum without sources (j and p zero)

Let’s first define the vector Laplacian

VZA=V(V: A) -V x (V x A) = (V3A,,V?A,, V?A,)
where the Laplacian is V?f = % + g—; + %. Taking the curl of eq. (2) and using
egs. (3,4) we obtain

0 = Vx(Vxe)teomot (11)
- 60,“‘0 8t2
2
= V(V . e) — V2e + 80,&0@ (12)
1 02
— 2_ - 7
0 = <v . aﬂ) e (13)

We defined C% = oMo, !the electromagnetic wave velocity in vacuum. Eq. (13) is
the wave equation for e.



Dispersion relation
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Macroscopic Maxwell’s equations

The number of microscopic charges and currents in a medium is untractable. We
will average the microscopic fields over a length scale L much larger than the
interatomic distance a but much smaller than the optical wavelength \. We
introduce a normalized smoothing function f(r) that varies slowly over distances
on the order of a, but whose support is much smaller than A.
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The shape of a smoothing function in real and reciprocal space. n(k) illustrates
the behavior of a microscopic field *.

Definition of the macroscopic fields
E(r,t) = [[['2 du® f(u) e(r — u,t) = (e(r,t)) (average over a ball of radius L)

Lcf. Jackson (Ch. 6.6) and Vanderlinde (Ch. 8.1)



Macroscopic Maxwell’s equations

All partial derivatives of the macroscopic fields satisfy g—E
the linearity of Maxwell's equations we obtain the macroscopic ver5|on

V-B
oB
V x E+ E
1 0
V X (ILLOB> — a(goE)
V - (e0E)

Then, we distinguish the induced charges and currents (due to the ‘internal’ or

U(r, 1))
{p(r, 1))

‘intrinsic’ charges in the medium) ping and jfing, from the external charges and

< ae(r t) >

etc., and by

currents controlled by an independent mean, pe; and jegi- In this lecture, unless

stated otherwise, we will always consider the latter to be zero.



. , . V.00
Macroscopic Maxwell’s equations L)
A
From Problem Set 01, we introduce the induced polarisation density inside the
medium P(r,t) satisfying V - P = —pi,q. From eq. (17) we get
~——
V (e0E)=—-V - (P)<= V - (¢0pE+P)=0<=V-D=0

where we defined the electric displacement field D = ¢gE + P
The macroscopic Maxwell’s equations eventually writes

v-B =0 V><E+a—B:0
ot

vV-D = 0 VxH—a—D:O
ot

together with two constitutive equations for the medium

2

e !
D = wE+P(E) ~» P-el"E o K"E - - (18)
B po(H + M) = poH (no magnetic response) (19)



REVV\OJI& ' {V\J.u.ceé CkUVLEV‘tS

C&Mt& CDVlSCJ\\/o.(-CO\A < g“d _\_V.; - O
‘ ind

{77.('\:‘”——?,):0 ')_\M:;;_

C S {D/\ ttansverse {c&ls; A T
ind, L

* Lihean statie (Jc) Swsr;epti‘)t:(itﬁ, —
) EL E
— - L é

m
P.e X .E -
= e
C Nank -2 tensar
P _ e X" 2. _ = «%c¢
Lo ‘4 N T N T

i—’z‘/"*,% SMMOVUIJ'

Ij “:\e Mate/l.;ae S /LCCL(Mocae (hme_-/le\/vua.ﬁ s«dw-w-c('/lﬂ)

[Q)
Y it nel and 94.3mmcl’4cc. — we can dCa%oua&)De &

3 P/u‘.nccpae. axeS (OPL’CCS D-/(cs) X, 93

-
(«) %x" © ©
o 0 (X’%s
aMo/’)[)e[pu_S
A Makt/\.iae S i?of}lopic L‘g %ﬁ‘: %L‘% = %53 cubce c/zzdet‘aes
Otherwise il is am’gohpfcg . {“"1“‘”&5 gases



= Zme,ou\ o‘bh‘cae Suscep(lfria"%
Moy T

waile

g y2s o
P(f_{/t) = ﬁ. ﬁ ;{ t

Fon Homogev\eou.s Time - tnanslobion (nvaniout mediwm

_ﬁ(ﬁ,&):en SSSo‘usj ”(u, E(r? £, t-2)
P(b) - e Smat RO(x) E (<)

—

— ~lw(t- w:+1:)
T . Plw) = &, gd(. K(f)E(é T)e

= &, S R“(f) C_ S du E(U-) e

{

e, ¥ (w) E(w)

P (w) = e, {’_(i)(w) E(w)

~ DS pension nelation

D-eL

+ P

= (_D,((U): &,(£+ E“(w)).é)[w)
A&,MA r/\a‘.nci‘:o.e ax(is ‘o D (W) = &, (’f.-fx (w) (w)

EX nelalive fUz_MiH’[viﬁA/
Vﬁue Vceoc‘;tcz : )Er:

z
o EOE;,(W) w = CLJ_ nt(w)

Rtf'\ac\'ive

th(( i

N = {l+¥w =& | € C




ﬁ) Zonanl's occlllator model
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Si (Silicon)
Franta etal. 2017: n,k 0.0310-310 pm; 10 K
6
4
- 4
<
2
ned w
o L
0 5 10 15 20 25 30 35 40

Photon energy, eV

https://refractiveindex.info/?shelf=main&book=Si&page=Franta-10K

Week 02 Christophe Galland EPFL 2025 12



