

# Microscopic Maxwell's equations

We consider the microscopic fields  $\mathbf{e}(\mathbf{r}, t)$  and  $\mathbf{b}(\mathbf{r}, t)$  existing in vacuum, together with a distribution of charges and currents described by  $\rho(\mathbf{r}, t)$  and  $\mathbf{j}(\mathbf{r}, t)$ . Maxwell's equations are:

$$\nabla \cdot \mathbf{b} = 0 \quad \text{no magnetic monopole} \quad (1)$$

$$\nabla \times \mathbf{e} + \frac{\partial \mathbf{b}}{\partial t} = 0 \quad \text{Faraday's law of induction} \quad (2)$$

$$\nabla \times \left( \frac{1}{\mu_0} \mathbf{b} \right) - \frac{\partial}{\partial t} (\varepsilon_0 \mathbf{e}) = \mathbf{j} \quad \text{Ampere's law with displ. current} \quad (3)$$

$$\nabla \cdot (\varepsilon_0 \mathbf{e}) = \rho \quad \text{Gauss' law} \quad (4)$$

We see that eqs. (3) and (4) contain the source terms.

$$\frac{\partial}{\partial t} \left( \varepsilon_0 \vec{\nabla} \cdot \left( \frac{\partial \vec{e}}{\partial t} \right) \right) = \vec{\nabla} \cdot \left( -\vec{j} + \vec{\nabla} \times \frac{\vec{b}}{\mu_0} \right) = -\vec{\nabla} \cdot \vec{j}$$

$\frac{\partial}{\partial t} (4)$        $\nabla \cdot (3)$

# Reminder: Fourier Transform

We define the direct and inverse Fourier transforms as follows:

$$\mathbf{e}(\mathbf{r}, t) = \iiint_{-\infty}^{+\infty} dk^3 \int_{-\infty}^{+\infty} d\omega \mathbf{e}(\mathbf{k}, \omega) \exp[i(\mathbf{k} \cdot \mathbf{r} - \omega t)] \quad (5)$$

$$\mathbf{e}(\mathbf{k}, \omega) = \iiint_{-\infty}^{+\infty} \frac{dr^3}{(2\pi)^3} \int_{-\infty}^{+\infty} \frac{dt}{2\pi} \mathbf{e}(\mathbf{r}, t) \exp[-i(\mathbf{k} \cdot \mathbf{r} - \omega t)] \quad (6)$$

Properties of the derivation:

$$\frac{\partial}{\partial t} \mathbf{e}(\mathbf{r}, t) \longleftrightarrow -i\omega \mathbf{e}(\mathbf{k}, \omega) \quad (7)$$

$$\frac{\partial}{\partial x} \mathbf{e}(\mathbf{r}, t) \longleftrightarrow ik_x \mathbf{e}(\mathbf{k}, \omega) \quad (8)$$

$$\nabla \cdot \mathbf{e}(\mathbf{r}, t) \longleftrightarrow i\mathbf{k} \cdot \mathbf{e}(\mathbf{k}, \omega) \quad (9)$$

$$\nabla \times \mathbf{e}(\mathbf{r}, t) \longleftrightarrow i\mathbf{k} \times \mathbf{e}(\mathbf{k}, \omega) \quad (10)$$

# Longitudinal and transverse fields

## Helmholtz decomposition

Any physically relevant field  $\mathbf{A}$  can be decomposed as a sum  $\mathbf{A} = \mathbf{A}_{\parallel} + \mathbf{A}_{\perp}$  where

- ▶  $\mathbf{A}_{\parallel}$  is the **longitudinal field** satisfying  $\mathbf{A}_{\parallel}(\mathbf{k}, \omega) \parallel \mathbf{k}$ , or  $\nabla \times \mathbf{A}_{\parallel}(\mathbf{r}, t) = 0$
- ▶  $\mathbf{A}_{\perp}$  is the **transverse field** satisfying  $\mathbf{A}_{\perp}(\mathbf{k}, \omega) \perp \mathbf{k}$ , or  $\nabla \cdot \mathbf{A}_{\perp}(\mathbf{r}, t) = 0$

## Remark

For any scalar field  $f$  and vectorial field  $\mathbf{A}$  we have the identities

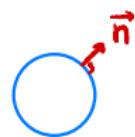
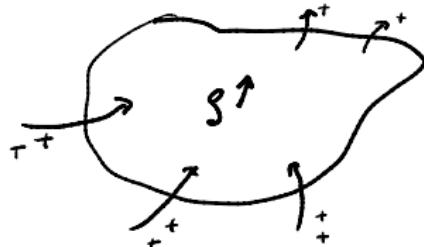
- ▶  $\nabla \times (\nabla f) = 0$  (The longitudinal field is the gradient of a scalar potential)
- ▶  $\nabla \cdot (\nabla \times \mathbf{A}) = 0$  (The transverse field is the curl of a vector potential)

## Properties of the electric field

- ▶ A **static** electric field is purely **longitudinal** (eq. 2)
- ▶ The **radiated** field in vacuum is purely **transverse** (eq. 4)

## Charge conservation

$$\dot{g} = -\vec{\nabla} \cdot \vec{j}$$



Reminder :  $\iiint_V \vec{\nabla} \cdot \vec{j} dV = \iint_S \vec{j} \cdot \vec{n} d\vec{n}$

# Wave equation in vacuum without sources ( $j$ and $\rho$ zero)

Let's first define the **vector Laplacian**

$$\nabla^2 \mathbf{A} = \nabla(\nabla \cdot \mathbf{A}) - \nabla \times (\nabla \times \mathbf{A}) = (\nabla^2 A_x, \nabla^2 A_y, \nabla^2 A_z)$$

where the Laplacian is  $\nabla^2 f = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} + \frac{\partial f}{\partial z}$ . Taking the curl of eq. (2) and using eqs. (3,4) we obtain

$$0 = \nabla \times (\nabla \times \mathbf{e}) + \varepsilon_0 \mu_0 \frac{\partial^2 \mathbf{e}}{\partial t^2} \quad (11)$$

$$= \nabla(\nabla \cdot \mathbf{e}) - \nabla^2 \mathbf{e} + \varepsilon_0 \mu_0 \frac{\partial^2 \mathbf{e}}{\partial t^2} \quad (12)$$

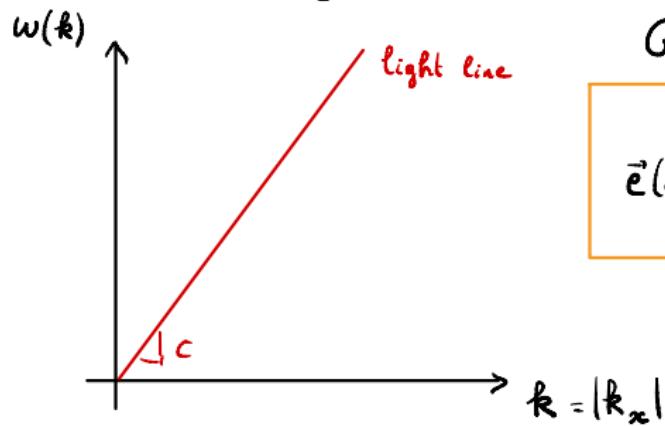
$$0 = \left( \nabla^2 - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \right) \mathbf{e} \quad (13)$$

We defined  $\frac{1}{c^2} = \varepsilon_0 \mu_0$ , the electromagnetic wave velocity in vacuum. Eq. (13) is the wave equation for  $\mathbf{e}$ .

# Dispersion relation

$$(13) \rightarrow \text{FT: } 0 = \left( -|\vec{k}|^2 + \frac{\omega^2}{c^2} \right) \vec{e}(\vec{k}, \omega) \quad \forall \vec{k}, \omega$$

$$\Rightarrow |\vec{k}|^2 = \frac{\omega^2}{c^2} = \epsilon_0 \mu_0 \omega^2$$



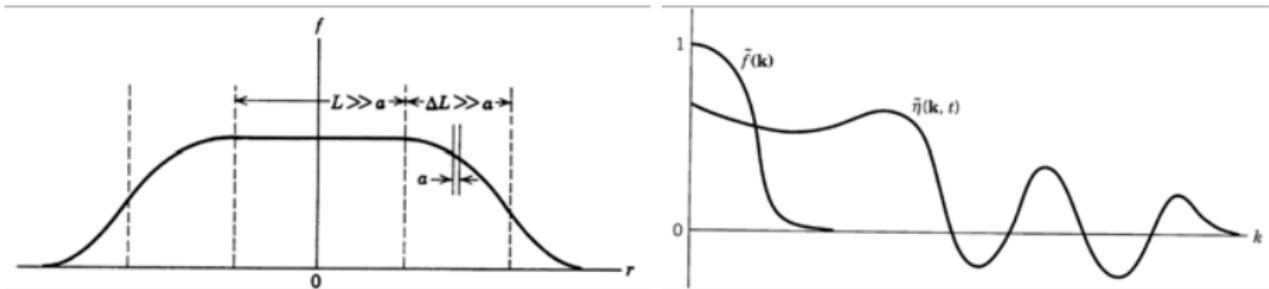
General solution of (13)

$$\vec{e}(\vec{r}, t) = \iiint \frac{dk^3}{(2\pi)^3} \underbrace{A_{\vec{k}}}_{\substack{\text{amplitude} \\ \text{and polarisation}}} \epsilon_{\vec{k}} e^{-i(\vec{k} \cdot \vec{r} - \omega(\vec{k})t)}$$

amplitude and polarisation  
of plane waves

# Macroscopic Maxwell's equations

The number of microscopic charges and currents in a medium is untractable. We will average the microscopic fields over a length scale  $L$  much larger than the interatomic distance  $a$  but much smaller than the optical wavelength  $\lambda$ . We introduce a normalized smoothing function  $f(\mathbf{r})$  that varies slowly over distances on the order of  $a$ , but whose support is much smaller than  $\lambda$ .



The shape of a smoothing function in real and reciprocal space.  $\eta(\mathbf{k})$  illustrates the behavior of a microscopic field <sup>1</sup>.

## Definition of the macroscopic fields

$$\mathbf{E}(\mathbf{r}, t) = \iiint_{-\infty}^{+\infty} du^3 f(\mathbf{u}) \mathbf{e}(\mathbf{r} - \mathbf{u}, t) = \langle \mathbf{e}(\mathbf{r}, t) \rangle \text{ (average over a ball of radius } L\text{)}$$

<sup>1</sup>cf. Jackson (Ch. 6.6) and Vanderlinde (Ch. 8.1)

# Macroscopic Maxwell's equations

All partial derivatives of the macroscopic fields satisfy  $\frac{\partial \mathbf{E}}{\partial x} = \langle \frac{\partial \mathbf{e}(\mathbf{r}, t)}{\partial x} \rangle$ , etc., and by the linearity of Maxwell's equations we obtain the macroscopic version:

$$\nabla \cdot \mathbf{B} = 0 \quad (14)$$

$$\nabla \times \mathbf{E} + \frac{\partial \mathbf{B}}{\partial t} = 0 \quad (15)$$

$$\nabla \times \left( \frac{1}{\mu_0} \mathbf{B} \right) - \frac{\partial}{\partial t} (\varepsilon_0 \mathbf{E}) = \langle \mathbf{j}(\mathbf{r}, t) \rangle \quad (16)$$

$$\nabla \cdot (\varepsilon_0 \mathbf{E}) = \langle \rho(\mathbf{r}, t) \rangle \quad (17)$$

Then, we distinguish the induced charges and currents (due to the 'internal' or 'intrinsic' charges in the medium)  $\rho_{\text{ind}}$  and  $\mathbf{j}_{\text{ind}}$ , from the external charges and currents controlled by an independent mean,  $\rho_{\text{ext}}$  and  $\mathbf{j}_{\text{ext}}$ . In this lecture, unless stated otherwise, we will always consider the latter to be zero.

# Macroscopic Maxwell's equations



From Problem Set 01, we introduce the induced polarisation density inside the medium  $\mathbf{P}(\mathbf{r}, t)$  satisfying  $\nabla \cdot \mathbf{P} = -\rho_{\text{ind}}$ . From eq. (17) we get

$$\nabla \cdot (\epsilon_0 \mathbf{E}) = -\nabla \cdot (\mathbf{P}) \iff \nabla \cdot (\epsilon_0 \mathbf{E} + \mathbf{P}) = 0 \iff \nabla \cdot \mathbf{D} = 0$$

where we defined the **electric displacement field**  $\mathbf{D} = \epsilon_0 \mathbf{E} + \mathbf{P}$

The **macroscopic Maxwell's equations** eventually writes

$$\begin{aligned}\nabla \cdot \mathbf{B} &= 0 & \nabla \times \mathbf{E} + \frac{\partial \mathbf{B}}{\partial t} &= 0 \\ \nabla \cdot \mathbf{D} &= 0 & \nabla \times \mathbf{H} - \frac{\partial \mathbf{D}}{\partial t} &= 0\end{aligned}$$

together with **two constitutive equations** for the medium

$$\mathbf{D} = \epsilon_0 \mathbf{E} + \mathbf{P}(\mathbf{E}) \rightarrow \mathbf{P} = \epsilon_1 \chi^{(1)} \mathbf{E} + \epsilon_2 \chi^{(2)} \mathbf{E}^2 + \dots \quad (18)$$

$$\mathbf{B} = \mu_0 (\mathbf{H} + \mathbf{M}) \approx \mu_0 \mathbf{H} \quad (\text{no magnetic response}) \quad (19)$$

Remark: induced currents

$$\text{Charge conservation: } \vec{S}_{\text{ind}} + \vec{\nabla} \cdot \vec{j}_{\text{ind}} = 0$$

$$-\vec{\nabla} \cdot \vec{P} + \vec{\nabla} \cdot \vec{j}_{\text{ind}} = 0$$

$$\vec{\nabla} \cdot (\vec{j}_{\text{ind}} - \vec{P}) = 0$$

$$\vec{j}_{\text{ind}} \neq \frac{\partial \vec{P}}{\partial t}$$

But for transverse fields:

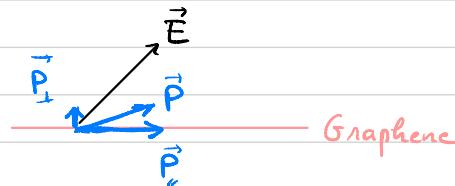
$$\vec{j}_{\text{ind}, \perp} = \frac{\partial \vec{P}_{\perp}}{\partial t}$$

\* Linear static (d.c.) susceptibility

$$\vec{P} = \epsilon_0 \underline{\underline{\chi}}^{(1)} \cdot \vec{E}$$

rank-2 tensor

$$\vec{P}_i = \epsilon_0 \underline{\underline{\chi}}^{(1)}_{ij} E_j = \epsilon_0 \sum_{j=x,y,z} \underline{\underline{\chi}}^{(1)}_{ij} E_j$$



If the material is reciprocal (time-reversal symmetry)

$\underline{\underline{\chi}}^{(1)}$  is real and symmetric  $\rightarrow$  we can diagonalize it

$\Rightarrow$  3 principal axes (optics axes)  $x, y, z$

$$\underline{\underline{\chi}}^{(1)} = \begin{pmatrix} \chi_{xx} & 0 & 0 \\ 0 & \chi_{yy} & 0 \\ 0 & 0 & \chi_{zz} \end{pmatrix}$$

A material is isotropic if  $\chi_{xx} = \chi_{yy} = \chi_{zz}$

Otherwise it is anisotropic.

{ amorphous  
cubic crystals  
liquids gases

## \* Linear optical susceptibility

May I write

$$\vec{P}(\vec{r}, t) = \epsilon_0 \underline{\underline{\chi}}^{(1)} \cdot \vec{E}(\vec{r}, t) \quad ?$$

↳ instantaneous response !

For Homogeneous, Time-translation invariant medium :

$$\vec{P}(\vec{r}, t) = \epsilon_0 \iiint du^3 \int d\tau \underline{\underline{R}}^{(1)}(\vec{u}, \tau) \vec{E}(\vec{r} - \vec{u}, t - \tau)$$

$$\vec{P}(t) = \epsilon_0 \int_{-\infty}^{+\infty} d\tau \underline{\underline{R}}^{(1)}(\tau) \vec{E}(t - \tau) \quad \begin{matrix} \text{non-local response} \\ \Rightarrow \text{neglected} \end{matrix}$$

$$\begin{aligned} \text{FT: } \vec{P}(\omega) &= \epsilon_0 \int_{-\infty}^{+\infty} d\tau \int dt \underline{\underline{R}}^{(1)}(\tau) \vec{E}(t - \tau) e^{-i\omega(t - \tau + \tau)} \\ &= \epsilon_0 \int d\tau \underline{\underline{R}}^{(1)}(\tau) e^{-i\omega\tau} \int du \vec{E}(u) e^{-i\omega u} \\ &= \epsilon_0 \underline{\underline{\chi}}^{(1)}(\omega) \vec{E}(\omega) \end{aligned}$$

$$\vec{P}(\omega) = \epsilon_0 \underline{\underline{\chi}}^{(1)}(\omega) \cdot \vec{E}(\omega)$$

## \* Dispersion relation

$$\vec{D} = \epsilon_0 \vec{E} + \vec{P} \Rightarrow \vec{D}(\omega) = \epsilon_0 \left( \underline{\underline{1}} + \underline{\underline{\chi}}^{(1)}(\omega) \right) \cdot \vec{E}(\omega)$$

$$\text{Along a principal axis 'x' : } D_x(\omega) = \epsilon_0 \left( 1 + \underline{\underline{\chi}}_{xx}(\omega) \right) E_x(\omega)$$

$\epsilon_x(\omega)$  relative permittivity

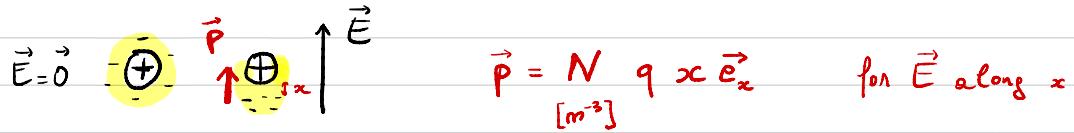
$$\text{Phase velocity : } |\vec{R}|^2 = \mu_0 \epsilon_0 \epsilon_x(\omega) \omega^2 = \frac{\omega^2}{c^2} n_x^2(\omega)$$

Refractive index :

$$n(\omega) = \sqrt{1 + \chi(\omega)} = \sqrt{\epsilon_x(\omega)}$$

$\epsilon \in \mathbb{C}$

### III) Lorentz oscillator model



Newton's law :  $m \ddot{x} = -m \omega_0^2 x - m \gamma_0 \dot{x} + q E(t) \quad \omega_0 = \sqrt{\frac{k}{m}}$

↓  
 reduced mass      ↓  
 restoring      ↓  
 damping      ↓  
 drive

Harmonic solutions

$$\begin{cases} x(t) = A(\omega) e^{-i\omega t} & \text{response} \\ E(t) = E(\omega) e^{-i\omega t} & \rightarrow \text{excitation} \end{cases}$$

Eq. of motion :  $(-\omega^2 + \omega_0^2 - i\gamma_0\omega) A(\omega) = \frac{q}{m} E(\omega)$

$$P(\omega) = N q A(\omega) = \frac{N q^2}{m} \frac{1}{\omega_0^2 - \omega^2 - i\omega\gamma_0} E(\omega) \equiv \varepsilon_0 \chi(\omega) E(\omega)$$

$$\chi(\omega) = \chi_0 \frac{\omega_0^2}{\omega_0^2 - \omega^2 - i\gamma_0\omega} \quad \text{with} \quad \chi_0 = \frac{N q^2}{\varepsilon_0 m \omega_0^2}$$

Total response :

$$\chi^{(1)}(\omega) = \sum_{\alpha} \chi_{\alpha} \frac{\omega_{\alpha}^2}{\omega_{\alpha}^2 - \omega^2 - i\gamma_{\alpha}\omega}$$

↳ each d.o.f is characterized by 3 parameters

$\chi_{\alpha}$  = strength     $\omega_{\alpha}$  = resonance freq.     $\gamma_{\alpha}$  = damping

## \* Sellmeier equations

Far from resonance  $\chi$  is real :  $\chi_\alpha = \frac{\omega_\alpha^2}{\omega_\alpha^2 - \omega^2} \chi_\alpha$

$$= \frac{1/\lambda_\alpha^2}{1/\lambda_\alpha^2 - 1/\lambda^2} \chi_\alpha = \frac{\lambda^2}{\lambda^2 - \lambda_\alpha^2} \chi_\alpha$$

In the transparency domain of a material we can write its refractive index :

$$n^2 = 1 + \chi(\omega) = 1 + \sum_\alpha \frac{\lambda^2}{\lambda^2 - \lambda_\alpha^2} \chi_\alpha$$

Sellmeier coefficient :  $\lambda_\alpha, \chi_\alpha$

## \* Complex index of refraction

$$\tilde{n}(\omega) = \sqrt{1 + \chi(\omega)} = n + i \kappa \quad \text{with } \kappa = \text{Im}\{\tilde{n}\}$$

Consider a plane wave satisfying the dispersion relation :

$$\tilde{k}(\omega) = \tilde{n} \frac{\omega}{c} = n \frac{\omega}{c} + i \kappa \frac{\omega}{c}$$

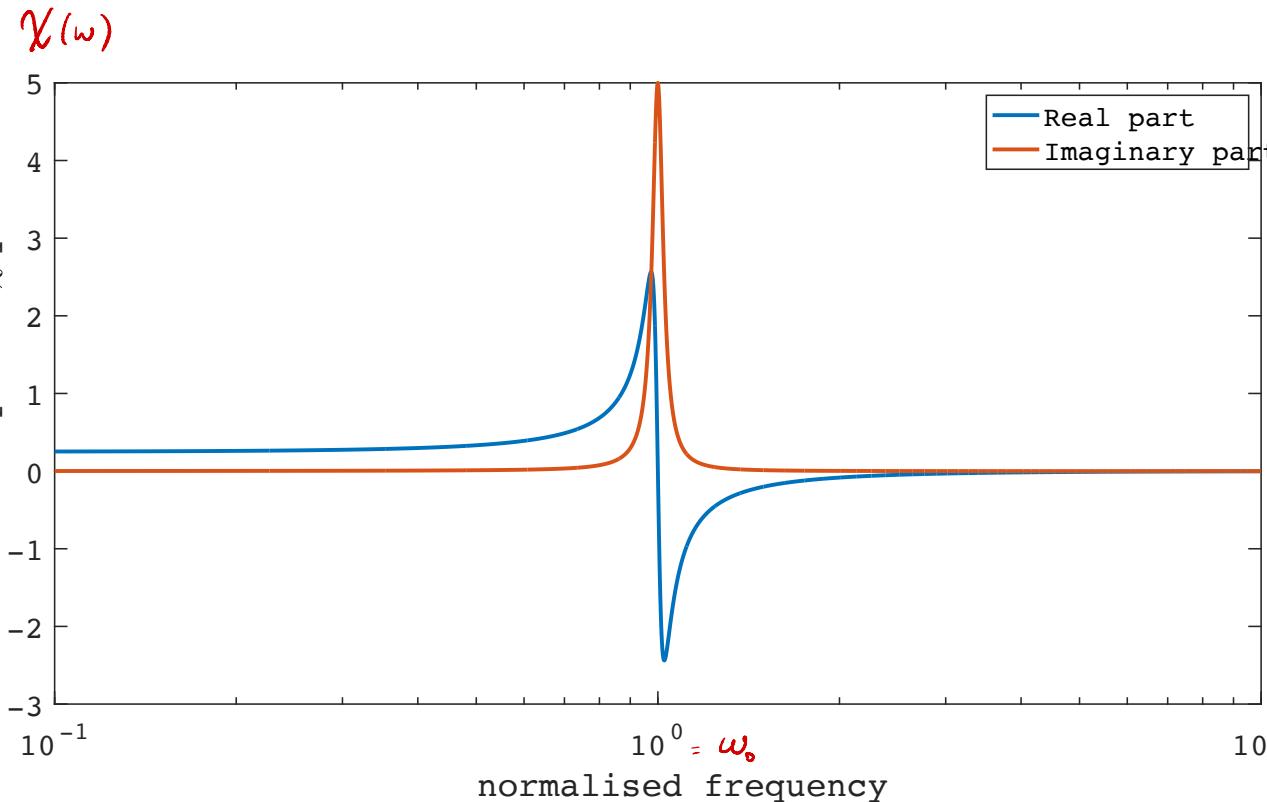
$$E_x(r, t) = E_0 e^{i(\tilde{k}z - \omega t)} = E_0 e^{i(kz - \omega t)} \underbrace{e^{-\kappa \frac{\omega}{c} z}}_{\text{damping of amplitude}}$$

Intensity  $\propto |E|^2 = E_0^2 e^{-\frac{2\omega}{c} \kappa z} \rightarrow \text{absorption coefficient}$

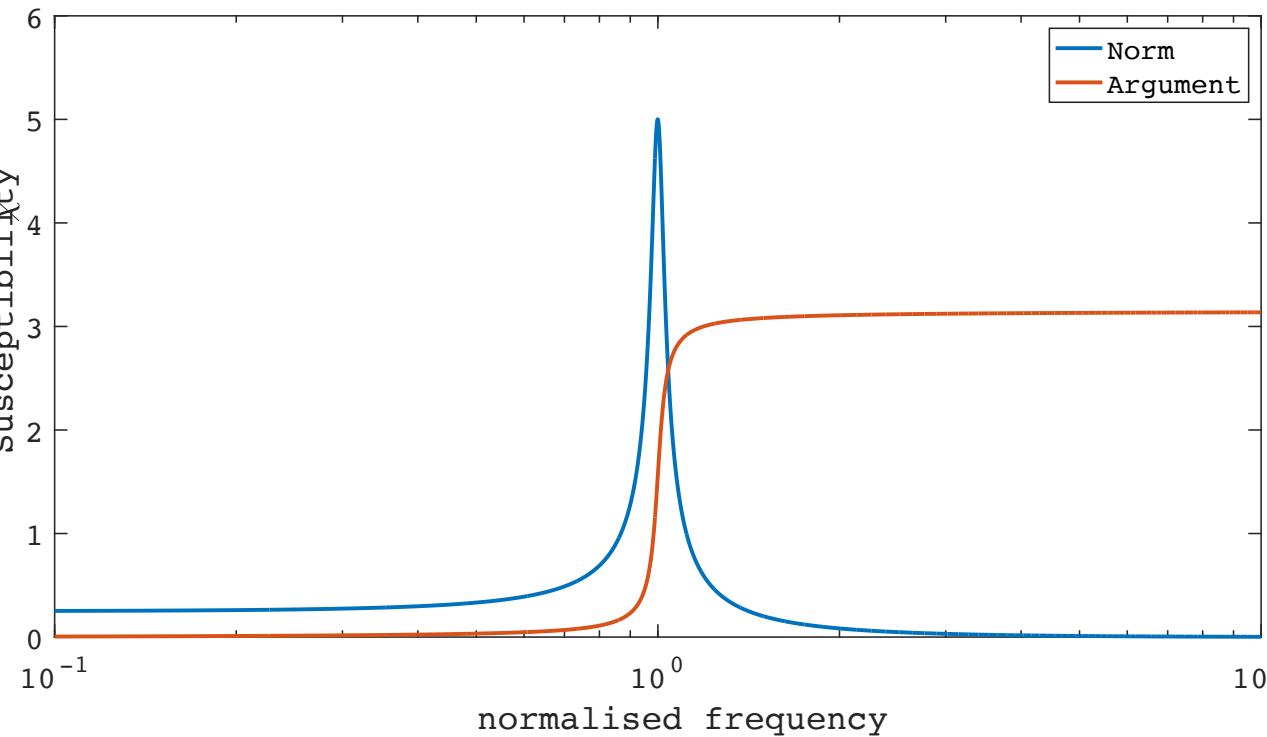
$$\alpha = \frac{2\omega}{c} \kappa = \frac{4\pi}{\lambda} \kappa \quad [\text{m}^{-1}]$$

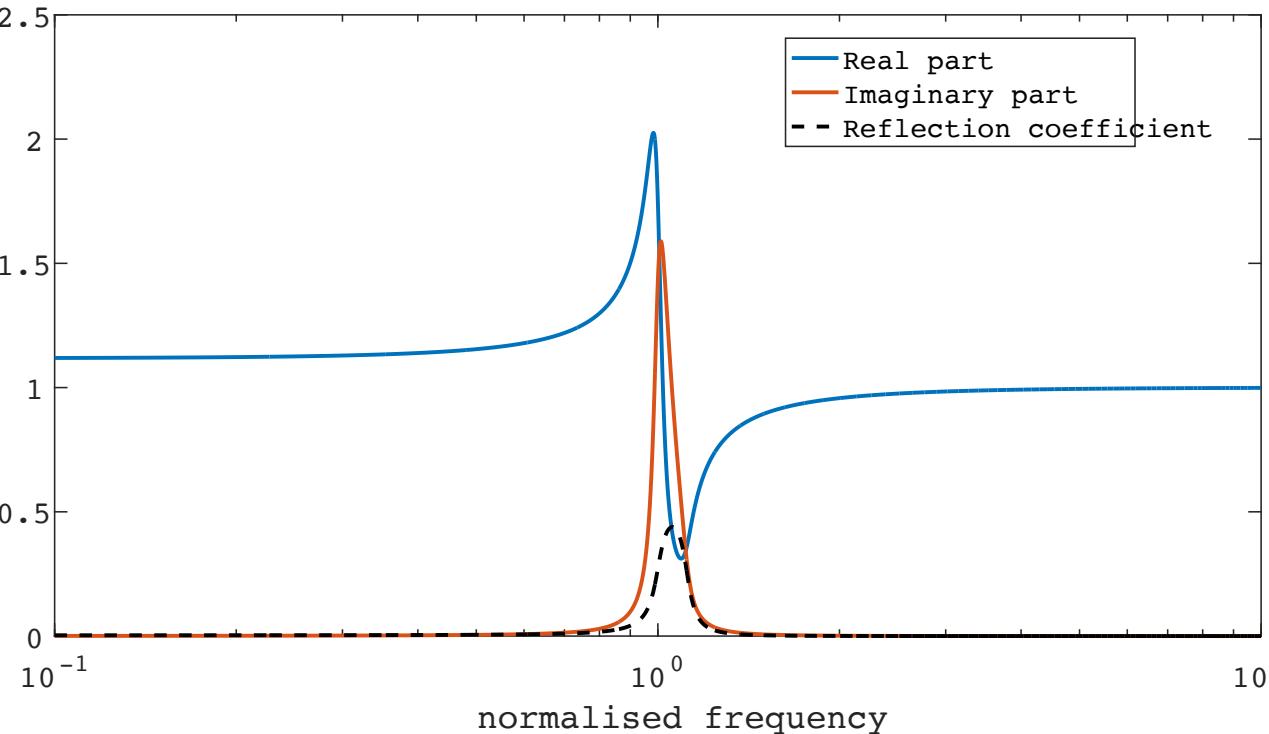
$\hookrightarrow \alpha^{-1} = \text{propagation length} = \frac{\lambda}{4\pi \kappa} \rightarrow \text{if } \kappa = 0.1, \alpha^{-1} < \lambda$

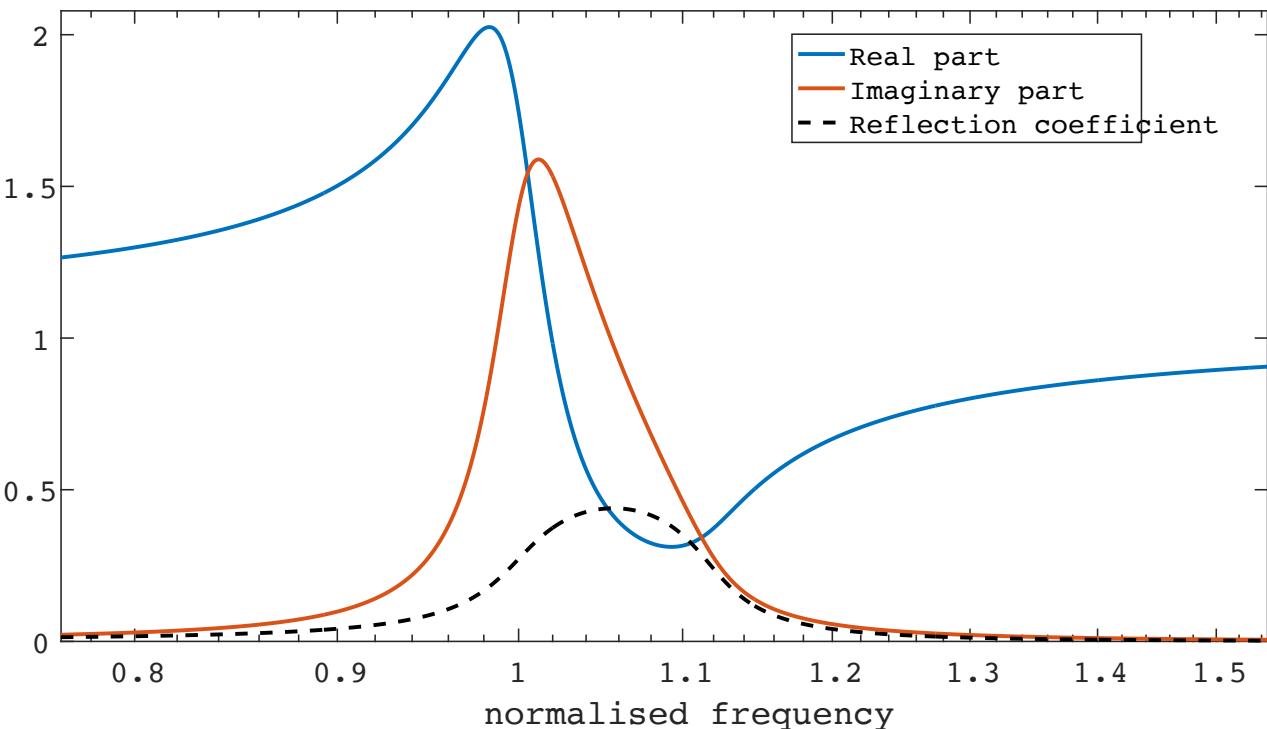
$$\begin{aligned} \alpha &= \frac{2\omega}{c} \kappa \\ &= \frac{4\pi}{\lambda} \kappa \\ &= \frac{\omega}{nc} \text{Im} \chi \end{aligned}$$

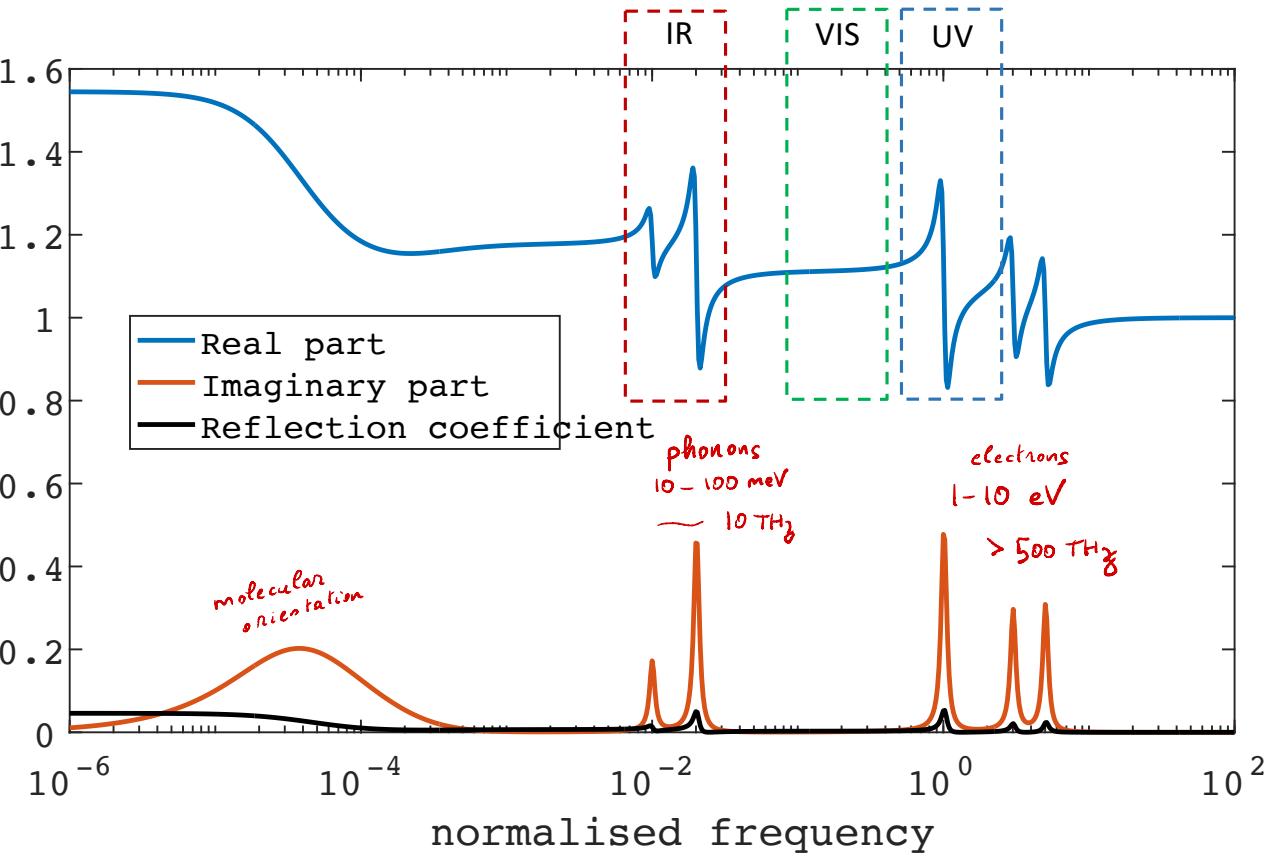


$\chi(\omega)$

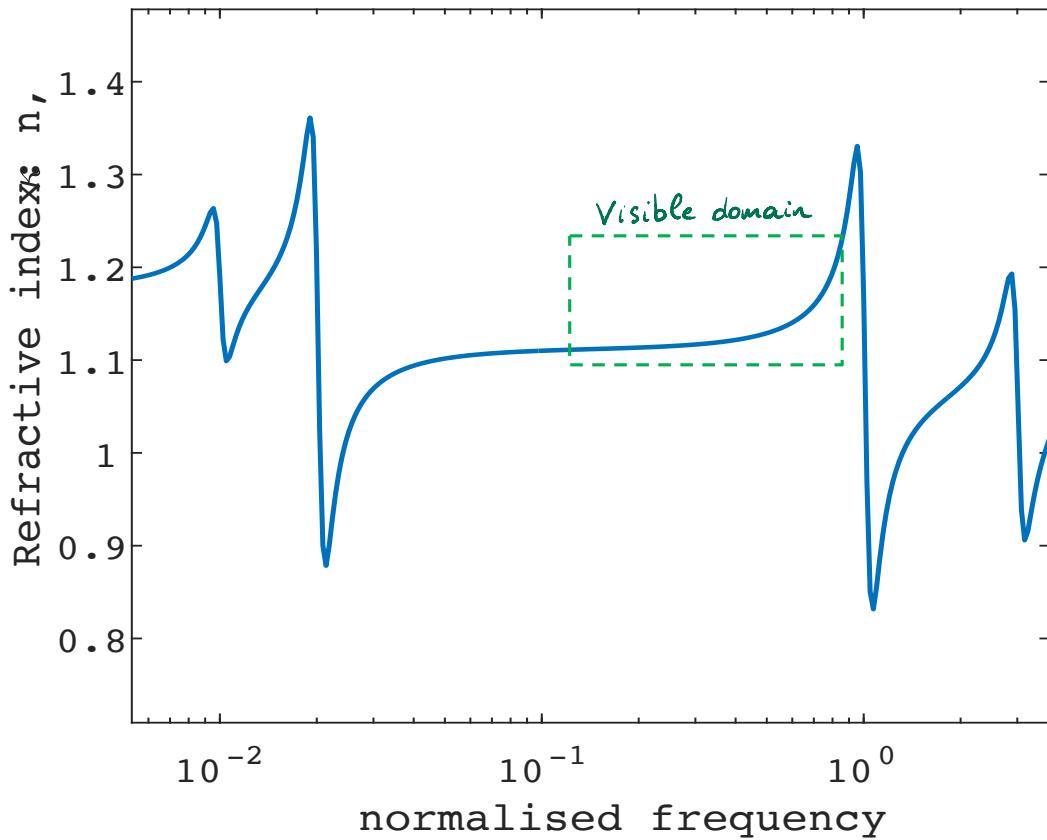


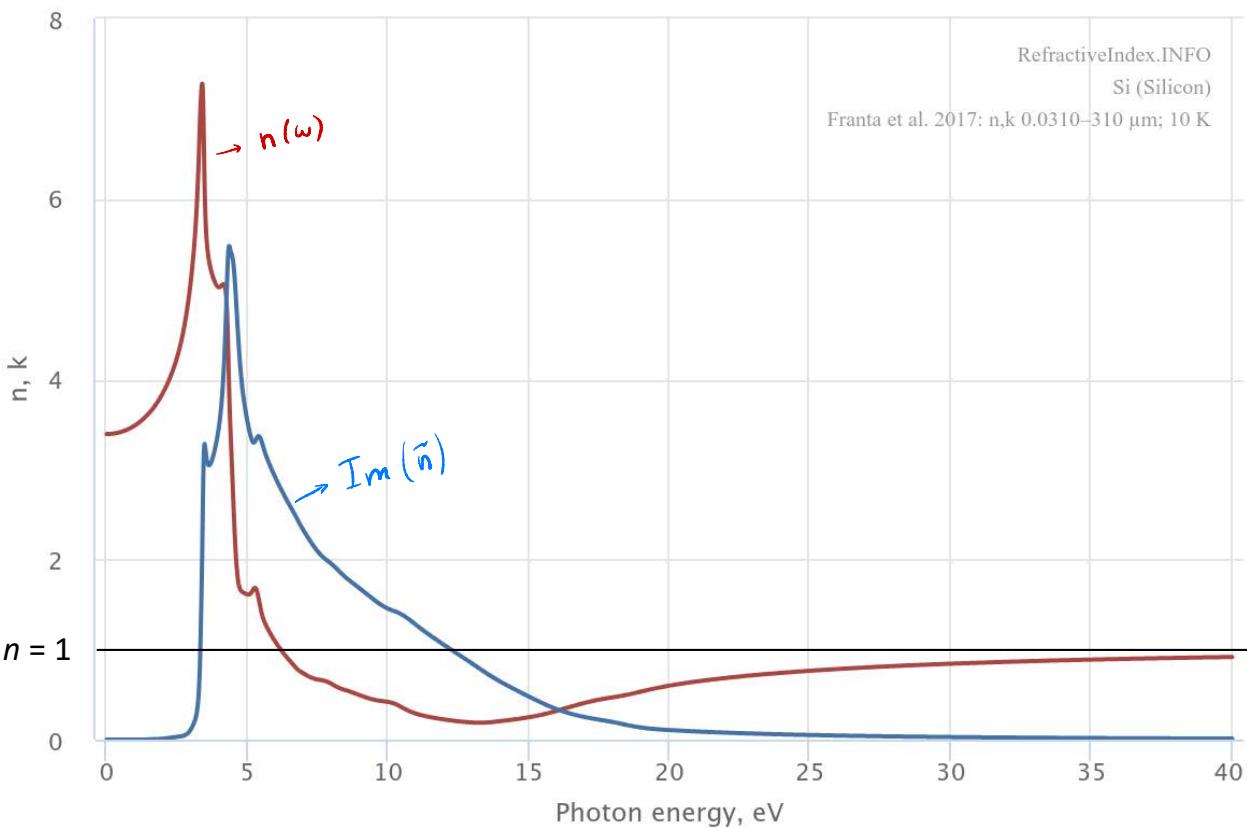






$$n(\omega) = \text{Re} \sqrt{1 + \chi(\omega)} \quad \alpha(\omega) \approx \frac{2\omega}{c} \text{Im} \sqrt{1 + \chi(\omega)}$$





<https://refractiveindex.info/?shelf=main&book=Si&page=Franta-10K>