EPFL - Physics’ section Mathematical methods in quantum physics

Solutions to exercice sheet 5

’ Construction of Wiener process ‘

1.|Find a basis and a sub-basis for the canonical topology on R.

Consider the set
f:={la,00[: a € R}U{] —00,d] : a € R}.

Then S is a collection of open sets on R and intersections of elements in § yield all
open intervals on R. But this last collection is a basis for the Euclidean topology
on R, so that [ is a basis for this topology.

2.|Let (2,7) be a topological space. Let S C P(7) be a totally ordered set (for the partial
order being the set inclusion) so that no element of S has a finite sub-cover for 2. Show
then that Uges has no finite sub-cover of €2.

For k =1,...,nlet M be a finite collection of open sets of some topological space (2, 7).
For each k, Let By, € 7 so that M U{ By} covers 2. Show then that (U}_; M)U{N}_, By}
covers (.

If Uses had a finite sub-cover of 2, then there would be some finite set {vy,...,V,} C
Uses, so that = Up_,V,,. But then, there would be sets {S;,,...,95;,} C S with
Vk=1,...,n, Vi €5, Since § is totally ordered, there must be a set T € S with
T D Ui_S;.. But then, Vk = 1,...,n, we would have V}, € T, so that T" has a finite
sub-cover of €2, a contradiction.

It is sufficient to consider n = 2: if My, My are two finite collections of open sets
and By, By € 7 are such that M; U {B;} and M5 U {By} both cover €2, then in
particular, My U {B;} covers By, so that My U {B; N By} covers By as well and
M U{B; N By} UMs; covers €.

3.|Let {(€%, ;) }ier is a family of topological spaces. Provide the cartesian product [[,.; €%
with the collection 7 of sets consisting of arbitrary unions of sets of the form [[,., V,
where all but a finite number of the V/s are equal to €.

Show that 7 is a topology. For some fixed i € I, let m; : [[,o; 4 — Qs, (i)ier = x5 € ; be
the canonical projection. Show that the collection of sets {m; (V) : i € I and V € 7;}
is a sub-basis for 7. Prove that the product topology is then the coarsest topology for
which all the maps 7; are continuous.

Let §:={S C J : |S| € 3}. Then 7 consists of arbitrary unions of sets in

B={][Vi [[ @ :95€eS Vien}.

€S jeJ\S

This last collection of sets satisfies
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(B1) :
UUeﬁ = HQZ
ieJ
Indeed, if S =0, then [[,cg Vi[l;cns % = e Y-
(B2): it U,U’ € j3, then there is an U” € § so that U” € U' N U".
Indeed, let U = [[;csVilljens$ and U = [Lcr Vi Tl r € Then set
R:=SUT and for i € R set

VinV/ ifieSnT,
V/={VinQ, ifieS\T,
O,NV, ifieT\S

Obviously R € Sand V}" € 7 foreach i € R. Clearly, UNU" = [[;cx V" [ [;e nr €% €
s

A set [ satisfying (B1) and (B2) is then a basis for the collection 7 of sets which
are arbitrary unions of elements in § and 7 is a topology. Indeed,

o 0,J[; e
For the latter, [, Q; € 7 by property (B1) and if S = {i} for some i € J and
Up =0, then [L,eg Villjenr Q=0 pCr

o if F C 7, then UycrU € 7.
This is obvious, since Uye#U is again an arbitrary union of elements in 3, for
any U € § is n arbitrary union of elements in f.

o if 7 C 7, then NyerU € 7 if |F| € N.
It is obviously enough to prove this if F consists of only two elements U, U’. In
this case, let U = UpeecpB and U’ = UpgeercpB . Then UNU' = Up precuc BN
B’, which by property (B2) is again a union of elements in £.

T is therefore a topology and [ is a base for 7.

The collection of sets
o:={r'(V;) :i€J and V; € 7;}

is a sub-base for 7, since for any S € S, [[;e5 Villjens 2 = Niesm; H(Vi).

If 7 € P([L;c,; %) is another topology for which all the maps 7; are continuous,
then 7/ must by definition contain all sets of the form «; *(V;) with U; € 7;. Hence,
T Do.

7/ being a topology it must contain all finite intersections of elements in 7/, so that
it must contain .

7' being a topology it must contain all arbitrary unions of elements in 7/, so that it
must contain 7.

As a consequence, any topology for which all projections 7; are continuous contains
at least 7. This latter topology is hence the coarsest one for which all projections
m; are continuous.
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4.| The one-point compactification of RY is defined as the set RV := RN U {x}, where
* ¢ RV provided with the topology 7 consisting of the canonical open sets in RY together
with sets of the form {*} U (RY \ K), with K C R and K is compact in the canonical
topology in RN. '

Prove that RN is a compact set. Prove that f € C'(RY) iff, when restricted to RY, f = A +g
with g € Co(RY) and X € R.

Consider Qf, :==[],-, RN, provided with the product topology, and the set of finite func-
tions Ch,(€2). Prove that Cq, () € C(r) and that Cq,(927) is uniformly dense in

Let F C 7 be a cover of RN. Then at least one of the sets U € F has * as one of its
elements. By definition, for such a U, we must have RN \ U = K with K a compact
set of RY. But UprerU’ = RYN, so that Uprer U’ O K, which is obviously equiva-
lent to UUIG;\{U}(RN NU’) D K. K being compact, this is already the case for some
finite subset G C F and GU{U}, a finite set of open sets in 7, covers therefore RN,
This shows the compactness of RN,

For a function f : RN — C, let U C C be some open set with A := f(x) € U.

If f is continuous, then f~!(U) € 7 for any such open set U. Obviously, * € f~}(U)
and RN \ f~1(U) is compact in RY.

Let € > 0 and set B(\,e) :== {z € C : |z — A < €}. Then RN\ f~1(B(\,¢)) is
a compact set K. C RY and if ¢ K, then |f(*) — f(z)| < e. This is the exact
definition of lim,o f(2) = A, or equivalently lim, o (f — A)(xz) = 0. Hence,
when restricted to RY, f = A+ g with g := f — X € Co(RY).

Conversely, if f = +gand A € C, g € Cyp(R"), then by definition, lim,« g(z) =
lim |y —oo(f — A)(2) = 0. By definition, this means that for any given e > 0, there is
a compact set K. C RV, so that x ¢ K, implies |g(x)| = | f(z) — A| < e. Therefore,
for B(A\,€) :={2€C : |z — A < ¢}, one has f1(B(\,¢) = RN\ K..

If U € RY is open and if A ¢ U, then there is some ¢ > 0 so that B(\,e) N U = (.
Hence, f~1(U) N f~Y(B(\€)) = 0, so that f~1(U) C K..

If one now extends g+ A to RN by imposing f (%) = A, then f is certainly continuous
on RN for the topology 7.

If FFeChn(2 L), then by definition there is some finite set S C R, and a continuous
function f : (RV)ISI — C, so that

Q3 (we)iz0 = F((we)i0) = f((ws)ses)-

It U C Cis open, then F'(U) = f7'(U) x [;cr,\s RN and it remains to be shown,

that f~HU) is open in (RN)|S| for the product topology. Since f is continuous on
(RM)IS! then by definition, f~'(U) is open for the product topology on (RV)!*l, so
that F~'(U) = f~'(U) x [],cq, s R" is open for the product topology in €, and F
is continuous. Therefore, Cq,(Q1) C C(21).

To prove the uniform density of C,(€2z) in C'(21) we shall verify the conditions of
Stone & Weierstrass’s theorem:
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e C5,(€2r) is an algebra over C, closed under complex conjugation.

Let R, S,T C Ry be finite sets and let I, G, H € Cq,(Q1) be defined by

Q2 (w)zo = F((we)i=0) = f((we)eer),
Qr 3 (wi)iz0 = G((Wi)iz0) = g((wi)res),
Qp 3 (we)s0 = H((we)e0) ((we)eer),

g
h

4

with f € C(RN™)), g € C(R¥™)) and h € C(RY™)). Then, D := RUSUT
is a finite subset of R as well and f x (g+4h) is a continuous function on (RV)I”!
with

(f x (g + 1) ((wi)ien) = f((wi)ier) ¥ (g((we)ies) + h((wi)er))-

The lift on ), is then the finite function

(F' X (G + H))((wi)iz0) = (f x (g + h)((wi)ep)-

The complex conjugate F of F is then simply given by

F((w)iz0) = f((w)ier) = F € Can(Q),

_ - IR
since clearly f € C’((RN| ‘))
It is also obvious that F' =0 € Cx,(£21), so that Cs,(€2r) is indeed an algebra
over C of continuous functions on €2, that is closed under complex conjugation.

e C;n(Q21) does not vanish on €.

This is clear since the constant function 1((w;);>0) = 1 is obviously an element
of Cin(Qr) and does vanish nowhere.

o Cn(Q21) separates points on .

If (w;)i=0 # (v¢)i>0, then Js € R, so that w, # u,. Since C(RN) manifestly
separates the points in RV, there is a function f € C(RN) with f(w,) # f(us).
Set then F' € Cqpn(21) as F((w)i>0) := f(ws), which is by construction a finite
function, separating (w;):>o and (vt)>o-

We may hence apply the theorem by Stone & Weierstrass on the compact set €,
and conclude, that C,(€21) is dense in C(€2y) for the supremum norm || |-
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5.|For a fixed zog € RY and for some Ffy, 4. € Cun(Q1), we define

Lo (Ffiyotn) = / p?f,...,tm (1, oy @) f(@1, ) pn(dzy X oo X day,),

RmN

K 1 (z—wp_1)>

Lo ceeydm) = e ’ fo=0
ptl,...,tm(xlv  Tm) kll (2m(ty — tk—l))N/2€ i

Check that I,,(1) := 1. For Fyy 4, and 0 < t with {t1,....t,} N {t} = 0, if
Gf,tl,...,tk,t,tkﬂ,“.,tm (w) = Ff,tl,...,tm (w), check that

]zo (Gf,tl7~~~,tk7t,tk+1,~-,tm) - Iﬁ?o (Ff7t17--~atm)‘
For some constant C' > 0 and for €,t > 0, prove that

vVt 2

E:L"O,W(l{wEQL : \wt—x0|>e}) < C?eim-

If we set
p(€,0) := sup{pzew({w € Qp @ [wy —x0| > €}) : 0 <t <0},

! (€,0) =0.

th ify that lim —
en verify that ~ lim —p

The constant function 1 on €2, is described by some Fy;,  ;  with f the constant
unit function on (RN)™ {t;,...,t,} C Ry and tog = 0. But then

I,(1) = /R prf,...,tm(xlv o T f(x, ) pn(dey XL X day,)

— / N Peyan (X1, ) (day XX dXy,)
Rm

m

:/RmNH

L (@2m(ty — ten))N2

1 (g _q)?
e 2t t0 iy (day X ..o X dxy,).

The last integral is equal to its Riemann integral and successive integration over

(z

_ )2
all variables yield integrations of the type fRN ( 25y N x, which are all

i -
2n(i—s) N2
normalised gaussians, so that I, (1) = 1.

For Ff,tl,...,tm and 0 < ¢ with {tla ce ,tm} N {t} = (Z), if Gf,tl,~~~,tk,t,tk+1‘7--~7tm(w) =
Ff,tl,...,tm (@U), then Gf,tl,...,tk,t,tk+1,...,tm = Gg,t1,...,tk,t,tk+1,tm with g € C((RN)mH) and
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g(x1, . T T, Tty - T) = f(21, ..., 2). Note also, that
pfl(),...,tk,t,tk+1,...,tm(:El) ooy Ty Uy T 1y - - ,l’m)
k (zj—z)_ )2 z—=zp,)2
N0 =2 N S
-1 (27T(tl — tl_1>>N/2 (27T(t - tk>)N/2

(@pp1—)? m (z—21-1)°
s S =Y
Gl — )2 ENCHORI e
Integrating this probability measure along the variable z yields the convolution
of two gaussian probability distributions. This convolution may be computed by
Fourier transforms or by a direct computation involving completion of squares:

1 _(a—ap)? 1 _ (5(’2“_1,2?
t—t -
/RN o= Gt oyt pelda)

1 ]_ ]_ ,l(<z*1k)2+(mk+1—m)2)
= 2\ (t—ty,) (t =)
TN (= )N (g — )N /RN € g 10y (da)
1 1 -1 y2 +((wk+1—xk)—y)2)
et 2 (t—tk) (tk+1_t) d
Yy=x—T} (27T)N ((t _ tk)(tk+1 . t))N/2 /RN € ,UL( y)
! ! ~smmta=s (e =0y H (= t0) (@h 1 —x)—9)?)
- e 2(t—tg) (tpyq1—1t) + + d
(2m)™ ((t = 1) (brgr — 1) / p(dy)
_(@kpr—=p)?
1 e 20rp1-t)

1 2
_ —W((thrl—tk)y —Q(t—tk)($k+1—rk)y) d
T s 07 )

(rp1-21)? (=t @pp1—op)?

1 e 20k1-9 o201t tgy1—D (g1 —tk) (t—tg)

2
_ _ _ Kl (Tgq1— k)
B . 20 —t) (1 —0) (y (tp1—tk) ) ML(dy)

2O (= t) (trsr — )7 /RN

_ (g1 —op)?
e 2tky1—tp)

(27 (kg1 — tk))N/T

Consequently,

0o
/ pt17...,tk,t,tk+1,...7tm (xla ey Tpy Ty Tpg1y - - - 7$m)ﬂ’L(dx)
RN

= pflo,“.,tm (Ih B axm)
and
ng (Gf,tl,..‘,tk,t,thrl,...,tm)
:/ Npff,...,tk,t,tk+1,tm(fl?1, s T)g(T1, e Tk X T, - D) o (A X dr XL dXy,)
Rm

— / N ptxl(),...,tk,t,tk+1,tm<x17 o ) (21, Ty Tty - T pen (g XX dXy ) (d)
Rm

- / N pflo,---7tk,tk+latm (X1, oy @) f(xr, o ) pp(dey X oo X day,)
R'm.

= IxO (Ff7t17-~~7tm)'
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If N =1, one has for f(y) = 1jy_zo|>e

E:L‘O,W(l{’wGQL : \wtfxo|>e}) = [ato (Ff,t)

1 (z—=0)?
= [ p{°(2) L) pyseper(dx) :/ e 2 pp(de)
/R ! | o> R\[zo—€,z0+€] V 2mt

1 y> 2 2
= e 2 p(dy) = / e 2 g (dy)
/R\[G,Jre] V27t V2t Je

2 [Ty 2 2%1 2
< Ze 2t dy) = — e 2,
< th/e ¢ pr(dy) =4/ ——¢

For a general dimension N € N, note that |z — x| > € with z, 2o € RY implies that
|z, — 20| > \/LN for at least one component k = 1, ..., N. Therefore, if |w; — x| > ¢,

then w; € UY_ {w; € RN . \wy g, — o k| > \/LN} Each of these sets in this finite
62
union has a Wiener measure dominated by +/2tN/ W%@‘TM, so that

VG,

——e 2NJ
™ €

ple,d) <
Substituting A for 1/§, one gets

1 ]. 62
0 < lim gp(e,é) < Clim ——e 2%

—0 —0 66
. _€2A
=C lim —e 28 =0

A—oo €

6.|Let 0,e > 0 and consider a finite set S C Ry so that Vt € S, |t — tmin(s)| < 0. For t € S,
let

€
Ct,s,S = {w € QL . |wt - wmax(S)| > 5}7
Dies:={w e Qp : |wy — Wmines)| > € and Vs € S with s < t, Wy — Wiin(s)| < €}

Shoe then that Vt € S,

€
Mxo,W(Ct,e,S N Dt,e,S) S p(ia 5)M$O,W(Dt,6,s)'

Let f(z,w) := 1z w>g, so that 1c,, ¢ = Fytmax(s)-
Similarly, let {t1,...,t,} = SN|min(S),¢[ and define

m
g<y7 L1y T, l’) = 1|zfy|>e H 1\xkfy|§e-
k=1

Then 1p,, 3 = Ggmin(8) b1, tm,t a0
:U’wo,W(Ct,e,S N Dt,e,S)

L0

— /N( " Diosin(S) tr. s o max(S) (Yy 1y ooy Ty T, W) G(Y, X1y ooy Ty @) f, w)pp (dy X .o X dw).
R m
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Observe now that

pfr?in(S),tl,...,tm,t,maX(S) (W21, Ty @, w) = pfr?in(S),tl,...,tm,t(y7 L1y eves Ty x)pf,max(S) (z,w).
We now may calculate the integral over w first and notice, that the result is bounded
by p(5,6). Integration over the remaining variables result in ji,, w(Dyes) which
yields the announced inequality.

7.|Let 0,e > 0 and consider a finite set S C Ry so that Vt € S, [t — tmin(s)| < 0. Let
Acsi={w e Qp : Is € S s.t. |wy — Win(s)| > €}

Prove then that
o (As) < 20(5,0).

Define

Bes i ={w € Q.1 |Wnin(s) — Wmax(s)| > }

fort €S, Cies:i={weQp : [w — Wnaxs)| > 5}7
Dies:={w e Qp : |wy — Wnines)| > € and Vs € S with s <, [wy — Wiin(s)| < €}

If we A.g, then w € D, g for some t € S.
If w¢ B.g and if for some t € S w € D, g, then w € C g, since w has to move a
distance at least § to go back from outside the ball of radius € into the ball of radius

%. Therefore
AE,S C BE,S U (U Ct,e,S N Dt,e,S) .

tes
Thus,

faow (Aes) < pagw (Bes) + Z fraow (Cres N Dycs)

tes

S Mx07W(BES +P Zﬂxo, DteS

tesS

by the previous exercice. Since D,.s and Dy . g are by definition disjoint for S >
t#t €S, one has

=.8) < 20(5,8).

M$07W(A57S) < Mﬂco,W(Be,S) + p(2

8.|Let d,¢ > 0 and consider 0 < tg < t; with t; — tqg < . Define
Eitye:={w e Qp : s, t € [to,t1] s.t. |ws —wy| > 2¢}.

Prove then that
:uﬂlo,W(Eto,the) S 2p(_ 5)
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Consider some finite set S € [to, t1] with ¢g,¢; € S and notice, that if one defines
E.s:={weQyy : 3t,seS st. |ws—w| > 2},

then F. g C Ac g with
Acs ={weQp : Is €S s.t. |ws — Wmines)| > €},

since if |ws — wy| > 2¢, then |ws — wy,|, |wy — wy,| < € cannot both hold. Hence, by
the previous exercice,

€
paow (Ees) < 2,0(5, J).

We now are going to make use of the regularity of the measure 1, and note that
the aforementioned sets E g are open in the product topology for any finite set
S C [to,tl] with ty,t1 € S.

If we consider the collection of open sets

Letory :={Fes : S C [to,t1] is a finite set with £y, ¢, € S},

then
Et(),tl J€ = U V

Vel e tg,t1
and by the regularity of the measure fiz, w,

€

Mﬂfo,W(Eto,tlﬁ) = Sup{uxo,W(E€7S)} < 2P(§, 5)



