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Solutions to exercice sheet 5

Construction of Wiener process

1. Find a basis and a sub-basis for the canonical topology on R.

Consider the set

β := {]a,∞[ : a ∈ R} ∪ {]−∞, a] : a ∈ R}.

Then β is a collection of open sets on R and intersections of elements in β yield all
open intervals on R. But this last collection is a basis for the Euclidean topology
on R, so that β is a basis for this topology.

2. Let (Ω, τ) be a topological space. Let S ⊂ P(τ) be a totally ordered set (for the partial
order being the set inclusion) so that no element of S has a finite sub-cover for Ω. Show
then that ∪S∈S has no finite sub-cover of Ω.
For k = 1, . . . , n let Mk be a finite collection of open sets of some topological space (Ω, τ).
For each k, Let Bk ∈ τ so thatMk∪{Bk} covers Ω. Show then that (∪n

k=1Mk)∪{∩n
k=1Bk}

covers Ω.

If ∪S∈S had a finite sub-cover of Ω, then there would be some finite set {v1, . . . , Vn} ⊂
∪S∈S , so that Ω = ∪n

k=1Vn. But then, there would be sets {Sj1 , . . . , Sjn} ⊂ S with
∀k = 1, . . . , n, Vk ∈ Sjk . Since S is totally ordered, there must be a set T ∈ S with
T ⊃ ∪n

k=1Sjk . But then, ∀k = 1, . . . , n, we would have Vk ∈ T , so that T has a finite
sub-cover of Ω, a contradiction.

It is sufficient to consider n = 2: if M1, M2 are two finite collections of open sets
and B1, B2 ∈ τ are such that M1 ∪ {B1} and M2 ∪ {B2} both cover Ω, then in
particular, M1 ∪ {B1} covers B2, so that M1 ∪ {B1 ∩ B2} covers B2 as well and
M1 ∪ {B1 ∩B2} ∪M2 covers Ω.

3. Let {(Ωi, τi)}i∈I is a family of topological spaces. Provide the cartesian product
∏

i∈I Ωi

with the collection τ of sets consisting of arbitrary unions of sets of the form
∏

i∈I Vi,
where all but a finite number of the V ′

i s are equal to Ωi.
Show that τ is a topology. For some fixed i ∈ I, let πi :

∏
i∈I Ωi → Ωi, (xi)i∈I 7→ xi ∈ Ωi be

the canonical projection. Show that the collection of sets {π−1
i (V ) : i ∈ I and V ∈ τi}

is a sub-basis for τ . Prove that the product topology is then the coarsest topology for
which all the maps πi are continuous.

Let S := {S ⊂ J : |S| ∈ J}. Then τ consists of arbitrary unions of sets in

β := {
∏
i∈S

Vi

∏
j∈J\S

Ωj : S ∈ S, Vi ∈ τi}.

This last collection of sets satisfies
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(B1) :

∪U∈β =
∏
i∈J

Ωi.

Indeed, if S = ∅, then
∏

i∈S Vi

∏
j∈J\S Ωj =

∏
j∈J Ωj.

(B2) : if U,U ′ ∈ β, then there is an U ′′ ∈ β so that U ′′ ∈ U ′ ∩ U ′′.
Indeed, let U =

∏
i∈S Vi

∏
j∈J\S Ωj and U ′ =

∏
i∈T V ′

i

∏
j∈J\T Ωj. Then set

R := S ∪ T and for i ∈ R set

V ′′
i :=


Vi ∩ V ′

i if i ∈ S ∩ T,

Vi ∩ Ωi if i ∈ S \ T,
Ωi ∩ V ′

i if i ∈ T \ S.

ObviouslyR ∈ S and V ′′
i ∈ τi for each i ∈ R. Clearly, U∩U ′ =

∏
i∈R V ′′

i

∏
j∈J\R Ωj ∈

β.

A set β satisfying (B1) and (B2) is then a basis for the collection τ of sets which
are arbitrary unions of elements in β and τ is a topology. Indeed,

• ∅,
∏

j Ωj ∈ τ :
For the latter,

∏
j Ωj ∈ τ by property (B1) and if S = {i} for some i ∈ J and

Ui = ∅, then
∏

i∈S Vi

∏
j∈J\T Ωj = ∅ ∈ β ⊂ τ .

• if F ⊂ τ , then ∪U∈FU ∈ τ .
This is obvious, since ∪U∈FU is again an arbitrary union of elements in β, for
any U ∈ S is n arbitrary union of elements in β.

• if F ⊂ τ , then ∩U∈FU ∈ τ if |F| ∈ N.
It is obviously enough to prove this if F consists of only two elements U,U ′. In
this case, let U = ∪B∈C⊂βB and U ′ = ∪B∈C′⊂βB . Then U ∩U ′ = ∪B,B′∈C∪C′B∩
B′, which by property (B2) is again a union of elements in β.

τ is therefore a topology and β is a base for τ .

The collection of sets

σ := {π−1
i (Vi) : i ∈ J and Vi ∈ τi}

is a sub-base for τ , since for any S ∈ S,
∏

i∈S Vi

∏
j∈J\S Ωj = ∩i∈Sπ

−1
i (Vi).

If τ ′ ⊂ P(
∏

i∈J Ωi) is another topology for which all the maps πi are continuous,
then τ ′ must by definition contain all sets of the form π−1

i (Vi) with Ui ∈ τi. Hence,
τ ′ ⊃ σ.
τ ′ being a topology it must contain all finite intersections of elements in τ ′, so that
it must contain β.
τ ′ being a topology it must contain all arbitrary unions of elements in τ ′, so that it
must contain τ .
As a consequence, any topology for which all projections πi are continuous contains
at least τ . This latter topology is hence the coarsest one for which all projections
πi are continuous.
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4. The one-point compactification of RN is defined as the set ṘN := RN ∪ {∗}, where
∗ /∈ RN , provided with the topology τ consisting of the canonical open sets in RN together
with sets of the form {∗} ∪ (RN \K), with K ⊂ RN and K is compact in the canonical
topology in RN .
Prove that ṘN is a compact set. Prove that f ∈ C(ṘN) iff, when restricted to RN , f = λ+g
with g ∈ C0(RN) and λ ∈ R.
Consider ΩL :=

∏
t>0 ṘN , provided with the product topology, and the set of finite func-

tions Cfin(ΩL). Prove that Cfin(ΩL) ⊂ C(ΩL) and that Cfin(ΩL) is uniformly dense in
C(ΩL).

Let F ⊂ τ be a cover of ṘN . Then at least one of the sets U ∈ F has ∗ as one of its
elements. By definition, for such a U , we must have ṘN \U = K with K a compact

set of RN . But ∪U ′∈FU
′ = ṘN , so that ∪U ′∈F\{U}U

′ ⊃ K, which is obviously equiva-
lent to ∪U ′∈F\{U}(RN ∩U ′) ⊃ K. K being compact, this is already the case for some

finite subset G ⊂ F and G ∪ {U}, a finite set of open sets in τ , covers therefore ṘN .

This shows the compactness of ṘN .

For a function f : ṘN → C, let U ⊂ C be some open set with λ := f(∗) ∈ U .
If f is continuous, then f−1(U) ∈ τ for any such open set U . Obviously, ∗ ∈ f−1(U)

and ṘN \ f−1(U) is compact in RN .

Let ϵ > 0 and set B(λ, ϵ) := {z ∈ C : |z − λ| < ϵ}. Then ṘN \ f−1(B(λ, ϵ)) is
a compact set Kϵ ⊂ RN and if x /∈ Kϵ, then |f(∗) − f(x)| < ϵ. This is the exact
definition of lim|x|→∞ f(x) = λ, or equivalently lim|x|→∞(f − λ)(x) = 0. Hence,
when restricted to RN , f = λ+ g with g := f − λ ∈ C0(RN).
Conversely, if f = λ+ g and λ ∈ C, g ∈ C0(RN), then by definition, lim|x|→∞ g(x) =
lim|x|→∞(f − λ)(x) = 0. By definition, this means that for any given ϵ > 0, there is
a compact set Kϵ ⊂ RN , so that x /∈ Kϵ implies |g(x)| = |f(x)− λ| < ϵ. Therefore,
for B(λ, ϵ) := {z ∈ C : |z − λ| < ϵ}, one has f−1(B(λ, ϵ) = RN \Kϵ.
If U ⊂ RN is open and if λ /∈ U , then there is some ϵ > 0 so that B(λ, ϵ) ∩ U = ∅.
Hence, f−1(U) ∩ f−1(B(λ, ϵ)) = ∅, so that f−1(U) ⊂ Kϵ.

If one now extends g+λ to ṘN by imposing f(∗) = λ, then f is certainly continuous

on ṘN for the topology τ .

If F ∈ Cfin(ΩL), then by definition there is some finite set S ⊂ R+ and a continuous

function f : (ṘN)|S| → C, so that

ΩL ∋ (wt)t≥0 7→ F ((wt)t≥0) := f((ws)s∈S).

If U ⊂ C is open, then F−1(U) = f−1(U)×
∏

t∈R+\S ṘN and it remains to be shown,

that f−1(U) is open in (ṘN)|S| for the product topology. Since f is continuous on

(ṘN)|S| then by definition, f−1(U) is open for the product topology on (ṘN)|S|, so
that F−1(U) = f−1(U)×

∏
t∈R+\S ṘN is open for the product topology in ΩL and F

is continuous. Therefore, Cfin(ΩL) ⊂ C(ΩL).

To prove the uniform density of Cfin(ΩL) in C(ΩL) we shall verify the conditions of
Stone & Weierstrass’s theorem:
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• Cfin(ΩL) is an algebra over C, closed under complex conjugation.

Let R, S, T ⊂ R+ be finite sets and let F,G,H ∈ Cfin(ΩL) be defined by

ΩL ∋ (wt)t≥0 7→ F ((wt)t≥0) := f((wt)t∈R),

ΩL ∋ (wt)t≥0 7→ G((wt)t≥0) := g((wt)t∈S),

ΩL ∋ (wt)t≥0 7→ H((wt)t≥0) := h((wt)t∈T ),

with f ∈ C((ṘN
|R|
)), g ∈ C((ṘN

|S|
)) and h ∈ C((ṘN

|T |
)). Then, D := R∪S∪T

is a finite subset of R+ as well and f×(g+h) is a continuous function on (ṘN)|D|

with

(f × (g + h))((wt)t∈D) = f((wt)t∈R)× (g((wt)t∈S) + h((wt)t∈T )).

The lift on ΩL is then the finite function

(F × (G+H))((wt)t≥0) = (f × (g + h))((wt)t∈D).

The complex conjugate F of F is then simply given by

F ((wt)t≥0) := f((wt)t∈R) ⇒ F ∈ Cfin(ΩL),

since clearly f ∈ C((ṘN
|R|
)).

It is also obvious that F ≡ 0 ∈ Cfin(ΩL), so that Cfin(ΩL) is indeed an algebra
over C of continuous functions on ΩL that is closed under complex conjugation.

• Cfin(ΩL) does not vanish on ΩL.

This is clear since the constant function 1((wt)t≥0) = 1 is obviously an element
of Cfin(ΩL) and does vanish nowhere.

• Cfin(ΩL) separates points on ΩL.

If (wt)t≥0 ̸= (vt)t≥0, then ∃s ∈ R+ so that ws ̸= us. Since C(ṘN) manifestly

separates the points in ṘN , there is a function f ∈ C(ṘN) with f(ws) ̸= f(us).
Set then F ∈ Cfin(ΩL) as F ((wt)t≥0) := f(ws), which is by construction a finite
function, separating (wt)t≥0 and (vt)t≥0.

We may hence apply the theorem by Stone & Weierstrass on the compact set ΩL

and conclude, that Cfin(ΩL) is dense in C(ΩL) for the supremum norm ∥ ∥∞.
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5. For a fixed x0 ∈ RN and for some Ff,t1,...,tm ∈ Cfin(ΩL), we define

Ix0(Ff,t1,...,tm) :=

∫
RmN

px0
t1,...,tm(x1, . . . , xm)f(x1, . . . , xm)µL(dx1 × . . .× dxm),

px0
t1,...,tm(x1, . . . , xm) =

m∏
k=1

1

(2π(tk − tk−1))N/2
e
−

(xk−xk−1)
2

2(tk−tk−1) , t0 = 0.

Check that Ix0(1) := 1. For Ff,t1,...,tm and 0 < t with {t1, . . . , tm} ∩ {t} = ∅, if
Gf,t1,...,tk,t,tk+1,...,tm(w) := Ff,t1,...,tm(w), check that

Ix0(Gf,t1,...,tk,t,tk+1,...,tm) = Ix0(Ff,t1,...,tm).

For some constant C > 0 and for ϵ, t > 0, prove that

Ex0,W (1{w∈ΩL : |wt−x0|>ϵ}) ≤ C

√
t

ϵ
e−

ϵ2

2Nt .

If we set

ρ(ϵ, δ) := sup{µx0,W ({w ∈ ΩL : |wt − x0| > ϵ}) : 0 < t ≤ δ},

then verify that lim
δ→0+

1

δ
ρ(ϵ, δ) = 0.

The constant function 1 on ΩL is described by some Ff,t1,...,tm with f the constant

unit function on (ṘN)m, {t1, . . . , tm} ⊂ R+ and t0 = 0. But then

Ix0(1) =

∫
RmN

px0
t1,...,tm(x1, . . . , xm)f(x1, . . . , xm)µL(dx1 × . . .× dxm)

=

∫
RmN

px0
t1,...,tm(x1, . . . , xm)µL(dx1 × . . .× dxm)

=

∫
RmN

m∏
k=1

1

(2π(tk − tk−1))N/2
e
−

(xk−xk−1)
2

2(tk−tk−1) µL(dx1 × . . .× dxm).

The last integral is equal to its Riemann integral and successive integration over

all variables yield integrations of the type
∫

RN
1

(2π(t−s))N/2 e
− (x−y)2

2(t−s) dNx, which are all

normalised gaussians, so that Ix0(1) = 1.

For Ff,t1,...,tm and 0 < t with {t1, . . . , tm} ∩ {t} = ∅, if Gf,t1,...,tk,t,tk+1,...,tm(w) :=

Ff,t1,...,tm(w), then Gf,t1,...,tk,t,tk+1,...,tm = Gg,t1,...,tk,t,tk+1,tm with g ∈ C((ṘN)m+1) and
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g(x1, . . . , xk, x, xk+1, . . . , xm) = f(x1, . . . , xm). Note also, that

px0
t1,...,tk,t,tk+1,...,tm

(x1, . . . , xk, x, xk+1, . . . , xm)

=

(
k∏

l=1

1

(2π(tl − tl−1))N/2
e
−

(xl−xl−1)
2

2(tl−tl−1)

)
× 1

(2π(t− tk))N/2
e
− (x−xk)2

2(t−tk)

× 1

(2π(tk+1 − t))N/2
e
−

(xk+1−x)2

2(tk+1−t) ×

(
m∏

l=k+2

1

(2π(tl − tl−1))N/2
e
−

(xl−xl−1)
2

2(tl−tl−1)

)
.

Integrating this probability measure along the variable x yields the convolution
of two gaussian probability distributions. This convolution may be computed by
Fourier transforms or by a direct computation involving completion of squares:∫

RN

1

(2π(t− tk))N/2
e
− (x−xk)2

2(t−tk)
1

(2π(tk+1 − t))N/2
e
−

(xk+1−x)2

2(tk+1−t) µL(dx)

=
1

(2π)N
1

(t− tk)N/2

1

(tk+1 − t)N/2

∫
RN

e
− 1

2
(
(x−xk)2

(t−tk)
+

(xk+1−x)2

(tk+1−t)
)
µL(dx)

=
y=x−xk

1

(2π)N
1

((t− tk)(tk+1 − t))N/2

∫
RN

e
− 1

2
( y2

(t−tk)
+

((xk+1−xk)−y)2

(tk+1−t)
)
µL(dy)

=
1

(2π)N
1

((t− tk)(tk+1 − t))N/2

∫
RN

e
− 1

2(t−tk)(tk+1−t)((tk+1−t)y2+(t−tk)((xk+1−xk)−y)2)
µL(dy)

=
1

(2π)N
e
−

(xk+1−xk)2

2(tk+1−t)

((t− tk)(tk+1 − t))N/2

∫
RN

e
− 1

2(t−tk)(tk+1−t)((tk+1−tk)y
2−2(t−tk)(xk+1−xk)y)µL(dy)

=
1

(2π)N
e
−

(xk+1−xk)2

2(tk+1−t) e
(t−tk)(xk+1−xk)2

2(tk+1−tk)(tk+1−t)

((t− tk)(tk+1 − t))N/2

∫
RN

e
−

(tk+1−tk)

2(t−tk)(tk+1−t)

(
y− (t−tk)

(tk+1−tk)
(xk+1−xk)

)2

µL(dy)

=
e
−

(xk+1−xk)2

2(tk+1−tk)

(2π(tk+1 − tk))
N/2

.

Consequently, ∫
RN

px0
t1,...,tk,t,tk+1,...,tm

(x1, . . . , xk, x, xk+1, . . . , xm)µL(dx)

= px0
t1,...,tm(x1, . . . , xm)

and

Ix0(Gf,t1,...,tk,t,tk+1,...,tm)

=

∫
RmN

px0
t1,...,tk,t,tk+1,tm

(x1, . . . , xm)g(x1, . . . , xk, x, xk+1, . . . , xm)µL(dx1 × . . . dx× . . . dxm)

=

∫
RmN

px0
t1,...,tk,t,tk+1,tm

(x1, . . . , xm)f(x1, . . . , xk, xk+1, . . . , xm)µL(dx1 × . . .× dxm)µL(dx)

=

∫
RmN

px0
t1,...,tk,tk+1,tm

(x1, . . . , xm)f(x1, . . . , xm)µL(dx1 × . . .× dxm)

= Ix0(Ff,t1,...,tm).
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If N = 1, one has for f(y) = 1|y−x0|>ϵ

Ex0,W (1{w∈ΩL : |wt−x0|>ϵ}) = Ix0(Ff,t)

=

∫
R
px0
t (x)1|x−x0|>ϵµL(dx) =

∫
R\[x0−ϵ,x0+ϵ]

1√
2πt

e−
(x−x0)

2

2t µL(dx)

=

∫
R\[−ϵ,+ϵ]

1√
2πt

e−
y2

2t µL(dy) =
2√
2πt

∫ ∞

ϵ

e−
y2

2t µL(dy)

≤ 2√
2πt

∫ ∞

ϵ

y

ϵ
e−

y2

2t µL(dy) =

√
2t

π

1

ϵ
e−

ϵ2

2t .

For a general dimension N ∈ N, note that |x− x0| > ϵ with x, x0 ∈ RN implies that
|xk−x0,k| > ϵ√

N
for at least one component k = 1, . . . , N . Therefore, if |wt−x0| > ϵ,

then wt ∈ ∪N
k=1{wt ∈ ṘN : |wt,k − x0,k| > ϵ√

N
}. Each of these sets in this finite

union has a Wiener measure dominated by
√

2tN/π 1
ϵ
e−

ϵ2

2Nt , so that

ρ(ϵ, δ) ≤
√

2N3

π

√
δ

ϵ
e−

ϵ2

2Nδ .

Substituting A for 1/δ, one gets

0 ≤ lim
δ→0

1

δ
ρ(ϵ, δ) ≤ C lim

δ→0

1√
δϵ
e−

ϵ2

2Nδ

= C lim
A→∞

√
A

ϵ
e−

ϵ2A
2N = 0.

6. Let δ, ϵ > 0 and consider a finite set S ⊂ R+ so that ∀t ∈ S, |t− tmin(S)| ≤ δ. For t ∈ S,
let

Ct,ϵ,S := {w ∈ ΩL : |wt − wmax(S)| >
ϵ

2
},

Dt,ϵ,S := {w ∈ ΩL : |wt − wmin(S)| > ϵ and ∀s ∈ S with s < t, |ws − wmin(S)| ≤ ϵ}.

Shoe then that ∀t ∈ S,

µx0,W (Ct,ϵ,S ∩Dt,ϵ,S) ≤ ρ(
ϵ

2
, δ)µx0,W (Dt,ϵ,S).

Let f(x,w) := 1|x−w|> ϵ
2
, so that 1Ct,ϵ,S

= Ff,t,max(S).
Similarly, let {t1, . . . , tm} = S∩]min(S), t[ and define

g(y, x1, . . . , xm, x) := 1|x−y|>ϵ

m∏
k=1

1|xk−y|≤ϵ.

Then 1Dt,ϵ,S
= Gg,min(S),t1,...,tm,t and

µx0,W (Ct,ϵ,S ∩Dt,ϵ,S)

=

∫
RN(m+3)

px0

min(S),t1,...,tm,t,max(S)(y, x1, . . . , xm, x, w)g(y, x1, . . . , xm, x)f(x,w)µL(dy × . . .× dw).
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Observe now that

px0

min(S),t1,...,tm,t,max(S)(y, x1, . . . , xm, x, w) = px0

min(S),t1,...,tm,t(y, x1, . . . , xm, x)p
x
t,max(S)(x,w).

We now may calculate the integral over w first and notice, that the result is bounded
by ρ( ϵ

2
, δ). Integration over the remaining variables result in µx0,W (Dt,ϵ,S) which

yields the announced inequality.

7. Let δ, ϵ > 0 and consider a finite set S ⊂ R+ so that ∀t ∈ S, |t− tmin(S)| ≤ δ. Let

Aϵ,S := {w ∈ ΩL : ∃s ∈ S s.t. |ws − wmin(S)| > ϵ}.

Prove then that
µx0,W (Aϵ,S) ≤ 2ρ(

ϵ

2
, δ).

Define

Bϵ,S := {w ∈ ΩL . : |wmin(S) − wmax(S)| >
ϵ

2
},

for t ∈ S , Ct,ϵ,S := {w ∈ ΩL : |wt − wmax(S)| >
ϵ

2
},

Dt,ϵ,S := {w ∈ ΩL : |wt − wmin(S)| > ϵ and ∀s ∈ S with s < t, |ws − wmin(S)| ≤ ϵ}.

If w ∈ Aϵ,S, then w ∈ Dt,ϵ,S for some t ∈ S.
If w /∈ Bϵ,S and if for some t ∈ S w ∈ Dt,ϵ,S, then w ∈ Ct,ϵ,S, since w has to move a
distance at least ϵ

2
to go back from outside the ball of radius ϵ into the ball of radius

ϵ
2
. Therefore

Aϵ,S ⊂ Bϵ,S

⋃(⋃
t∈S

Ct,ϵ,S ∩Dt,ϵ,S

)
.

Thus,

µx0,W (Aϵ,S) ≤ µx0,W (Bϵ,S) +
∑
t∈S

µx0,W (Ct,ϵ,S ∩Dt,ϵ,S)

≤ µx0,W (Bϵ,S) + ρ(
ϵ

2
, δ)
∑
t∈S

µx0,W (Dt,ϵ,S)

by the previous exercice. Since Dt,ϵ,S and Dt′,ϵ,S are by definition disjoint for S ∋
t ̸= t′ ∈ S, one has

µx0,W (Aϵ,S) ≤ µx0,W (Bϵ,S) + ρ(
ϵ

2
, δ) ≤ 2ρ(

ϵ

2
, δ).

8. Let δ, ϵ > 0 and consider 0 < t0 < t1 with t1 − t0 ≤ δ. Define

Et0,t1,ϵ := {w ∈ ΩL : ∃s, t ∈ [t0, t1] s.t. |ws − wt| > 2ϵ}.

Prove then that
µx0,W (Et0,t1,ϵ) ≤ 2ρ(

ϵ

2
, δ).
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Consider some finite set S ∈ [t0, t1] with t0, t1 ∈ S and notice, that if one defines

Eϵ,S := {w ∈ ΩL : ∃t, s ∈ S s.t. |ws − wt| > 2ϵ},

then Eϵ,S ⊂ Aϵ,S with

Aϵ,S := {w ∈ ΩL : ∃s ∈ S s.t. |ws − wmin(S)| > ϵ},

since if |ws − wt| > 2ϵ, then |ws − wt0|, |wt − wt0| ≤ ϵ cannot both hold. Hence, by
the previous exercice,

µx0,W (Eϵ,S) ≤ 2ρ(
ϵ

2
, δ).

We now are going to make use of the regularity of the measure µx0,W and note that
the aforementioned sets Eϵ,S are open in the product topology for any finite set
S ⊂ [t0, t1] with t0, t1 ∈ S.
If we consider the collection of open sets

Γϵ,t0,t1 := {Eϵ,S : S ⊂ [t0, t1] is a finite set with t0, t1 ∈ S},

then
Et0,t1,ϵ =

⋃
V ∈Γϵ,t0,t1

V

and by the regularity of the measure µx0,W ,

µx0,W (Et0,t1,ϵ) = sup{µx0,W (Eϵ,S)} ≤ 2ρ(
ϵ

2
, δ).


