

Solutions to exercice sheet 5

Construction of Wiener process

1. Find a basis and a sub-basis for the canonical topology on \mathbb{R} .

Consider the set

$$\beta := \{[a, \infty[: a \in \mathbb{R}\} \cup \{]-\infty, a] : a \in \mathbb{R}\}.$$

Then β is a collection of open sets on \mathbb{R} and intersections of elements in β yield all open intervals on \mathbb{R} . But this last collection is a basis for the Euclidean topology on \mathbb{R} , so that β is a basis for this topology.

2. Let (Ω, τ) be a topological space. Let $\mathcal{S} \subset \mathcal{P}(\tau)$ be a totally ordered set (for the partial order being the set inclusion) so that no element of \mathcal{S} has a finite sub-cover for Ω . Show then that $\cup_{S \in \mathcal{S}}$ has no finite sub-cover of Ω .
 For $k = 1, \dots, n$ let \mathcal{M}_k be a finite collection of open sets of some topological space (Ω, τ) . For each k , Let $B_k \in \tau$ so that $\mathcal{M}_k \cup \{B_k\}$ covers Ω . Show then that $(\cup_{k=1}^n \mathcal{M}_k) \cup \{\cap_{k=1}^n B_k\}$ covers Ω .

If $\cup_{S \in \mathcal{S}}$ had a finite sub-cover of Ω , then there would be some finite set $\{v_1, \dots, V_n\} \subset \cup_{S \in \mathcal{S}}$, so that $\Omega = \cup_{k=1}^n V_n$. But then, there would be sets $\{S_{j_1}, \dots, S_{j_n}\} \subset \mathcal{S}$ with $\forall k = 1, \dots, n, V_k \in S_{j_k}$. Since \mathcal{S} is totally ordered, there must be a set $T \in \mathcal{S}$ with $T \supset \cup_{k=1}^n S_{j_k}$. But then, $\forall k = 1, \dots, n$, we would have $V_k \in T$, so that T has a finite sub-cover of Ω , a contradiction.

It is sufficient to consider $n = 2$: if $\mathcal{M}_1, \mathcal{M}_2$ are two finite collections of open sets and $B_1, B_2 \in \tau$ are such that $\mathcal{M}_1 \cup \{B_1\}$ and $\mathcal{M}_2 \cup \{B_2\}$ both cover Ω , then in particular, $\mathcal{M}_1 \cup \{B_1\}$ covers B_2 , so that $\mathcal{M}_1 \cup \{B_1 \cap B_2\}$ covers B_2 as well and $\mathcal{M}_1 \cup \{B_1 \cap B_2\} \cup \mathcal{M}_2$ covers Ω .

3. Let $\{(\Omega_i, \tau_i)\}_{i \in I}$ is a family of topological spaces. Provide the cartesian product $\prod_{i \in I} \Omega_i$ with the collection τ of sets consisting of arbitrary unions of sets of the form $\prod_{i \in I} V_i$, where all but a finite number of the V_i 's are equal to Ω_i .
 Show that τ is a topology. For some fixed $i \in I$, let $\pi_i : \prod_{i \in I} \Omega_i \rightarrow \Omega_i$, $(x_i)_{i \in I} \mapsto x_i \in \Omega_i$ be the **canonical projection**. Show that the collection of sets $\{\pi_i^{-1}(V) : i \in I \text{ and } V \in \tau_i\}$ is a sub-basis for τ . Prove that the product topology is then the coarsest topology for which all the maps π_i are continuous.

Let $\mathcal{S} := \{S \subset J : |S| \in \mathbb{J}\}$. Then τ consists of arbitrary unions of sets in

$$\beta := \left\{ \prod_{i \in S} V_i \prod_{j \in J \setminus S} \Omega_j : S \in \mathcal{S}, V_i \in \tau_i \right\}.$$

This last collection of sets satisfies

(B1) :

$$\cup_{U \in \beta} = \prod_{i \in J} \Omega_i.$$

Indeed, if $S = \emptyset$, then $\prod_{i \in S} V_i \prod_{j \in J \setminus S} \Omega_j = \prod_{j \in J} \Omega_j$.

(B2) : if $U, U' \in \beta$, then there is an $U'' \in \beta$ so that $U'' \in U' \cap U''$.

Indeed, let $U = \prod_{i \in S} V_i \prod_{j \in J \setminus S} \Omega_j$ and $U' = \prod_{i \in T} V'_i \prod_{j \in J \setminus T} \Omega_j$. Then set $R := S \cup T$ and for $i \in R$ set

$$V''_i := \begin{cases} V_i \cap V'_i & \text{if } i \in S \cap T, \\ V_i \cap \Omega_i & \text{if } i \in S \setminus T, \\ \Omega_i \cap V'_i & \text{if } i \in T \setminus S. \end{cases}$$

Obviously $R \in \mathcal{S}$ and $V''_i \in \tau_i$ for each $i \in R$. Clearly, $U \cap U' = \prod_{i \in R} V''_i \prod_{j \in J \setminus R} \Omega_j \in \beta$.

A set β satisfying (B1) and (B2) is then a basis for the collection τ of sets which are arbitrary unions of elements in β and τ is a topology. Indeed,

- $\emptyset, \prod_j \Omega_j \in \tau$:

For the latter, $\prod_j \Omega_j \in \tau$ by property (B1) and if $S = \{i\}$ for some $i \in J$ and $U_i = \emptyset$, then $\prod_{i \in S} V_i \prod_{j \in J \setminus T} \Omega_j = \emptyset \in \beta \subset \tau$.

- if $\mathcal{F} \subset \tau$, then $\cup_{U \in \mathcal{F}} U \in \tau$.

This is obvious, since $\cup_{U \in \mathcal{F}} U$ is again an arbitrary union of elements in β , for any $U \in \mathcal{S}$ is an arbitrary union of elements in β .

- if $\mathcal{F} \subset \tau$, then $\cap_{U \in \mathcal{F}} U \in \tau$ if $|\mathcal{F}| \in \mathbb{N}$.

It is obviously enough to prove this if \mathcal{F} consists of only two elements U, U' . In this case, let $U = \cup_{B \in \mathcal{C} \subset \beta} B$ and $U' = \cup_{B \in \mathcal{C}' \subset \beta} B$. Then $U \cap U' = \cup_{B, B' \in \mathcal{C} \cup \mathcal{C}'} B \cap B'$, which by property (B2) is again a union of elements in β .

τ is therefore a topology and β is a base for τ .

The collection of sets

$$\sigma := \{\pi_i^{-1}(V_i) : i \in J \text{ and } V_i \in \tau_i\}$$

is a sub-base for τ , since for any $S \in \mathcal{S}$, $\prod_{i \in S} V_i \prod_{j \in J \setminus S} \Omega_j = \cap_{i \in S} \pi_i^{-1}(V_i)$.

If $\tau' \subset \mathcal{P}(\prod_{i \in J} \Omega_i)$ is another topology for which all the maps π_i are continuous, then τ' must by definition contain all sets of the form $\pi_i^{-1}(V_i)$ with $V_i \in \tau_i$. Hence, $\tau' \supset \sigma$.

τ' being a topology it must contain all finite intersections of elements in τ' , so that it must contain β .

τ' being a topology it must contain all arbitrary unions of elements in τ' , so that it must contain τ .

As a consequence, any topology for which all projections π_i are continuous contains at least τ . This latter topology is hence the coarsest one for which all projections π_i are continuous.

4. The **one-point compactification** of \mathbb{R}^N is defined as the set $\dot{\mathbb{R}^N} := \mathbb{R}^N \cup \{\ast\}$, where $\ast \notin \mathbb{R}^N$, provided with the topology τ consisting of the canonical open sets in \mathbb{R}^N together with sets of the form $\{\ast\} \cup (\mathbb{R}^N \setminus K)$, with $K \subset \mathbb{R}^N$ and K is compact in the canonical topology in \mathbb{R}^N .

Prove that $\dot{\mathbb{R}^N}$ is a compact set. Prove that $f \in C(\dot{\mathbb{R}^N})$ iff, when restricted to \mathbb{R}^N , $f = \lambda + g$ with $g \in C_0(\mathbb{R}^N)$ and $\lambda \in \mathbb{R}$.

Consider $\Omega_L := \prod_{t>0} \dot{\mathbb{R}^N}$, provided with the product topology, and the set of finite functions $C_{\text{fin}}(\Omega_L)$. Prove that $C_{\text{fin}}(\Omega_L) \subset C(\Omega_L)$ and that $C_{\text{fin}}(\Omega_L)$ is uniformly dense in $C(\Omega_L)$.

Let $\mathcal{F} \subset \tau$ be a cover of $\dot{\mathbb{R}^N}$. Then at least one of the sets $U \in \mathcal{F}$ has \ast as one of its elements. By definition, for such a U , we must have $\mathbb{R}^N \setminus U = K$ with K a compact set of \mathbb{R}^N . But $\cup_{U' \in \mathcal{F}} U' = \dot{\mathbb{R}^N}$, so that $\cup_{U' \in \mathcal{F} \setminus \{U\}} U' \supset K$, which is obviously equivalent to $\cup_{U' \in \mathcal{F} \setminus \{U\}} (\mathbb{R}^N \cap U') \supset K$. K being compact, this is already the case for some finite subset $\mathcal{G} \subset \mathcal{F}$ and $\mathcal{G} \cup \{U\}$, a finite set of open sets in τ , covers therefore $\dot{\mathbb{R}^N}$. This shows the compactness of $\dot{\mathbb{R}^N}$.

For a function $f : \dot{\mathbb{R}^N} \rightarrow \mathbb{C}$, let $U \subset \mathbb{C}$ be some open set with $\lambda := f(\ast) \in U$. If f is continuous, then $f^{-1}(U) \in \tau$ for any such open set U . Obviously, $\ast \in f^{-1}(U)$ and $\dot{\mathbb{R}^N} \setminus f^{-1}(U)$ is compact in $\dot{\mathbb{R}^N}$.

Let $\epsilon > 0$ and set $B(\lambda, \epsilon) := \{z \in \mathbb{C} : |z - \lambda| < \epsilon\}$. Then $\dot{\mathbb{R}^N} \setminus f^{-1}(B(\lambda, \epsilon))$ is a compact set $K_\epsilon \subset \mathbb{R}^N$ and if $x \notin K_\epsilon$, then $|f(\ast) - f(x)| < \epsilon$. This is the exact definition of $\lim_{|x| \rightarrow \infty} f(x) = \lambda$, or equivalently $\lim_{|x| \rightarrow \infty} (f - \lambda)(x) = 0$. Hence, when restricted to \mathbb{R}^N , $f = \lambda + g$ with $g := f - \lambda \in C_0(\mathbb{R}^N)$.

Conversely, if $f = \lambda + g$ and $\lambda \in \mathbb{C}$, $g \in C_0(\mathbb{R}^N)$, then by definition, $\lim_{|x| \rightarrow \infty} g(x) = \lim_{|x| \rightarrow \infty} (f - \lambda)(x) = 0$. By definition, this means that for any given $\epsilon > 0$, there is a compact set $K_\epsilon \subset \mathbb{R}^N$, so that $x \notin K_\epsilon$ implies $|g(x)| = |f(x) - \lambda| < \epsilon$. Therefore, for $B(\lambda, \epsilon) := \{z \in \mathbb{C} : |z - \lambda| < \epsilon\}$, one has $f^{-1}(B(\lambda, \epsilon)) = \dot{\mathbb{R}^N} \setminus K_\epsilon$.

If $U \subset \mathbb{R}^N$ is open and if $\lambda \notin U$, then there is some $\epsilon > 0$ so that $B(\lambda, \epsilon) \cap U = \emptyset$. Hence, $f^{-1}(U) \cap f^{-1}(B(\lambda, \epsilon)) = \emptyset$, so that $f^{-1}(U) \subset K_\epsilon$.

If one now extends $g + \lambda$ to $\dot{\mathbb{R}^N}$ by imposing $f(\ast) = \lambda$, then f is certainly continuous on $\dot{\mathbb{R}^N}$ for the topology τ .

If $F \in C_{\text{fin}}(\Omega_L)$, then by definition there is some finite set $S \subset \mathbb{R}_+$ and a continuous function $f : (\mathbb{R}^N)^{|S|} \rightarrow \mathbb{C}$, so that

$$\Omega_L \ni (w_t)_{t \geq 0} \mapsto F((w_t)_{t \geq 0}) := f((w_s)_{s \in S}).$$

If $U \subset \mathbb{C}$ is open, then $F^{-1}(U) = f^{-1}(U) \times \prod_{t \in \mathbb{R}_+ \setminus S} \dot{\mathbb{R}^N}$ and it remains to be shown, that $f^{-1}(U)$ is open in $(\mathbb{R}^N)^{|S|}$ for the product topology. Since f is continuous on $(\mathbb{R}^N)^{|S|}$ then by definition, $f^{-1}(U)$ is open for the product topology on $(\mathbb{R}^N)^{|S|}$, so that $F^{-1}(U) = f^{-1}(U) \times \prod_{t \in \mathbb{R}_+ \setminus S} \dot{\mathbb{R}^N}$ is open for the product topology in Ω_L and F is continuous. Therefore, $C_{\text{fin}}(\Omega_L) \subset C(\Omega_L)$.

To prove the uniform density of $C_{\text{fin}}(\Omega_L)$ in $C(\Omega_L)$ we shall verify the conditions of Stone & Weierstrass's theorem:

- $C_{\text{fin}}(\Omega_L)$ is an algebra over \mathbb{C} , closed under complex conjugation.

Let $R, S, T \subset \mathbb{R}_+$ be finite sets and let $F, G, H \in C_{\text{fin}}(\Omega_L)$ be defined by

$$\Omega_L \ni (w_t)_{t \geq 0} \mapsto F((w_t)_{t \geq 0}) := f((w_t)_{t \in R}),$$

$$\Omega_L \ni (w_t)_{t \geq 0} \mapsto G((w_t)_{t \geq 0}) := g((w_t)_{t \in S}),$$

$$\Omega_L \ni (w_t)_{t \geq 0} \mapsto H((w_t)_{t \geq 0}) := h((w_t)_{t \in T}),$$

with $f \in C((\mathbb{R}^N)^{|R|})$, $g \in C((\mathbb{R}^N)^{|S|})$ and $h \in C((\mathbb{R}^N)^{|T|})$. Then, $D := R \cup S \cup T$ is a finite subset of \mathbb{R}_+ as well and $f \times (g+h)$ is a continuous function on $(\mathbb{R}^N)^{|D|}$ with

$$(f \times (g+h))((w_t)_{t \in D}) = f((w_t)_{t \in R}) \times (g((w_t)_{t \in S}) + h((w_t)_{t \in T})).$$

The lift on Ω_L is then the finite function

$$(F \times (G + H))((w_t)_{t \geq 0}) = (f \times (g + h))((w_t)_{t \in D}).$$

The complex conjugate \bar{F} of F is then simply given by

$$\bar{F}((w_t)_{t \geq 0}) := \bar{f}((w_t)_{t \in R}) \Rightarrow \bar{F} \in C_{\text{fin}}(\Omega_L),$$

since clearly $\bar{f} \in C((\mathbb{R}^N)^{|R|})$.

It is also obvious that $F \equiv 0 \in C_{\text{fin}}(\Omega_L)$, so that $C_{\text{fin}}(\Omega_L)$ is indeed an algebra over \mathbb{C} of continuous functions on Ω_L that is closed under complex conjugation.

- $C_{\text{fin}}(\Omega_L)$ does not vanish on Ω_L .

This is clear since the constant function $1((w_t)_{t \geq 0}) = 1$ is obviously an element of $C_{\text{fin}}(\Omega_L)$ and does vanish nowhere.

- $C_{\text{fin}}(\Omega_L)$ separates points on Ω_L .

If $(w_t)_{t \geq 0} \neq (v_t)_{t \geq 0}$, then $\exists s \in \mathbb{R}_+$ so that $w_s \neq v_s$. Since $C(\mathbb{R}^N)$ manifestly separates the points in \mathbb{R}^N , there is a function $f \in C(\mathbb{R}^N)$ with $f(w_s) \neq f(v_s)$. Set then $F \in C_{\text{fin}}(\Omega_L)$ as $F((w_t)_{t \geq 0}) := f(w_s)$, which is by construction a finite function, separating $(w_t)_{t \geq 0}$ and $(v_t)_{t \geq 0}$.

We may hence apply the theorem by Stone & Weierstrass on the compact set Ω_L and conclude, that $C_{\text{fin}}(\Omega_L)$ is dense in $C(\Omega_L)$ for the supremum norm $\| \cdot \|_\infty$.

5. For a fixed $x_0 \in \mathbb{R}^N$ and for some $F_{f,t_1,\dots,t_m} \in C_{\text{fin}}(\Omega_L)$, we define

$$I_{x_0}(F_{f,t_1,\dots,t_m}) := \int_{\mathbb{R}^{mN}} p_{t_1,\dots,t_m}^{x_0}(x_1, \dots, x_m) f(x_1, \dots, x_m) \mu_L(dx_1 \times \dots \times dx_m),$$

$$p_{t_1,\dots,t_m}^{x_0}(x_1, \dots, x_m) = \prod_{k=1}^m \frac{1}{(2\pi(t_k - t_{k-1}))^{N/2}} e^{-\frac{(x_k - x_{k-1})^2}{2(t_k - t_{k-1})}}, \quad t_0 = 0.$$

Check that $I_{x_0}(1) := 1$. For F_{f,t_1,\dots,t_m} and $0 < t$ with $\{t_1, \dots, t_m\} \cap \{t\} = \emptyset$, if $G_{f,t_1,\dots,t_k,t,t_{k+1},\dots,t_m}(w) := F_{f,t_1,\dots,t_m}(w)$, check that

$$I_{x_0}(G_{f,t_1,\dots,t_k,t,t_{k+1},\dots,t_m}) = I_{x_0}(F_{f,t_1,\dots,t_m}).$$

For some constant $C > 0$ and for $\epsilon, t > 0$, prove that

$$\mathbb{E}_{x_0,W}(\mathbb{1}_{\{w \in \Omega_L : |w_t - x_0| > \epsilon\}}) \leq C \frac{\sqrt{t}}{\epsilon} e^{-\frac{\epsilon^2}{2Nt}}.$$

If we set

$$\rho(\epsilon, \delta) := \sup\{\mu_{x_0,W}(\{w \in \Omega_L : |w_t - x_0| > \epsilon\}) : 0 < t \leq \delta\},$$

$$\text{then verify that } \lim_{\delta \rightarrow 0^+} \frac{1}{\delta} \rho(\epsilon, \delta) = 0.$$

The constant function 1 on Ω_L is described by some F_{f,t_1,\dots,t_m} with f the constant unit function on $(\mathbb{R}^N)^m$, $\{t_1, \dots, t_m\} \subset \mathbb{R}_+$ and $t_0 = 0$. But then

$$\begin{aligned} I_{x_0}(1) &= \int_{\mathbb{R}^{mN}} p_{t_1,\dots,t_m}^{x_0}(x_1, \dots, x_m) f(x_1, \dots, x_m) \mu_L(dx_1 \times \dots \times dx_m) \\ &= \int_{\mathbb{R}^{mN}} p_{t_1,\dots,t_m}^{x_0}(x_1, \dots, x_m) \mu_L(dx_1 \times \dots \times dx_m) \\ &= \int_{\mathbb{R}^{mN}} \prod_{k=1}^m \frac{1}{(2\pi(t_k - t_{k-1}))^{N/2}} e^{-\frac{(x_k - x_{k-1})^2}{2(t_k - t_{k-1})}} \mu_L(dx_1 \times \dots \times dx_m). \end{aligned}$$

The last integral is equal to its Riemann integral and successive integration over all variables yield integrations of the type $\int_{\mathbb{R}^N} \frac{1}{(2\pi(t-s))^{N/2}} e^{-\frac{(x-y)^2}{2(t-s)}} d^N x$, which are all normalised gaussians, so that $I_{x_0}(1) = 1$.

For F_{f,t_1,\dots,t_m} and $0 < t$ with $\{t_1, \dots, t_m\} \cap \{t\} = \emptyset$, if $G_{f,t_1,\dots,t_k,t,t_{k+1},\dots,t_m}(w) := F_{f,t_1,\dots,t_m}(w)$, then $G_{f,t_1,\dots,t_k,t,t_{k+1},\dots,t_m} = G_{g,t_1,\dots,t_k,t,t_{k+1},t_m}$ with $g \in C((\mathbb{R}^N)^{m+1})$ and

$g(x_1, \dots, x_k, x, x_{k+1}, \dots, x_m) = f(x_1, \dots, x_m)$. Note also, that

$$\begin{aligned} & p_{t_1, \dots, t_k, t, t_{k+1}, \dots, t_m}^{x_0}(x_1, \dots, x_k, x, x_{k+1}, \dots, x_m) \\ &= \left(\prod_{l=1}^k \frac{1}{(2\pi(t_l - t_{l-1}))^{N/2}} e^{-\frac{(x_l - x_{l-1})^2}{2(t_l - t_{l-1})}} \right) \times \frac{1}{(2\pi(t - t_k))^{N/2}} e^{-\frac{(x - x_k)^2}{2(t - t_k)}} \\ & \times \frac{1}{(2\pi(t_{k+1} - t))^{N/2}} e^{-\frac{(x_{k+1} - x)^2}{2(t_{k+1} - t)}} \times \left(\prod_{l=k+2}^m \frac{1}{(2\pi(t_l - t_{l-1}))^{N/2}} e^{-\frac{(x_l - x_{l-1})^2}{2(t_l - t_{l-1})}} \right). \end{aligned}$$

Integrating this probability measure along the variable x yields the convolution of two gaussian probability distributions. This convolution may be computed by Fourier transforms or by a direct computation involving completion of squares:

$$\begin{aligned} & \int_{\mathbb{R}^N} \frac{1}{(2\pi(t - t_k))^{N/2}} e^{-\frac{(x - x_k)^2}{2(t - t_k)}} \frac{1}{(2\pi(t_{k+1} - t))^{N/2}} e^{-\frac{(x_{k+1} - x)^2}{2(t_{k+1} - t)}} \mu_L(dx) \\ &= \frac{1}{(2\pi)^N} \frac{1}{(t - t_k)^{N/2}} \frac{1}{(t_{k+1} - t)^{N/2}} \int_{\mathbb{R}^N} e^{-\frac{1}{2}(\frac{(x - x_k)^2}{(t - t_k)} + \frac{(x_{k+1} - x)^2}{(t_{k+1} - t)})} \mu_L(dx) \\ &\stackrel{y=x-x_k}{=} \frac{1}{(2\pi)^N} \frac{1}{((t - t_k)(t_{k+1} - t))^{N/2}} \int_{\mathbb{R}^N} e^{-\frac{1}{2}(\frac{y^2}{(t - t_k)} + \frac{((x_{k+1} - x_k) - y)^2}{(t_{k+1} - t)})} \mu_L(dy) \\ &= \frac{1}{(2\pi)^N} \frac{1}{((t - t_k)(t_{k+1} - t))^{N/2}} \int_{\mathbb{R}^N} e^{-\frac{1}{2(t - t_k)(t_{k+1} - t)}((t_{k+1} - t)y^2 + (t - t_k)((x_{k+1} - x_k) - y)^2)} \mu_L(dy) \\ &= \frac{1}{(2\pi)^N} \frac{e^{-\frac{(x_{k+1} - x_k)^2}{2(t_{k+1} - t)}}}{((t - t_k)(t_{k+1} - t))^{N/2}} \int_{\mathbb{R}^N} e^{-\frac{1}{2(t - t_k)(t_{k+1} - t)}((t_{k+1} - t_k)y^2 - 2(t - t_k)(x_{k+1} - x_k)y)} \mu_L(dy) \\ &= \frac{1}{(2\pi)^N} \frac{e^{-\frac{(x_{k+1} - x_k)^2}{2(t_{k+1} - t)}} e^{\frac{(t - t_k)(x_{k+1} - x_k)^2}{2(t_{k+1} - t_k)(t_{k+1} - t)}}}{((t - t_k)(t_{k+1} - t))^{N/2}} \int_{\mathbb{R}^N} e^{-\frac{(t_{k+1} - t_k)}{2(t - t_k)(t_{k+1} - t)} \left(y - \frac{(t - t_k)}{(t_{k+1} - t_k)}(x_{k+1} - x_k) \right)^2} \mu_L(dy) \\ &= \frac{e^{-\frac{(x_{k+1} - x_k)^2}{2(t_{k+1} - t_k)}}}{(2\pi(t_{k+1} - t_k))^{N/2}}. \end{aligned}$$

Consequently,

$$\begin{aligned} & \int_{\mathbb{R}^N} p_{t_1, \dots, t_k, t, t_{k+1}, \dots, t_m}^{x_0}(x_1, \dots, x_k, x, x_{k+1}, \dots, x_m) \mu_L(dx) \\ &= p_{t_1, \dots, t_m}^{x_0}(x_1, \dots, x_m) \end{aligned}$$

and

$$\begin{aligned} & I_{x_0}(G_{f, t_1, \dots, t_k, t, t_{k+1}, \dots, t_m}) \\ &= \int_{\mathbb{R}^{mN}} p_{t_1, \dots, t_k, t, t_{k+1}, t_m}^{x_0}(x_1, \dots, x_m) g(x_1, \dots, x_k, x, x_{k+1}, \dots, x_m) \mu_L(dx_1 \times \dots \times dx_m) \\ &= \int_{\mathbb{R}^{mN}} p_{t_1, \dots, t_k, t, t_{k+1}, t_m}^{x_0}(x_1, \dots, x_m) f(x_1, \dots, x_k, x_{k+1}, \dots, x_m) \mu_L(dx_1 \times \dots \times dx_m) \mu_L(dx) \\ &= \int_{\mathbb{R}^{mN}} p_{t_1, \dots, t_k, t_{k+1}, t_m}^{x_0}(x_1, \dots, x_m) f(x_1, \dots, x_m) \mu_L(dx_1 \times \dots \times dx_m) \\ &= I_{x_0}(F_{f, t_1, \dots, t_m}). \end{aligned}$$

If $N = 1$, one has for $f(y) = \mathbb{1}_{|y-x_0|>\epsilon}$

$$\begin{aligned}
& \mathbb{E}_{x_0, W}(\mathbb{1}_{\{w \in \Omega_L : |w_t - x_0| > \epsilon\}}) = I_{x_0}(F_{f,t}) \\
&= \int_{\mathbb{R}} p_t^{x_0}(x) \mathbb{1}_{|x-x_0|>\epsilon} \mu_L(dx) = \int_{\mathbb{R} \setminus [x_0 - \epsilon, x_0 + \epsilon]} \frac{1}{\sqrt{2\pi t}} e^{-\frac{(x-x_0)^2}{2t}} \mu_L(dx) \\
&= \int_{\mathbb{R} \setminus [-\epsilon, +\epsilon]} \frac{1}{\sqrt{2\pi t}} e^{-\frac{y^2}{2t}} \mu_L(dy) = \frac{2}{\sqrt{2\pi t}} \int_{-\epsilon}^{\infty} e^{-\frac{y^2}{2t}} \mu_L(dy) \\
&\leq \frac{2}{\sqrt{2\pi t}} \int_{-\epsilon}^{\infty} \frac{y}{\epsilon} e^{-\frac{y^2}{2t}} \mu_L(dy) = \sqrt{\frac{2t}{\pi}} \frac{1}{\epsilon} e^{-\frac{\epsilon^2}{2t}}.
\end{aligned}$$

For a general dimension $N \in \mathbb{N}$, note that $|x - x_0| > \epsilon$ with $x, x_0 \in \mathbb{R}^N$ implies that $|x_k - x_{0,k}| > \frac{\epsilon}{\sqrt{N}}$ for at least one component $k = 1, \dots, N$. Therefore, if $|w_t - x_0| > \epsilon$, then $w_t \in \bigcup_{k=1}^N \{w_t \in \mathbb{R}^N : |w_{t,k} - x_{0,k}| > \frac{\epsilon}{\sqrt{N}}\}$. Each of these sets in this finite union has a Wiener measure dominated by $\sqrt{2tN/\pi} \frac{1}{\epsilon} e^{-\frac{\epsilon^2}{2Nt}}$, so that

$$\rho(\epsilon, \delta) \leq \sqrt{\frac{2N^3}{\pi}} \frac{\sqrt{\delta}}{\epsilon} e^{-\frac{\epsilon^2}{2N\delta}}.$$

Substituting A for $1/\delta$, one gets

$$\begin{aligned}
0 &\leq \lim_{\delta \rightarrow 0} \frac{1}{\delta} \rho(\epsilon, \delta) \leq C \lim_{\delta \rightarrow 0} \frac{1}{\sqrt{\delta \epsilon}} e^{-\frac{\epsilon^2}{2N\delta}} \\
&= C \lim_{A \rightarrow \infty} \frac{\sqrt{A}}{\epsilon} e^{-\frac{\epsilon^2 A}{2N}} = 0.
\end{aligned}$$

6. Let $\delta, \epsilon > 0$ and consider a finite set $S \subset \mathbb{R}_+$ so that $\forall t \in S, |t - t_{\min(S)}| \leq \delta$. For $t \in S$, let

$$C_{t,\epsilon,S} := \{w \in \Omega_L : |w_t - w_{\max(S)}| > \frac{\epsilon}{2}\},$$

$$D_{t,\epsilon,S} := \{w \in \Omega_L : |w_t - w_{\min(S)}| > \epsilon \text{ and } \forall s \in S \text{ with } s < t, |w_s - w_{\min(S)}| \leq \epsilon\}.$$

Show then that $\forall t \in S$,

$$\mu_{x_0, W}(C_{t,\epsilon,S} \cap D_{t,\epsilon,S}) \leq \rho\left(\frac{\epsilon}{2}, \delta\right) \mu_{x_0, W}(D_{t,\epsilon,S}).$$

Let $f(x, w) := \mathbb{1}_{|x-w|>\frac{\epsilon}{2}}$, so that $\mathbb{1}_{C_{t,\epsilon,S}} = F_{f,t,\max(S)}$. Similarly, let $\{t_1, \dots, t_m\} = S \cap]\min(S), t[$ and define

$$g(y, x_1, \dots, x_m, x) := \mathbb{1}_{|x-y|>\epsilon} \prod_{k=1}^m \mathbb{1}_{|x_k-y| \leq \epsilon}.$$

Then $\mathbb{1}_{D_{t,\epsilon,S}} = G_{g,\min(S), t_1, \dots, t_m, t}$ and

$$\begin{aligned}
& \mu_{x_0, W}(C_{t,\epsilon,S} \cap D_{t,\epsilon,S}) \\
&= \int_{\mathbb{R}^{N(m+3)}} p_{\min(S), t_1, \dots, t_m, t, \max(S)}^{x_0}(y, x_1, \dots, x_m, x, w) g(y, x_1, \dots, x_m, x) f(x, w) \mu_L(dy \times \dots \times dw).
\end{aligned}$$

Observe now that

$$p_{\min(S), t_1, \dots, t_m, t, \max(S)}^{x_0}(y, x_1, \dots, x_m, x, w) = p_{\min(S), t_1, \dots, t_m, t}^{x_0}(y, x_1, \dots, x_m, x) p_{t, \max(S)}^x(x, w).$$

We now may calculate the integral over w first and notice, that the result is bounded by $\rho(\frac{\epsilon}{2}, \delta)$. Integration over the remaining variables result in $\mu_{x_0, W}(D_{t, \epsilon, S})$ which yields the announced inequality.

7. Let $\delta, \epsilon > 0$ and consider a finite set $S \subset \mathbb{R}_+$ so that $\forall t \in S, |t - t_{\min(S)}| \leq \delta$. Let

$$A_{\epsilon, S} := \{w \in \Omega_L : \exists s \in S \text{ s.t. } |w_s - w_{\min(S)}| > \epsilon\}.$$

Prove then that

$$\mu_{x_0, W}(A_{\epsilon, S}) \leq 2\rho\left(\frac{\epsilon}{2}, \delta\right).$$

Define

$$B_{\epsilon, S} := \{w \in \Omega_L : |w_{\min(S)} - w_{\max(S)}| > \frac{\epsilon}{2}\},$$

$$\text{for } t \in S, \quad C_{t, \epsilon, S} := \{w \in \Omega_L : |w_t - w_{\max(S)}| > \frac{\epsilon}{2}\},$$

$$D_{t, \epsilon, S} := \{w \in \Omega_L : |w_t - w_{\min(S)}| > \epsilon \text{ and } \forall s \in S \text{ with } s < t, |w_s - w_{\min(S)}| \leq \epsilon\}.$$

If $w \in A_{\epsilon, S}$, then $w \in D_{t, \epsilon, S}$ for some $t \in S$.

If $w \notin B_{\epsilon, S}$ and if for some $t \in S$ $w \in D_{t, \epsilon, S}$, then $w \in C_{t, \epsilon, S}$, since w has to move a distance at least $\frac{\epsilon}{2}$ to go back from outside the ball of radius ϵ into the ball of radius $\frac{\epsilon}{2}$. Therefore

$$A_{\epsilon, S} \subset B_{\epsilon, S} \bigcup \left(\bigcup_{t \in S} C_{t, \epsilon, S} \cap D_{t, \epsilon, S} \right).$$

Thus,

$$\begin{aligned} \mu_{x_0, W}(A_{\epsilon, S}) &\leq \mu_{x_0, W}(B_{\epsilon, S}) + \sum_{t \in S} \mu_{x_0, W}(C_{t, \epsilon, S} \cap D_{t, \epsilon, S}) \\ &\leq \mu_{x_0, W}(B_{\epsilon, S}) + \rho\left(\frac{\epsilon}{2}, \delta\right) \sum_{t \in S} \mu_{x_0, W}(D_{t, \epsilon, S}) \end{aligned}$$

by the previous exercice. Since $D_{t, \epsilon, S}$ and $D_{t', \epsilon, S}$ are by definition disjoint for $S \ni t \neq t' \in S$, one has

$$\mu_{x_0, W}(A_{\epsilon, S}) \leq \mu_{x_0, W}(B_{\epsilon, S}) + \rho\left(\frac{\epsilon}{2}, \delta\right) \leq 2\rho\left(\frac{\epsilon}{2}, \delta\right).$$

8. Let $\delta, \epsilon > 0$ and consider $0 < t_0 < t_1$ with $t_1 - t_0 \leq \delta$. Define

$$E_{t_0, t_1, \epsilon} := \{w \in \Omega_L : \exists s, t \in [t_0, t_1] \text{ s.t. } |w_s - w_t| > 2\epsilon\}.$$

Prove then that

$$\mu_{x_0, W}(E_{t_0, t_1, \epsilon}) \leq 2\rho\left(\frac{\epsilon}{2}, \delta\right).$$

Consider some finite set $S \in [t_0, t_1]$ with $t_0, t_1 \in S$ and notice, that if one defines

$$E_{\epsilon,S} := \{w \in \Omega_L : \exists t, s \in S \text{ s.t. } |w_s - w_t| > 2\epsilon\},$$

then $E_{\epsilon,S} \subset A_{\epsilon,S}$ with

$$A_{\epsilon,S} := \{w \in \Omega_L : \exists s \in S \text{ s.t. } |w_s - w_{\min(S)}| > \epsilon\},$$

since if $|w_s - w_t| > 2\epsilon$, then $|w_s - w_{t_0}|, |w_t - w_{t_0}| \leq \epsilon$ cannot both hold. Hence, by the previous exercice,

$$\mu_{x_0,W}(E_{\epsilon,S}) \leq 2\rho\left(\frac{\epsilon}{2}, \delta\right).$$

We now are going to make use of the regularity of the measure $\mu_{x_0,W}$ and note that the aforementioned sets $E_{\epsilon,S}$ are open in the product topology for any finite set $S \subset [t_0, t_1]$ with $t_0, t_1 \in S$.

If we consider the collection of open sets

$$\Gamma_{\epsilon,t_0,t_1} := \{E_{\epsilon,S} : S \subset [t_0, t_1] \text{ is a finite set with } t_0, t_1 \in S\},$$

then

$$E_{t_0,t_1,\epsilon} = \bigcup_{V \in \Gamma_{\epsilon,t_0,t_1}} V$$

and by the regularity of the measure $\mu_{x_0,W}$,

$$\mu_{x_0,W}(E_{t_0,t_1,\epsilon}) = \sup\{\mu_{x_0,W}(E_{\epsilon,S})\} \leq 2\rho\left(\frac{\epsilon}{2}, \delta\right).$$