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The Scanning Tunneling Microscope (STM)

In the STM, the structure of a surface is studied using a stylus
that scans the surface at a fixed distance from it.

Currents Control the Surface
An extremely fine conducting probe is held close to the
sample. Electrons tunnel between the surface and the stylus,
producing an electrical signal. The stylus is extremely sharp,
Nobel Laureates Heinrich Rohrer and the tip being formed by one single atom. It slowly scans
Gerd Binnig across the surface at a distance of only an atom's diameter.
The stylus is raised and lowered in order to keep the signal
constant and maintain the distance. This enables it to follow
even the smallest details of the surface it is scanning.
sample Recording the vertical movement of the stylus makes it
possible to study the structure of the surface atom by atom. A
profile of the surface is created, and from that a computer-
generated contour map of the surface is produced.

Important in Many Sciences

| The study of surfaces is an important part of physics, with

tip particular applications in semiconductor physics and
microelectronics. In chemistry, surface reactions also play an
important part, for example in catalysis. The STM works best

i with conducting materials, but it is also possible to fix organic
tunneling o e molecules on a surface and study their structures. For
electrons : example, this technique has been used in the study of DNA

molecules.



Invention of Atomic force
MICroscope

@ 2016 KAVLI PRIZE NANOSCIENCE

Recognized “for the invention and realization of atomic force microscopy, a breakthrough in
measurement technology and nanosculpting that continues to have a transformative impact on
nanoscience and technology.”

| \ @ |
Gerd Binnig Christoph Gerber Calvin Quate

Former member of IBM Zurich University of Basel, Switzerland Stanford University, USA
Research Laboratory, Switzerland :



Atomic Force Microscope (AFM)
(The AFM is the younger brother of the STM)




Atomic force microscopy (AFM)
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Atomic force microscopy (AFM)
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STM: Electric current between tip and sample.

AFM: Physical bending of the cantilever.



Atomic force microscopy (AFM)

detector

cantilever

fluid
buffer

sample

piezotube




Atomic Force Microscopy

Laser Y-axis adjust
Photodiode adjust :

aser X-axis adjust

| .ZHI'.‘.I:l!lll!!_.!'lﬂ!'.‘:"1‘

e rmme







Atomic force microscopy (AFM)
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H.P. Lang, M. Hegner, and C. Gerber.
Nanomechanics from atomic resolution to
molecular recognition based on btomic force

microscopy technology. Nanotechnology, pages
R29-R36,2002.
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sAtomic force microscopy (AFM)
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Sharp Tip ~ Double Tip




AFM Modes

e Constant Height Mode

e Constant Force Mode

* Friction mode

* Tapping Mode, vibrating
mode




Tip-Sample Interaction
in Air
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Charting and unzipping the S-layer of

Corynebacterium glutamicum

The S-layer forms the protective cell wall of bacteria
Pilus ~

Inclusion \

Capsule
Cytoplasm
Ribosomes

Cell wall

Plasma membrane

Nucleoid
containing
Capsule DNA
Cell wall
Plasmid
Plasma
membrane

Fimbriae Flagella
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Native S-layer adsorbs double layered
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force applied to the AFM tip

Native S-layer adsorbs double layered
and can be dissected with the AFM tip
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triangular surface

-
™

0 ‘ 3 g ! , ’.‘
b.,..ccaooo f.a SN uu&’&&ﬁ‘% O
St et iats s ¢ e Sue e O
s et sefses e i S G,
.h.,“ QOAN)&M ,>‘0-..,r,,.. uﬂnbﬂ 9@& # —
W el y y S e e, 4 -
3 . ¢ B “ ¢ < a ¢ ,
e Ly PR a e L e s U B =
‘_&‘Q»onm“ _an..vc.oﬁé 0&0” & D
e e P PP e ki
R et et S a ey e £°]
Oﬁ,ﬁn P v,"w‘wo&ﬂ’ l".’t
L i_..,._aao*nﬂtnt o
0,. ¢ o od\ 4" t“.m-. ©
P b/m¢n,,".o“, 4% e
.4 ,_.wQHU.»._..,._.,a" n
m,m..,.m .},‘u” o
O
(T
(q]

AFM overview topograph of the proteolyzed sample



Raw data topographs diffract to 1Tnm resolutiuon
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Localization of the C-terminus and sidedness assignment
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The Conformational Energy
Landscape of Aquaporins

The tetrameric aquaporin has four
channels through which water can
very easily traverse the cellular
membrane.

No other molecules or ions can
traverse, not even hydrogens!




E. Coli Waterchannel AQPZ

The bacterial aquaporin AQPZ is here in an
Topography and molecular surface artificial membrane, where it is arranged in a 2D
crystalline formation.
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Conformational space of the AgpZ surface

Similarity ranked 1images
are assembled into a movie




AqgpZ: energy landscape

pd(l’ )
peak position probability
of domain d

F,=-kT'In p (r)
Relative free energy
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Scheuring et al., Europ. Biophys. J., 2003



Imaging
Native Membranes




he Bacterial Photosynthetic Apparatus

The core-complex : reaction center (RC) & light harvesting complex 1 (LH1)

ADP ATP
Cytoplasm

cytochrome c,

Hu, X., Ritz, T., Damjanovic, A., Autenrieth, F. & Schulten, K. (2002).
Photosynthetic apparatus of purple bacteria. Quart. Rev. Biophys. 35 (1), 1-62.




Blastochloris Viridis Core-Complex

Model AFM (raw data topograph) Averages
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Scheuring, S.*, Seguin, J., Marco, S., Lévy, D., Robert, B. & Rigaud, J.L. (2003)
Nanodissection and high-resolution imaging of the Rhodopseudomonas viridis photosynthetic core-complex in native membranes by AFM.
PNAS, 100, 1690-1693.
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Blastochloris Viridis Core-Complex
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Scheuring, S.*, Seguin, J., Marco, S., Lévy, D., Robert, B. & Rigaud, J.L. (2003)
Nanodissection and high-resolution imaging of the Rhodopseudomonas viridis photosynthetic core-complex in native membranes by AFM.
PNAS, 100, 1690-1693.




Blastochloris Viridis Core-Complex

The LH1 subunits around the RC

Computed models

Raw data AFM topograph St ok
‘ ‘ . b ;'\ i.rr .
e ® o 239° ' \ po ‘,A’.‘ .' { 3
Isaacs group
http://www.chem.gla.ac.uk/protein/LH2/core.html

10nm

LH1 subunits distribuﬁon and RC oriéntation

http://www.ks.uiuc.edu/Research/psu/psu_model.html

Scheuring, S.*, Seguin, J., Marco, S., Lévy, D., Robert, B. & Rigaud, J.L. (2003)
Nanodissection and high-resolution imaging of the Rhodopseudomonas viridis photosynthetic core-complex in native membranes by AFM.
PNAS, 100, 1690-1693.




Rhodobacter Blasticus Core-Complex

High-resolutionAFM topograph
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Scheuring, S.*, Busselez, J., & Lévy, D. (2005)
Structure of the dimeric PufX—containing core complex of Rhodobacter blasticus by in situ AFM.
JBC, 2005, 280, 2, 1426-1431.




Rhodobacter Blasticus Core-Complex

S-shaped dimeric core-complexes V‘ Raw data

Average
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Raw data
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Scheuring, S.*, Busselez, J., & Lévy, D. (2005)
Structure of the dimeric PufX—containing core complex of Rhodobacter blasticus by in situ AFM.
JBC, 2005, 280, 2, 1426-1431.




Rhodobacter Blasticus Core-Complex

Localization of PufX

Height: 8A 5nm

Scheuring, S.*, Busselez, J., & Lévy, D. (2005)
Structure of the dimeric PufX—containing core complex of Rhodobacter blasticus by in situ AFM.
JBC, 2005, 280, 2, 1426-1431.




Rhodobacter Blasticus Core-Complex

Model & Data
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Scheuring, S.*, Busselez, J., & Lévy, D. (2005)
Structure of the dimeric PufX—containing core complex of Rhodobacter blasticus by in situ AFM.
JBC, 2005, 280, 2, 1426-1431.




Imaging of
membrane protein
supercomplexes




The Bacterial Photosynthetic Apparatus

The apparatus : light harvesting complex 2 (LH2) & light harvesting complex 1 (LH1 ) & reaction center (RC)

Hu, X., Ritz, T., Damjanovic, A., Autenrieth, F. & Schulten, K. (2002).
Photosynthetic apparatus of purple bacteria. Quart. Rev. Biophys. 35 (1), 1-62.




Rps. Photometricum Photosynthetic Apparatus

Rhodopseudomonas photometricum cells contain stacked intracytoplasmic membranes
Phase contrast light microscopy Thin section transmission electron microscopy

1um

Scheuring, S.*, Sturgis, J., Prima, V., Bernadac, A., Lévy, D. & Rigaud, JL. (2004)
Watching the photosynthetic apparatus in native membranes.
PNAS, 2004, 101, 31, 11293-11297.




Rps. Photometricum Photosynthetic Apparatus

High-resolution topographs
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Scheuring, S.*, Rigaud, JL. & Sturgis, J. (2004)
Variable LH2 stoichiometry and core clustering in native membranes of Rhodospirillum photometricum.
EMBO J., 2004, 23, 21, 4127-4133.




Rps. Photometricum Photosynthetic Apparatus

Heterogeneity of LH2 complexes
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Scheuring, S.*, Rigaud, JL. & Sturgis, J. (2004)
Variable LH2 stoichiometry and core clustering in native membranes of Rhodospirillum photometricum.
EMBO J., 2004, 23, 21, 4127-4133.




Rps. Photometricum Photosynthetic Apparatus

There is no fixed assembly unit

6nm l
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Scheuring, S.*, Rigaud, JL. & Sturgis, J. (2004)
Variable LH2 stoichiometry and core clustering in native membranes of Rhodospirillum photometricum.
EMBO J., 2004, 23, 21, 4127-4133.




Rps. Photometricum Photosynthetic Apparatus

There is no fixed assembly unit
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Scheuring, S.*, Rigaud, JL. & Sturgis, J. (2004)
Variable LH2 stoichiometry and core clustering in native membranes of Rhodospirillum photometricum.
EMBO J., 2004, 23, 21, 4127-4133.




Rps. Photometricum Photosynthetic Apparatus
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There is no fixed assembly unit
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Scheuring, S.*, Rigaud, JL. & Sturgis, J. (2004)
Variable LH2 stoichiometry and core clustering in native membranes of Rhodospirillum photometricum.
EMBO J., 2004, 23, 21, 4127-4133.




Static assembly?
Or rather:

Dynamic Light Adaptation!




Chromatic Adaptation

High-light adapted membranes Low-light adapted membranes
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Simon Scheuring*, & James Sturgis (2005).
Chromatic adaptation of photosynthetic membranes.
Science, 2005, 309, 5733, 484-487.




The complexes

LH1 - RC
core-complex

LH?
complex

Chromatic Adaptation

LH1 - RC
core complex

LH2
complex

Simon Scheuring*, & James Sturgis (2005).
Chromatic adaptation of photosynthetic membranes.
Science, 2005, 309, 5733, 484-487.




Chromatic Adaptation

High-light adapted membranes
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Chromatic adaptation of photosynthetic membranes.
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Chromatic Adaptation

Low-light adapted membranes
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Chromatic adaptation of photosynthetic membranes.
Science, 2005, 309, 5733, 484-487.




Chromatic Adaptation

Antenna and “photosynthetically active*“ domains in low-light adapted membranes

Simon Scheuring*, & James Sturgis (2005).
Chromatic adaptation of photosynthetic membranes.
Science, 2005, 309, 5733, 484-487.




Rsp. Molischianum Photosynthetic Apparatus

Atomic model of the photosynthetic complex assembly, based on AFM topography
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(c) Simon Scheuring
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D. Alsteens, H. E. Gaub, R. Newton, M. Pfreundschuh, C. Gerber, and D. J. Mller, “Atomic force microscopy-
based characterization and design of biointerfaces,” Nature Publishing Group, vol. 2, pp. 1-16, Mar. 2017.



High-Speed AFM

Laser diode Piezoactuator
Mirror ' for excitation
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Toshio Ando, Takayuki Uchihashi, Noriyuki Kodera, Annual Review of Biophysics 42, 393-414 (2013)



High-Speed AFM shows myosin walking along actin

- -

Processive movement of myosin V (M5-HMM). The Hand-over-hand movement of myosin V (M5-HMM)

dynamic process in 1 uM ATP was captured at 7 fps. including foot stomp of the leading head. The

Scan range, 130 x 65 nm2 with 80 x 40 pixel. dynamic process in 1 yM ATP was captured at 7 fps.
Scan range, 150 x 75 nm2 with 80 x 40 pixel.

—

Long tracking of myosin V (M5-HMM) walking along actin filament. This typical movie showing long
processive runs in 1 yM ATP was captured at 7 fps. To chase the M5-HMM molecule, the scan area was
moved. Scan range, 150 x 75 nm2 with 80 x 40 pixel; the whole imaging area, 560 x 120 nm?2

Toshio Ando, Takayuki Uchihashi, Noriyuki Kodera, Annual Review of Biophysics 42, 393-414 (2013)



-orce spectroscopy AFM

Protein unfolding Cellular intention
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M. Grandbois, W. Dettmann, M. Benoit, and H. E. Gaub, “Affinity imaging of red blood cells using an atomic force
microscope,” J. Histochem. Cytochem., vol. 48, no. 5, pp. 719-724, 2000.



Affinity imaging by AFM

Recorded pixel by pixel
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M. Grandbois, W. Dettmann, M. Benoit, and H. E. Gaub, “Affinity imaging of red blood cells using an atomic force
microscope,” J. Histochem. Cytochem., vol. 48, no. 5, pp. 719-724, 2000.



Affinity imaging by AFM

Adhesion image Topography

(a) Adhesion image recorded on a layer of mixed group A and O RBCs (1:2) adsorbed on a polylysine-coated glass surface with an
AFM tip functionalized with HPL. The bright regions observed in this image correspond to group A RBCs. This image was obtained
from the calculation of the rupture force (when observed) for an array of 55 x 55 force curves. Rupture events are responsible for the

contrast. (b) Topographic image of the RBC layer scanned in a.

M. Grandbois, W. Dettmann, M. Benoit, and H. E. Gaub, “Affinity imaging of red blood cells using an atomic force
microscope,” J. Histochem. Cytochem., vol. 48, no. 5, pp. 719-724, 2000.



Affinity imaging by AFM

a Affinity imaging Height image Adhesion map
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M. Grandbois, W. Dettmann, M. Benoit, and H. E. Gaub, “Affinity imaging of red blood cells using an atomic force
microscope,” J. Histochem. Cytochem., vol. 48, no. 5, pp. 719-724, 2000.



Controlled Unzipping of
Proteins



Single molecule force
spectroscopy (SMFS
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T. Serdiuk, D. Balasubramaniam, J. Sugihara,
S. A. Mari, H. R. Kaback, and D. J. Muller,
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folding of membrane proteins,” Nat. Chem.
Distance (nm) Biol., vol. 12, no. 11, pp. 911-917, Sep. 2016.




Force spectroscopy of the native S-layer
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S. Scheuring, H. Stahlberg, M. Chami, C. Houssin, J.-L. Rigaud,

and A. Engel, “Charting and unzipping the surface layer of
Corynebacterium glutamicum with the atomic force

microscope.,” Mol. Microbiol., vol. 44, no. 3, pp. 675-684, 2002.
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Force spectroscopy of the native Corynebacterium glutamicum S-layer
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Tissue characterisation (|

Cancer biopsy and nanmochenical characterisation

a Testing human breast biopsies by IT-AFM b Normal tissue
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M. Plodinec, M. Loparic, C. A. Monnier, E. C. Obermann, R. Zanetti-Dallenbach, P. Oertle, J. T. Hyotyla, U. Aebi,
M. Bentires-Alj, R. Y. H. Lim, and C.-A. Schoenenberger, “The nanomechanical signature of breast cancer,” pp.
1-9, 2012.



Nlanomechanical
SEensors
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Two modes

Static mode Dynamic mode

© UNI BASEL © UNI BASEL

Detects surface stress Detects mass increase



Static mode: DNA
hybridisation

i oligonucleotide A % hybridization W B

£

o’
.
.
.
.

.
o*
.

.*
.
.
.
.
.
.
.
.
.
.
.
.
.
P
.

Scheme illustrating the hybridization experiment. Each cantilever is functionalized on one side with
a different oligonucleotide base sequence (red or blue). (A) The differential signal is set to zero. (B)
After injection of the first complementary oligonucleotide (green), hybridization occurs on the
cantilever that provides the matching sequence (red), increasing the differential signal Ax.

J. Fritz, M. K. Baller, H. P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H. J. Guntherodt, C. Gerber, and J. K.
Gimzewski, “Translating biomolecular recognition into nanomechanics,” Science, vol. 288, no. 5464, pp.
316-318, 2000.



Static mode: DNA
hybridisation
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Three successive hybridization
experiments with different 12-mer
oligonucleotide concentrations using
one array.

J. Fritz, M. K. Baller, H. P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H. J. Guntherodt, C. Gerber, and J. K.
Gimzewski, “Translating biomolecular recognition into nanomechanics,” Science, vol. 288, no. 5464, pp.

316—-318, 2000.



Dynamic mode

First mode Second mode
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In vacuum

M. K. Ghatkesar, V. Barwich, T. Braun, J.-P. Ramseyer, C. Gerber, M. Hegner, H.-P. Lang, U. Drechsler, and M.
Despont, “Higher modes of vibration increase mass sensitivity in nanomechanical microcantilevers,”
Nanotechnology, vol. 18, no. 44, pp. 445502-8, 2007.



Dynamic mode

PSD

B

Frequency
analyser

D

Amplitude

Phase

NOSEtools p

ost-processing

Frequency
generator

Bound mass

A frequency generator sweeps the
frequency by exciting a piezoelectric
actuator located beneath the base of the
microcantilever array. The response of
the cantilever is optically detected with a
laser using a position-sensitive detector
(PSD). The frequency analyser compares
the cantilever response with a reference
signal from the frequency generator to
determine the phase. The amplitude
spectrum is recorded with the
corresponding phase values. The raw
data are analysed by a post-processing
software called NOSEtools, which allows
the time evolution of the adsorbed mass
to be directly determined from the
spectrum.

Virtual mass: also liquid is moved, shifting eigenfrequency. Calibration is needed.
High damping, shifts amplitude peak relative to eigenfrequency.

T. Braun, V. Barwich, M. K. Ghatkesar, A. H. Bredekamp, C. Gerber, M. Hegner, and H. P. Lang,
“Micromechanical mass sensors for biomolecular detection in a physiological environment,” Phys.

Rev. E,72, 3, 2005.



Dynamic mode
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Vesicles with T5 virus receptor FhuA in Transmission 21 Hight profile

electron microscope

T. Braun, M. K. Ghatkesar, N. Backmann, W. Grange, P.
Boulanger, L. Letellier, H.-P. Lang, A. Bietsch, C. Gerber,
and M. Hegner, “Quantitative time-resolved measurement
of membrane protein—ligand interactions using
microcantilever array sensors,” Nature Nanotech, vol. 4,
no. 3, pp. 179-185, 2009.

Height (nm)

Functionalization of cantilever with FhuA vesicles

a, Schematic of the cantilever functionalization: the gold interface of the
cantilever is pre-functionalized with a self-assembling DSU crosslinker, which
binds to the gold via a thiol group and reacts by a succimidyl group with primary
amines of FhuA—protein reconstituted in lipid vesicles. b, Tapping-mode AFM
image of the cantilever surface in the middle of the cantilever bar. The line
indicates the position of the recorded height profile shown in the lower panel.
FhuA-containing proteoliposomes are clearly visible, similar to the one in the
image on the left.



Quantitative realtime virus binding
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Dynamic mode

Buffer T5 virus Buffer A T5 phage solution (3 pM) was injected
3 pM - for 1 h at a rate of 10 ul min—1. The uptake
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T. Braun, M. K. Ghatkesar, N. Backmann, W. Grange, P. Boulanger, L. Letellier, H.-P. Lang, A. Bietsch, C.
Gerber, and M. Hegner, “Quantitative time-resolved measurement of membrane protein—ligand interactions
using microcantilever array sensors,” Nature Nanotech, vol. 4, no. 3, pp. 179-185, 20009.



