
Mock Coding Questions - 2024/25

January 21, 2025

1 Small coding questions related to exercises

1. (CNN) In the following code for defining a convolutional neural network that does a classification between 10 classes

model = nn.Sequential(

nn.Conv2d(3, 6, 5),

nn.ReLU(),

nn.MaxPool2d(2, 2),

nn.Conv2d(6, 16, 5),

nn.ReLU(),

nn.MaxPool2d(2, 2),

nn.Flatten(),

nn.Linear(16 * 5 * 5, 120),

nn.ReLU(),

nn.Linear(120, 84),

nn.ReLU(),

nn.Linear(84, 10)

)

(a) What does the nn.Flatten() operation do, and why do you need it there?

(b) Write a line of code for an input X, that is a batch of samples in (17,28,28) dimensions, returns the class
predicted by the model, i.e. a tensor with the shape (17,). Assume that you are using the negative cross entropy
as a loss.
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2 Two-Hidden-Layer Neural Networks

Below you find some code snippets related to a two-hidden-layer neural network using PyTorch for classifying MNIST images.
The architecture and training loop are partly shown below:

1 import torch

2 import torch.nn as nn

3 import torch.optim as optim

4 import torchvision

5 import torchvision.transforms as transforms

6

7 # 1) Define transformations for training and validation sets

8 transform = transforms.Compose([

9 transforms.ToTensor(),

10 transforms.Normalize((0.5,), (0.5,))

11 ])

12

13 # 2) Download and load the training and validation data

14 trainset = torchvision.datasets.MNIST(

15 root='./data' , train=True, download=True, transform=transform)

16 trainloader = torch.utils.data.DataLoader(

17 trainset, batch_size=64, shuffle=True)

18

19 validationset = torchvision.datasets.MNIST(

20 root='./data' , train=False, download=True, transform=transform)

21 validationloader = torch.utils.data.DataLoader(

22 validationset, batch_size=64, shuffle=False)

23

24 # 3) Define a two-hidden-layer neural network

25 class TwoHiddenLayerNN(nn.Module):

26 def __init__(self):

27 super(TwoHiddenLayerNN, self).__init__()

28 self.fc1 = nn.Linear(28 * 28, 256)

29 self.fc2 = nn.Linear(256, 128)

30 self.fc3 = nn.Linear(128, 10)

31 self.relu = nn.ReLU()

32

33 def forward(self, x):

34 # Flatten image to vector of size 784

35 x = x.view(-1, 28 * 28)

36 x = self.relu(self.fc1(x))

37 x = self.relu(self.fc2(x))

38 x = self.fc3(x)

39 return x

40

41 net = TwoHiddenLayerNN()

42

43 # 4) Set up loss and optimizer

44 criterion = nn.CrossEntropyLoss()

45 optimizer = optim.Adam(net.parameters(), lr=0.001)

46

47 # 5) Training loop

48 epochs = 5

49 for epoch in range(epochs):

50 net.train()

51 running_loss = 0.0

52 for images, labels in trainloader:

53 # (A)

54 outputs = net(images)

55 # (B)

56 loss = criterion(outputs, labels)

57 # (C)

58 loss.backward()

59 # (D)

60 optimizer.step()

61

62 running_loss += loss.item()

63

64 # Validation

65 net.eval()

66 val_loss = 0.0
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67 correct_val = 0

68 total_val = 0

69 with torch.no_grad():

70 for images_val, labels_val in validationloader:

71 outputs_val = net(images_val)

72 loss_val = criterion(outputs_val, labels_val)

73 val_loss += loss_val.item()

74

75 # Compute validation accuracy

76 _, predicted = torch.max(outputs_val.data, 1)

77 total_val += labels_val.size(0)

78 correct_val += (predicted == labels_val).sum().item()

79

80 print(f "Epoch [ { epoch+1} / { epochs} ], "

81 f "Train Loss: { running_loss/len(trainloader): .4f } , "

82 f "Val Loss: { val_loss/len(validationloader): .4f } , "

83 f "Val Accuracy: { (100*correct_val/total_val): .2f } %" )

Answer the following questions:

1. Which single line must be added (or re-inserted) in the training loop (from line 47 to 62) to ensure that gradients do
not accumulate from one batch to the next? Where in (A), (B), (C), (D)? Note that more than one answer is possible
among the 4.

2. Suppose the shape of images entering the net is [64, 1, 28, 28]. After the line 35:

x = x.view(-1, 28 * 28)

What is the resulting shape of x that is fed into self.fc1?

3. If we mistakenly remove shuffle=True when building trainloader in line 17 of the code above, how might this impact
the network’s training performance? Provide a brief reasoning.

4. In the validation loop, a student tries to compute the average validation loss by writing:

val_loss = float(val_loss) / len(validationloader.dataset)

Instead of dividing by len(validationloader), they divide by len(validationloader.dataset). Explain why this
is likely incorrect and provide a corrected line.
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3 Polynomial Regression

Consider the following code performing a polynomial regression on random generated data.

import numpy as np

import sklearn.linear_model as linear_model

import sklearn.preprocessing as preprocessing

# This function generates data from a polynome, possibly with noise

def generate_polynome_data(polynome, noise_std, n, bound):

rs = np.random.RandomState(57)

degree = len(polynome) - 1

samples = rs.uniform(-bound, bound, size=n)

xs = np.copy(samples)

samples = np.ones((n, degree + 1)).T * samples

powers = np.power(samples.T, np.arange(0, degree + 1, 1))

return xs.reshape(-1, 1), np.sum(powers * polynome, axis=1) + rs.normal(

0, noise_std, size=n

)

# Create some train and test data from a given ground truth polynome

polynom = np.array([0, 0, 1, 0, 0.3]) # function y = x^2 + 0.3 * x^4

n_train = 8

train_bound = 2

noise_std = 0.1

X_train, y_train = generate_polynome_data(polynom, noise_std, n_train, train_bound)

n_test = 25

test_bound = 2

X_test, y_test = generate_polynome_data(polynom, 0.0, n_test, test_bound)

# fit a model for every even polynomial degree between 0 and 6

degrees = np.arange(0, 8, 2)

def PolyFit(degrees, X_train, y_train, X_test, y_test, alpha):

for d in degrees:

# add more features to the data input, up until degree d

poly = preprocessing.PolynomialFeatures(d)

X_train_features = poly.fit_transform(X_train)

X_test_features = poly.fit_transform(X_test)

# fit with a polynomial regression

lr = linear_model.Ridge(alpha=alpha, fit_intercept=False)

lr.fit(X_train_features, y_train)

# Predict the targets for train and test data

y_train_pred = lr.predict(X_train_features)

y_test_pred = lr.predict(X_test_features)

# Show the MSE

print(

f "Degree { d} : training error is { np.linalg.norm(y_train - y_train_pred)} , test error is { np.linalg.norm(y_test - y_test_pred)} "

)

# Fit

PolyFit(degrees, X_train, y_train, X_test, y_test, 0.0)

# Output

# Degree 0 : training error is 5.501160576266574, test error is 13.026269448141656

# Degree 2 : training error is 0.7040691009440556, test error is 2.0997676486970076

# Degree 4 : training error is 0.2860769571840801, test error is 0.6498095945008711

# Degree 6 : training error is 0.17994948328710797, test error is 5.825662882158658
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Answer the following questions.

1. What is the shape of X train features?

2. What is the role of the regularization and why is it set to zero in this case?

3. Which is the optimal model and why?

Now consider this variation of the code which differentiates from the previous code from the line degrees = np.arange(0,

8, 2) in the following way:

# fit a model for every even polynomial degree between 10 and 14

degrees = np.arange(10, 16, 2)

def PolyFit(degrees, X_train, y_train, X_test, y_test, alpha):

for d in degrees:

# add more features to the data input, up until degree d

poly = preprocessing.PolynomialFeatures(d)

X_train_features = poly.fit_transform(X_train)

X_test_features = poly.fit_transform(X_test)

# do not use a regularizer for now, but only fit a linear regression

lr = linear_model.Ridge(alpha=alpha, fit_intercept=False)

lr.fit(X_train_features, y_train)

# Predict the targets for train, test and plot data

y_train_pred = lr.predict(X_train_features)

y_test_pred = lr.predict(X_test_features)

# Show the MSE

print(

f "Degree { d} : training error is { np.linalg.norm(y_train - y_train_pred)} , test error is { np.linalg.norm(y_test - y_test_pred)} "

)

# Fit

PolyFit(degrees, X_train, y_train, X_test, y_test, 0.5)

# Output

# Degree 10 : training error is 0.22004580593405246, test error is 26.421400718553116

# Degree 12 : training error is 0.20674169975405737, test error is 88.50310100797962

# Degree 14 : training error is 0.20433046276146066, test error is 262.1837993940009

Answer the following questions.

1. Why is the regularization parameter chosen to be different from zero now?

2. Which is the optimal model? Is it independent from the value of the regularization strength.

3. What is a systematic way to select the right value of the regularization strength?
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