
PHYS–467 Machine Learning for Physicists
Scientific Programming with NumPy

September 30, 2022

Exercise 1: Vectorized Operations: Writing Optimized Code

1. Generate a 1000× 1000 matrix of random integers between 0 (included) and 20 (excluded).

2. Compute the sum of diagonal elements using a for loop.

3. Compute the sum of diagonal elements using a NumPy linear algebra function.

4. Compare the running times of 2. and 3. with %%timeit (the %% syntax allows timing multiple lines).

Hint: use numpy.random.randint.

Exercise 2: Fibonacci Numbers with Binet Formula

1. Using NumPy, compute the first 20 numbers of the Fibonacci series Fn (n = 1, 2, . . . , 10) with Binet
formula

Fn =
(1 +

√
5)n − (1−

√
5)n

2n
√
5

.

Exercise 3: Quantum Harmonic Oscillator

In this exercise, you will find the bound states of the 1d quantum harmonic oscillator of mass m by solving
the time-independent Schrödinger equation numerically. This equation is an eigenvalue problem

Hψn = Enψn

where H = K+V = − h̄2

2m∂
2
x+

1
2mω

2x2 is the Hamiltonian operator, ψn is the wavefunction (eigenfunction),
and En the energy level (eigenvalue). In the following, set h̄ = m = ω = 1.

1. Space discretization. Consider the interval [−10, 10] and discretize it generating a mesh of uniform
spacing ∆x = 0.01 with N points, i.e., xi = −10 + i∆x (i = 0, 1, . . . , N − 1). In this space, the
wavefunction ψ is a vector with components (ψ)i = ψ(xi).

2. Hamiltonian discretization. Using this discretization, the Hamiltonian becomes a N ×N matrix.
In particular, the kinetic energy term is

K̂ = − 1

2∆x2



−2 1 0 0 · · · 0
1 −2 1 0 · · · 0

0 1 −2 1
...

...
. . .

. . .
. . . 0

0 0 · · · 1 −2 1
0 0 · · · 0 1 −2


,

where we used the finite-difference approximation of the second derivative, and the potential energy
term is

V̂ =
1

2



V (x0) 0 0 0 · · · 0
0 V (x1) 0 0 · · · 0
0 0 V (x2) 0 · · · 0
...

...
. . .

...
0 0 · · · 0 V (xN−2) 0
0 0 · · · 0 0 V (xN−1)


.

Generate the Hamiltonian matrix Ĥ = K̂ + V̂ .

https://ipython.readthedocs.io/en/stable/interactive/magics.html#magic-timeit
https://numpy.org/doc/stable/reference/random/generated/numpy.random.randint.html

3. Diagonalization. Diagonalize Ĥ using numpy.linalg.eig and numpy.linalg.eigh, which is specific
for symmetric matrices. Use %%timeit to compare running times. Check that the eigenvalues are sorted
in increasing order, and if not, do so.

4. Normalize the wavefunctions (eigenfunctions) of Ĥ computing the normalization constant

Z =

√∫ 10

−10

ψ∗(x)ψ(x)dx ≈

√√√√N−1∑
i=0

ψ∗(xi)ψ(xi)∆x.

5. Plot the first 10 (normalized) wavefunctions and print the values of the corresponding energy levels
(eigenvalues1). Compare with the theoretical predictions En = (n+ 1

2).

Hint: use numpy.arange, numpy.diag, numpy.argsort, matplotlib.pyplot.plot.

Exercise 4: Eigenvalue Statistics of Random Matrices

In this exercise, you will study the distribution of the spectrum of certain random matrices. Random matrix
theory is a branch of mathematics with numerous applications in, e.g., physics, machine learning, and finance.
The simplest random matrix is the Wigner one

W =
1√
2N

(A+A⊤),

where A is a random matrix of size N with i.i.d. elements distributed from a standard Gaussian, i.e.,
Aij ∼ N (0, 1).

1. Generate a Wigner matrix with N = 1000.

2. Find the eigenvalues λn (n = 1, 2, . . . , N) and sort them in increasing order.

3. Plot the probability density of a single eigenvalue ρW (λ) and compare it to the Wigner semi-circle law

ρW (λ) =

{
1
2π

√
4− λ2, if |λ| < 2

0, otherwise

Hint: use matplotlib.pyplot.hist.

1Be careful that you renormalized the eigenfunctions and therefore should update the eigenvalues accordingly!

https://numpy.org/doc/stable/reference/generated/numpy.linalg.eig.html
https://numpy.org/doc/stable/reference/generated/numpy.linalg.eigh.html
https://ipython.readthedocs.io/en/stable/interactive/magics.html#magic-timeit
https://numpy.org/doc/stable/reference/generated/numpy.arange.html
https://numpy.org/doc/stable/reference/generated/numpy.diag.html
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.argsort.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.hist.html

