PHYS-467 Machine Learning for Physicists

Scientific Programming with NumPy
September 30, 2022

Exercise 1: Vectorized Operations: Writing Optimized Code
1. Generate a 1000 x 1000 matrix of random integers between 0 (included) and 20 (excluded).
2. Compute the sum of diagonal elements using a for loop.
3. Compute the sum of diagonal elements using a NumPy linear algebra function.
4. Compare the running times of 2. and 3. with [%/%timeit (the %% syntax allows timing multiple lines).

Hint: use numpy.random.randint.

Exercise 2: Fibonacci Numbers with Binet Formula

1. Using NumPy, compute the first 20 numbers of the Fibonacci series F;, (n = 1,2,...,10) with Binet
formula
(1+v5)" = (1= V)"
27 /5 '

F, =

Exercise 3: Quantum Harmonic Oscillator

In this exercise, you will find the bound states of the 1d quantum harmonic oscillator of mass m by solving
the time-independent Schrodinger equation numerically. This equation is an eigenvalue problem

Hwn = nwn

where H = K+V = 72%6% + 1mw?2? is the Hamiltonian operator, 1, is the wavefunction (eigenfunction),
and E,, the energy level (eigenvalue). In the following, set i =m =w = 1.

1. Space discretization. Consider the interval [—10,10] and discretize it generating a mesh of uniform
spacing Az = 0.01 with N points, i.e., ; = =10+ Az (i = 0,1,...,N — 1). In this space, the
wavefunction 1) is a vector with components (v); = ¥ (x;).

2. Hamiltonian discretization. Using this discretization, the Hamiltonian becomes a N x N matrix.
In particular, the kinetic energy term is

-2 1 0 O 0
1 -2 1 0 0
e 1 0 1 -2 1
2 Az? 0 ’
0 0 1 -2 1
0 0 0 1 -2
where we used the finite-difference approximation of the second derivative, and the potential energy
term is
V(zo) 0 0 0 .- 0
0 V(zy) 0 0 e 0
-1 0 0 V(ze) 0 0
V=) : ,
0 0 0 V(l‘N_Q) 0
0 0 0 0 V(zn-1)

Generate the Hamiltonian matrix H = K + V.

https://ipython.readthedocs.io/en/stable/interactive/magics.html#magic-timeit
https://numpy.org/doc/stable/reference/random/generated/numpy.random.randint.html

3. Diagonalization. Diagonalize H using numpy.linalg.eigand numpy.linalg.eighl which is specific
for symmetric matrices. Use|/i4timeit to compare running times. Check that the eigenvalues are sorted
in increasing order, and if not, do so.

4. Normalize the wavefunctions (eigenfunctions) of H computing the normalization constant

10 N-1
= \/ [w@i@de~ || 3 0 @i an,
—10 i=0

5. Plot the first 10 (normalized) wavefunctions and print the values of the corresponding energy levels
(eigenvalues[[). Compare with the theoretical predictions E,, = (n + %)

Hint: use numpy.arange, numpy.diag, numpy.argsort), matplotlib.pyplot.plotl

Exercise 4: Eigenvalue Statistics of Random Matrices

In this exercise, you will study the distribution of the spectrum of certain random matrices. Random matrix
theory is a branch of mathematics with numerous applications in, e.g., physics, machine learning, and finance.
The simplest random matrix is the Wigner one

1
W=——(A+A4"),
TN()

where A is a random matrix of size N with i.i.d. elements distributed from a standard Gaussian, i.e.,

A;; ~N(0,1).
1. Generate a Wigner matrix with N = 1000.
2. Find the eigenvalues A, (n =1,2,...,N) and sort them in increasing order.
3. Plot the probability density of a single eigenvalue py (A) and compare it to the Wigner semi-circle law

() = {;\/4—%, if |\ < 2

0, otherwise

Hint: use matplotlib.pyplot.histl

1Be careful that you renormalized the eigenfunctions and therefore should update the eigenvalues accordingly!

https://numpy.org/doc/stable/reference/generated/numpy.linalg.eig.html
https://numpy.org/doc/stable/reference/generated/numpy.linalg.eigh.html
https://ipython.readthedocs.io/en/stable/interactive/magics.html#magic-timeit
https://numpy.org/doc/stable/reference/generated/numpy.arange.html
https://numpy.org/doc/stable/reference/generated/numpy.diag.html
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.argsort.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.hist.html

