Convolutional neural
networks & Modus
Operandi of Deep Learning

Lecture 13 of ML for physicists

Convolutional layers

Convolution 1d

Convolution 1d

Convolution 1d

Convolution 1d

Convolution 1d

Convolution 1d

Convolution 1d

Input
W >

Convolution 1d

Convolution 1d

Kernel

2 0

Output

W—w+1

Convolutional filter

Convolution 2d

Convolution 2d

Convolution 2d

Output

Convolution 2d

Output

Convolution 2d

Output

Convolution 2d

Convolution 2d

Output

Convolution 2d

Output

Convolution 2d

Output

Convolution 2d

Output

Convolution 2d

Output

Convolution 2d

Y hJA, H—h+1

|—t$|

Max-Pooling 1d

Max-Pooling 1d

Max-Pooling 1d

Max-Pooling 1d

Max-Pooling 1d

Max-Pooling 1d

Max-Pooling 1d

Max-Pooling 2d

Max-Pooling 2d

Max-Pooling 2d

Max-Pooling 2d

Output
rw
A

Max-Pooling 2d

Output
rw
) ,

Max-Pooling 2d

Output
rw
A

Max-Pooling 2d

Output
rw
A

Max-Pooling 2d

Max-Pooling 2d

Max-Pooling 2d

Input

Max-Pooling 2d

Max-Pooling 2d

Flatten
2D->1D

o -

/
{)
_\‘

l)
X
X

28\

o 4P AN 4
4G50 8
NSNS L5

2\

(a) Standard Neural Net (b) After applying dropout.

Each time we load an example into a minibatch, we randomly sample a different binary
mask to apply to all of the input and hidden units in the network. The mask for each unit
Is sampled independently from all of the others

LeNet
Image: 28 (height) x 28 (width) x 1 (channel)

AlexNet
Image: 224 (height) x 224 (width) x 3 (channels)

Convolution with 5x5 kernel+2padding:28x28x6
., sigmoid

Convolution with11x11 I{ernel+4stride:54x54x96
v Relu

Pool with 2x2 average kernel+2 stride: 14x14x6

Pool with 3x3 max. kernel+2 stride: 26x26x96

Convolution with 5x5 kérnel (nopad):10x10x16

Convolution with 5x5 kérnel+2 pad:26x26x256

., sigmoid v Relu
Pool with 2x2 average kernel+2 stride: 5x5x16 Pool with 3x3 max.kernel+2stride: 12x12x256
v flatten
Dense: 120 fully connected neurons Convolution with 3x3 kernel+1 pad:12x12x384
., sigmoid v Relu
Dense: 84 fully connected neurons Convolution with 3x3 kernel+1 pad:12x12x384
., sigmoid v Relu
Dense: 10 fully connected neurons Convolution with 3x3 kernel+1 pad:12x12x256
» Relu
Output: 1 of 10 classes Pool with 3x3 max.kernel+2stride:5x5x256
v flatten

Dense: 4096 fully connected neurons

v Relu, dropout p=0.5

Dense: 4096 fully connected neurons
v Relu, dropout p=0.5

Dense: 1000 fully connected neurons

Output: 1 of 1000 classes

C3:1. maps 16@10x10

Convolutions Subsampling Comvolutions Subsampling Full connection

A Full Convolutional Neural Network (LeNet)

VGG-16

224 x224x3 224 x224xX64

112 x 128

56|X 56 X 256

28><28><51214 » 5I2><7><512
e 1x1x4096 1 x1x1000

P (y

L

@ convolution+ReLLU

@ max pooling
) fully connected+ReLLU

@ softmax

Hierarchy of features

A - DL
=) =k [
! |1

FJ’ laﬁ

labels

Deeper is better

ImageNet experiments 28.2
[152 layers } '
A\
\\‘\ 16.4
\\\ 11.7

22 layers 19 layers
\\ 6.7 7.3
3.57 I_ I 8 layers [8 layers

ILSVRC'15 ILSVRC'14 ILSVRC'14 ILSVRC'13 ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)

Deep Learning
Modus Operandi

OVERFITTING

MSE: 0.788675
MSE: 35.8272

O Training Samples O Training Samples O Training Samples
Target function ’ i Target function i i Target function 7
Prediction Prediction Prediction

over-fitting

Test risk

~ o Training risk

sweet spot

~

AT = =
Capacity of

-
o

MSE: 0.788675

s
T

MSE: 35.8272

)

A
;;58999&
_R

Output

AN
o
o

O Training Samples O Training Samples O Training Samples O Training Samples
Target function | -r Target function | -r Target function | -1r Target function |7
Prediction Prediction Prediction — Prediction

: P - : . n

'
-
T

909399

—
, o

0 2 . - 0 2 - - 0 2 - . 0 2
Input Input Input Input

-
m
=
=
=
A

Figure 1: Over-parameterization and generalization via minimum norm solutions. (A) A simple ReLU
network with random first layer weights and trained second layer weights. The network receives
a scalar input and bias term, and is trained to minimize squared error on ten points (red circles)
from a target sinusoid (red curve) shown in panels B-E. (B-E) Blue curves show example functions
learned by networks with differing numbers of hidden units N, = {2,5,10,500}. Networks in
panels B, C, & D show the standard progression from underfitting the training data to overfitting, with
a happy medium in panel C. However the large network in panel E generalizes best. This network
has 50X more parameters than training examples but generalizes well, because among the infinity of
solutions attaining zero training error we have chosen a low norm solution. In this work we derive
training algorithms for nonlinear deep networks that explicitly seek minimum norm solutions in the
underdetermined, accurate label regime, allowing good generalization in large networks.

Saxe, Advani'17

DOUBLE-DESCENT

0.050

0.025 -

zero training
error

-
o
Q

'S
o

rar

0.000

|
102 10°
N

0.06

LI ""i LI AALL | LI AL RL | LI AL | LI B ILLA) |
102 N* =82 104 10° 106 1P
#Pa

Parlty-MNIST, 5 layers, FCN, [Geiger et al. ’ 18]
hinge loss, no regularisation

0.05

DOUBLE-DESCENT

under-fitting over-fitting under-parameterized /\ over-parameterized

Test risk Test risk

“classical” . “modern”
regime : interpolating regime

~ Training risk ~ Training risk:
sweet spot__ . — __ T~ . _interpolation threshold
A == » = !l
Capacity of H Capacity of H

(a) (b)

Figure 1: Curves for training risk (dashed line) and test risk (solid line). (a) The classical
U-shaped risk curve arising from the bias-variance trade-off. (b) The double descent risk curve,
which incorporates the U-shaped risk curve (i.e., the “classical” regime) together with the observed
behavior from using high capacity function classes (i.e., the “modern” interpolating regime), sep-
arated by the interpolation threshold. The predictors to the right of the interpolation threshold
have zero training risk.

-

Belkin, Hsu, Ma, Mandal’19

Overparametrization ‘.

\

Parameter Count

Num Training Samples
Inceptio
n/n: 33 <. Wide Resnet
, oln: 179
Alexnet
MLP Ix512 g
pln: 24

50

test error

37,5
25
12,5

0
MLP Ix512 Alexnet Inception Wide Resnet
Slide credit: C. Zhang

UNDERSTANDING DEEP LEARNING REQUIRES RE-
THINKING GENERALIZATION

Chiyuan Zhang* Samy Bengio Moritz Hardt
Massachusetts Institute of Technology Google Brain Google Brain
chiyuan@mit.edu bengio@google.com mrtz@google.com

Benjamin Recht! Oriol Vinyals
University of California, Berkeley Google DeepMind
brecht@berkeley.edu vinyals@google.com

= State-of-the-art neural networks are able to fit random labels.

= (Classical bounds on the generalisation error (VC, Rademacher)
are void, as they rely on not being able to fit random labels.

2-5 | 1 I 4.0 T T L T 1-0 L) T T T
m»—a true labels =8 |nception 00 b o o o oo
2.0 o—e random labels |- 3.5 o—0 AlexNet 0.8
. 4
§ »—x shuffled p'lxels £ 30| ™ MLP 1x512 _ 0.7
215 — random pixels |{ < O
m' . e} = 0.6
& &—& gaussian o 2.5} °’|
©] + 0.5
= 1.0 0 2
> g 2.0} =04 m—a |nception
0.5 1s| 0.3 o—o AlexNet |
0.2 e MLP 1x512 |7
0.0 1.0 - - - 0.1 : ' ! .
0 5 10 15 20 25 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
thousand steps label corruption label corruption
(a) learning curves (b) convergence slowdown (c) generalization error growth

Figure 1: Fitting random labels and random pixels on CIFAR10. (a) shows the training loss of
various experiment settings decaying with the training steps. (b) shows the relative convergence
time with different label corruption ratio. (c) shows the test error (also the generalization error since
training error 1s 0) under different label corruptions.

Bad Global Minima Exist and SGD Can Reach Them

Shengchao Liu, Dimitris Papailiopoulos Dimitris Achlioptas
University of Wisconsin—-Madison University of California, Santa Cruz

Abstract

Several recent works have aimed to explain why severely overparameterized models,
generalize well when trained by Stochastic Gradient Descent (SGD). The emergent
consensus explanation has two parts: the first is that there are “no bad local
minima”, while the second is that SGD performs implicit regularization by having
a bias towards low complexity models. We revisit both of these ideas in the context
of image classification with common deep neural network architectures. Our first
finding is that there exist bad global minima, i.e., models that fit the training set
perfectly, yet have poor generalization. Our second finding is that given only
unlabeled training data, we can easily construct initializations that will cause SGD
to quickly converge to such bad global minima. For example, on CIFAR, CINICI10,
and (Restricted) ImageNet, this can be achieved by starting SGD at a model derived
by fitting random labels on the training data: while subsequent SGD training (with
the correct labels) will reach zero training error, the resulting model will exhibit
a test accuracy degradation of up to 40% compared to training from a random
initialization. Finally, we show that regularization seems to provide SGD with an
escape route: once heuristics such as data augmentation are used, starting from a
complex model (adversarial initialization) has no effect on the test accuracy.

Random initialiiation + Training with true labels.
Random initialization + Training with random labels.
Random initialization + Training with random labels + Training with true labels.

b=

Random initialization + Training with random labels + Training with true labels using data
augmentation' and I, regularization.

(a) Setting 1 (b) Setting 2 (c) Setting 3 (d) Setting 4
Figure 1: The decision boundary of the model reached by SGD in Settings 1-4, respectively.

Adversarial examples

a "Dog" perturbed noise x127 "Red wine"

Adversarial examples

classified as classified as

Stop Sign Max Speed 100

What do you do when do not have
enough data?

You create more!

Data augmentation

e Changing the pixels without changing the label
e Train on transformed data
o Widely used

Flip Random crop

original

Contrast Tint

Data augmentation

Horizontal flips

Data augmentation

Random crops/scales

Data augmentation

Color jitter

e randomly jitter color, brightness, contrast, etc.

Data augmentation

e Various techniques can be mixed

« Domain knowledge helps in finding new data augmentation
techniques

e Very useful for small datasets

Transfer Learning

Transfer Learning with CNNs

image

conv-64
conv-64
maxpool

conv-128
conv-128
maxpool

conv-256

conv-256
maxpool

conv-512
conv-512
maxpool

conv-512
conv-512

maxpool

FC-4096
FC-4096
FC-1000
softmax

1. Train on
ImageNet

image

conv-64
conv-64
maxpool

conv-128
conv-128
maxpool

conv-256

conv-256
maxpool

conv-512

conv-512
maxpool
conv-512

conv-512

maxpool

FC-4096
FC-4096

FC-1000
softmax

2. If small dataset: fix
all weights (treat CNN
as fixed feature
extractor), retrain only
the classifier

l.e. swap the Softmax
layer at the end

conv-64
conv-64
maxpool

conv-128
conv-128
maxpool

conv-256
conv-256
maxpool

3. If you have medium sized
dataset, “finetune” instead:
use the old weights as
initialization, train the full
network or only some of the
higher layers

retrain bigger portion of the
network, or even all of it.

conv-512
conv-512
maxpool

conv-512
conv-512

maxpool

FC-4096
FC-4096
FC-1000
softmax

7

Transfer Learning

Source Dataset Source Labels

k| i i ’H n a Rl s Convolutional Layers e

W EaE e VB o B ’ " |_|‘I 2:?

T o i 0 - i] 30
Domain ESERNE A B IS

HEET TR s W=
o B B G RE o % I S
— - ~
§ Transfer Learning
': b ™
Target Dataset l
New
Frozen ———~ CIassuﬁer
o1
Target . 8§
Domain e —’ . 04
Convolutional Layers Dense Layers Target Labels
" J

“A Neural Algorithm of Artistic Style”, https://arxiv.org/pdi/1508.06576.pdt

)

)
‘A
1

L L}i L‘- Ao TN .‘ Y. lPA‘.:"lA = Abd) UAE ;x_.L/A

https://arxiv.org/pdf/1508.06576.pdf

