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Protein folds vs. protein folding: Differing questions, different 
challenges
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Protein fold prediction using deep-learning artificial intelligence (AI) has trans-
formed the field of protein structure prediction (1–3). By combining physical and 
geometric constraints—and especially patterns extracted from the Protein Data 
Bank (4)—these machine learning algorithms can predict protein structures at or 
near atomic resolution and do so in seconds. Today, these computational methods 
have now solved more than 200 million protein structures, which are accessible 
from the AlphaFold Protein Structure Database (5) (https://alphafold.ebi.ac.uk/). 
This accomplishment seems all the more remarkable because few thought it pos-
sible or saw it coming. Deservedly, deep-learning AI was named Science magazine’s 
2021 “breakthrough of the year” (6). Clearly, deep-learning AI represents a major 
advance in protein fold prediction.

But this is not folding prediction. Patterns extracted from proteins in the Protein 
Data Bank (PDB) provide a ready “parts list,” circumventing the folding process 
entirely. These patterns are “fully baked.” That is, a pattern extracted from a solved 
structure in the PDB is fully preorganized; any physical–chemical organizing 

Protein domains, like those in this composite 
picture, are conspicuous structural units in 
globular proteins. Their identification has been a 
topic of intense biochemical interest dating back 
to the earliest crystal structures. Understanding 
the folding process of all sorts of proteins, not 
just their ultimate fold, should be high priority 
for biochemists in the coming years. Image 
credit: Lauren L. Porter.

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 E
PF

L
 S

IS
B

 B
IB

L
IO

T
E

Q
U

E
 C

E
N

T
R

A
L

E
 o

n 
M

ar
ch

 1
3,

 2
02

3 
fr

om
 I

P 
ad

dr
es

s 
12

8.
17

9.
25

4.
10

0.

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:grose@jhu.edu
https://orcid.org/0000-0002-8093-7244
http://orcid.org/0000-0003-0996-8360
http://orcid.org/0000-0001-9400-101X
http://orcid.org/0000-0003-0464-4500
http://orcid.org/0000-0002-2773-6427
http://orcid.org/0000-0002-5031-7343
http://orcid.org/0000-0002-2871-7244
http://orcid.org/0000-0003-1880-4173
http://orcid.org/0000-0003-0637-8648
http://orcid.org/0000-0002-9185-2123
https://alphafold.ebi.ac.uk/
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2214423119&domain=pdf&date_stamp=2023-1-6


2 of 4   https://doi.org/10.1073/pnas.2214423119� pnas.org

interactions have already been realized during folding. The 
situation is analogous to interpreting a movie by fast-for-
warding to the final scene without first watching the previous 
two hours; we know how it ends, but we don’t know why.

And we do need to know why. If a specific project depends 
solely on knowledge of a protein structure, an AI solution 
may be sufficient. But the burning question remains: How 
does that structure emerge from a linear sequence of amino 
acid residues in aqueous solution? Recognizing nature’s pat-
terns has been a familiar intermediate step toward deeper 
understanding. Often, it takes a while. A moment’s reflection 
is sufficient to recall examples of phenomena that challenged 
smart thinkers over successive generations but, once under-
stood, can ultimately be explained in an hour. Avogadro’s 
number, the number of units in one mole of any substance, 
is such an example. Here, we argue that moving from 
AI-based pattern recognition to a first principles understand-
ing of protein folding requires an understanding of the rele-
vant chemistry and physics.

Scientific history since Galileo and Newton has taught us 
that once the principles are understood, more accurate solu-
tions, unanticipated insights, and revealing predictions are 
likely to follow quickly. Indeed, the ultimate aim of science is 
to rationalize recurrent patterns by formulating first princi-
ples. By analogy, protein structure prediction using AI-assisted 
pattern recognition is comparable with Mendeleev’s compi-
lation of the periodic table of the elements before its eventual 
derivation from quantum mechanics—first pattern recogni-
tion, then first principles. Accordingly, it is crucial to support 
ongoing research. The literature suggests numerous fertile 
approaches are already in play, including one we discuss 
here.

Into the Fold

A little background is needed to fully appreciate the signifi-
cance of the protein fold breakthrough. The protein folding 
problem was first articulated in the 1930s (7). To this day, a 
mechanistic understanding of the folding reaction remains 
a challenge, perhaps the most significant unsolved problem 
at the chemistry–biology interface.

For proteins, function follows form (i.e., the three-dimen-
sional structure of the protein is responsible for its biological 
function). At present, the three-dimensional structures of 
almost 200,000 proteins solved by X-ray crystallography, 
nuclear magnetic resonance (NMR), and cryo-electron 
microscopy can be accessed in the PDB (4), a freely available, 
government-supported repository (https://www.rcsb.org/).

Remarkably, proteins can self-assemble spontaneously 
and reversibly into their unique native three-dimensional 
structure under suitable physiological conditions. Here, 
“spontaneous” means that no external energy source such 
as ATP hydrolysis is required. This chemistry was established 
60 years ago by Anfinsen and Haber, who showed that puri-
fied ribonuclease can self-assemble spontaneously in salty 
water (8), and many subsequent experiments with other 
proteins confirmed its generality (9). Successful self-assembly 
of purified ribonuclease—free of cellular components—
proved that the information needed to determine the pro-
tein’s native state is encoded solely within its amino acid 
sequence. In essence, protein folding is physical chemistry, 
not cell biology, and sequence alone determines structure.

The reversible folding reaction, U(nfolded)⇌N(ative), differs 
from an ordinary chemical reaction in that no covalent bonds 
are made or broken when a protein folds (although some 
proteins are stabilized by covalently formed disulfide bonds); 
the population just re-equilibrates in response to changed 
chemical and/or physical conditions that either disfavor or 
favor the folded state. Some larger proteins are apt to get 
“stuck” during folding and require helper proteins called 
chaperones, which can liberate the incompletely folded con-
former, and shift it toward the U state to try again, iteratively 
if necessary.

The underlying physical chemistry responsible for spon-
taneous self-assembly is at the root of macromolecular-based 
life on Earth (10). With this overall perspective in mind, the 
following sections seek to place the current success of 
AI-based protein structure prediction within a broader sci-
entific framework.

The success of deep-learning AI is, in effect, an existence 
proof that an essentially complete set of patterns is embed-
ded in these structures. This approach solves the fold prob-
lem, at least in part, but the fundamental question remains: 
How does the relevant physical chemistry select the native 
structure from a protein’s amino acid sequence? This is the 
classic protein folding problem. Protein folding links linear 
sequences of amino acid residues to the three-dimensional 
world of the cell, a spontaneous transition under suitable 
physiological conditions (8), although some larger proteins 
may necessitate chaperones, as mentioned above.

Stepping Stones

So where do we go from here? Surely there is much that 
remains to be learned by using AI-based approaches. 
However, the ultimate goal is to move beyond empirical pat-
tern recognition to the underlying physical chemistry respon-
sible for determining the protein’s three-dimensional 
structure. Many years of research have been directed toward 
this ultimate goal: See, for example (11) and references 
therein, or (12), developed along quite different lines. Here, 
we invoke the simplifying realization that, of thermodynamic 
necessity, globular proteins are built on scaffolds of repeti-
tive secondary structure (α-helices and strands of β-sheet) 
(13), and this thermodynamic imperative imposes a stringent 
limit on the number of viable folds for small proteins the size 
of ribonuclease.

Ongoing AI research offers an expanding modeling toolkit 
to the community. A natural direction is physics-informed AI 
in which existing physical models can be transformed into 
descriptors within a machine learning framework (14). Such 
human–machine collaboration represents one promising 
route to capture “fundamental laws” for protein structure.

Well and good, but even at best, empirical pattern recog-
nition is a familiar intermediate in the usual course of scien-
tific discovery, a stepping-stone in an ongoing stream. The 
ultimate goal of scientific understanding is to explain com-
plex phenomena with a compact description, a model, pref-
erably one in which the description has physical meaning 
and predictive power. For example, Tycho Brahe’s copious 
observations of planetary motions were reduced to Kepler’s 
three compact laws, an empirical mathematical description 
that was transformed into physics by Newton. This progres-
sion, from empirical data to abstract representation and then D
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to a physical model, illustrates the ongoing, accretive process 
by which we learn.

Five centuries of progress in science has typically followed 
this familiar path:

observation → pattern recognition → theory/models (e.g., 
Tycho Brahe → Kepler → Newton).

That history of fundamental scientific discoveries abounds 
with such examples. For example:

(i) Relativity: observations of Michelson-Morley, then 
“empirical” Lorentz transformations, and finally Einstein’s 
theory.

(ii) Quantum mechanics: observation of spectral lines, 
then Lyman’s discovery of empirical regularities in the series 
of spectral lines, and finally quantum mechanics.

Thus far, protein folding is tracking this progression 
closely, with half a century of observation encapsulated in 
the PDB and breakthrough success in pattern recognition 
using deep learning AI. But the next step in this paradigm is 
still in the offing.

Commenting on AI-based fold prediction in a recent letter 
to Science, Moore et al. opined:

“Others, including us, feel that solving the protein-folding 
problem means making accurate predictions of structures 
from amino acid sequences starting from first principles 
based on the underlying physics and chemistry” (15).

Count us, the authors of the present article, among these 
stalwarts.

A successful physical–chemical theory of protein folding 
would likely provide deep insights into dynamics, mecha-
nism, function, and the origins of protein-based life on Earth. 
Furthermore, if the past is any indication, there would also 
be additional payoffs we cannot yet imagine. Indeed, all the 
above-mentioned theories, once developed, went far beyond 
simply reproducing the empirical observations that spawned 
them.

First Principles

Basic research has provided countless practical applications 
of immense value. But let us not lose sight of the inner direc-
tive that draws us to basic research and the persisting search 
for first principles—that’s what we do because that’s who we 
are. Aristotle’s perception still rings true: “All, by nature, desire 
to know.”

In the most creative minds, this ineffable drive has led to 
the law of universal gravitation, Maxwell’s equations, E = mc2, 
etc. All are models. We tend to gloss over the realization that 
a durable model is nevertheless just a model of reality, not 
reality per se. Newtonian gravitation (published in 1686) is 
typically taught as a Kantian “thing-in-itself” (Ding an sich), an 
unmindful conflation of phenomenon and noumenon stem-
ming from the remarkable effectiveness and apparent sin-
gularity of the model over the course of centuries. It’s an 
operational model: “Gravitation works that way, never mind 
why.” Although familiarity conditions intuition, we still today 
regard it as a weird model, and so did Newton in the 17th 
century. A stunning realization that Newtonian gravitation is 
just a model came almost three centuries later with Einstein’s 
general theory of relativity (1915), a superseding model that 
is both more far-reaching and more intuitively satisfying.

It is no accident that the examples of first principles men-
tioned above are from physics. Biology has lagged behind 
because, unlike physics, it is self-modifying and therefore 
more complex—far more complex. Biological experiments 
involve many parameters, and conclusions are meaningless 
in the absence of suitable controls. Physics experiments are 
typically simpler: Assuming accurate measurements, controls 
are foreign concepts. For example, the speed of light in a 
vacuum is a constant in any experiment.

Biological complexity notwithstanding, there is now good 
reason to anticipate that an authentic physical–chemical the-
ory for protein folding is within reach. For simple proteins, 
the set of AI-evolved patterns is akin to the basis set of a 
vector space or the grammar of a language, where a set of 
primitives or rules can generate an open-ended set of syn-
tactically correct constructs. In proteins, the analogous prim-
itives would be patterns or building blocks.

Recently, it has been shown that some more complex pro-
teins switch folds by remodeling their secondary structures 
α-helices and β-strands) in response to cellular stimuli (16), 
a radical departure from the classical Anfinsen paradigm (8) 
in which a given amino acid sequence gives rise to a unique 
three-dimensional structure under suitable folding condi-
tions. For example, fold switching has been documented in 
the NusG transcription factor family (17), a large superfamily 
of transcriptional regulators known to be conserved from 
bacteria to humans. In an analogous grammar, fold-switching 
proteins would correspond to a context-dependent 
language.

Carrying the analogy further, AlphaFold has provided an 
exhaustive list of sentences in the language of proteins (5), 
and we are now poised to learn the grammar. That grammar 
is governed by the laws of physics and chemistry (18), espe-
cially thermodynamics, as described next.

Extreme adaptability is built into globular proteins by the 
thermodynamics of self-assembly. Of thermodynamic neces-
sity, folded globular proteins are typically built on scaffolds 
of hydrogen-bonded α-helix and/or strands of β-sheet (13), 
enabling side chains to respond to external constraints with-
out perturbing backbone integrity. Consistent with this ther-
modynamic imperative, proteins in extremophiles 
(thermophiles, psychrophiles, halophiles) that function suc-
cessfully under extremes of pressure, temperature, pH, and 
ionic strength are found to retain the same overall backbone 
structure as their counterparts in mesophiles. Differing cel-
lular microenvironments (cytoplasm, membrane, ribosomes, 
organelles) can be accommodated similarly. Such adaptabil-
ity resembles Darwinian evolution at the molecular level, 
selecting for the “fittest” sequence that can function success-
fully within a given environment while keeping the overall 
structure intact.

Clearly, adoption of the native state during the folding 
reaction, U(nfolded) ⇌ N(ative), comes at an entropic price. 
Paying this price, the thermodynamic requirement for 
backbone hydrogen bonding implies that only a limited 
number of possible scaffold arrangements for a protein 
domain is possible, no more than ~10,000 (19–23). In detail, 
a single-domain protein like hen egg lysozyme (129 resi-
dues) has approximately 10 scaffold elements. With 10 
segments of either α-helix or β-strand, there are 210 possi-
ble scaffolds, multiplied by the complexity introduced from D

ow
nl

oa
de

d 
fr

om
 h

ttp
s:

//w
w

w
.p

na
s.

or
g 

by
 E

PF
L

 S
IS

B
 B

IB
L

IO
T

E
Q

U
E

 C
E

N
T

R
A

L
E

 o
n 

M
ar

ch
 1

3,
 2

02
3 

fr
om

 I
P 

ad
dr

es
s 

12
8.

17
9.

25
4.

10
0.



4 of 4   https://doi.org/10.1073/pnas.2214423119� pnas.org

interconnecting turns and loops, which are typically short 
and therefore conformationally restrictive. Thus, most of 
the entropic cost is prepaid on forming the hydro-
gen-bonded backbone scaffold, an inescapable thermody-
namic requirement in both natural proteins and designed 
proteins (10, 24).

A possible objection to the preceding explanation is that 
AlphaFold (1) has had limited success with the class of intrin-
sically disordered proteins (25), which, by definition, lack 
persisting structure until paired with a cognate molecule, or 
again with allosteric proteins (26), regulatory proteins that 
involve populations rather than single structures. Additionally, 
AlphaFold2 stumbles on fold-switching proteins (27), as men-
tioned previously. Nevertheless, to date, there is no evidence 
that once folded, novel patterns will be found in these refrac-
tory cases. The same basic AI patterns seem likely to cover 
any protein in all cases.

Progress on open questions of greater complexity is ongo-
ing. Much of our current knowledge comes from decades of 
work on purified proteins studied in vitro, and its applicabil-
ity to folding within the complex microenvironment of a liv-
ing cell remains an ongoing concern (28). Unlike in vitro 
denaturation studies, proteins in cells are synthesized N to 
C terminus, and nascent peptides remain bound to ribo-
somes when folding begins. To what degree, if any, does this 
difference affect the folding pathway? Again, some proteins 
require chaperones, others do not. Can we distinguish 
between these two classes? And, is in vivo folding controlled 
kinetically (29), again unlike in vitro studies of proteins at 
equilibrium?

In short, it seems likely that a physical–chemical theory of 
protein folding, one that covers the full spectrum of inquiry—
conformation, dynamics, pathways, fluctuations, binding, 

allostery, etc.—is within our grasp. Now is not the time to 
halt the search!
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