

**Image Formation by Induced Local Interactions: Examples of Employing
Nuclear Magnetic Resonance", P. C. Lauterbur (1973)**

An expository essay written by

Johannes Mutter

Topics in biophysics and physical biology (PHYS-466)
June 2, 2023

1 Introduction and Background

In the world of medical imaging, X-ray computed tomography (CT) and ultrasound have long been the preferred techniques for visualizing internal structures. These modalities have played a crucial role in diagnosing various conditions and guiding medical interventions. However, achieving high-resolution imaging with precise anatomical detail has posed a challenge. The traditional imaging methods relied on interactions with matter or radiation fields characterized by limited resolution due to diffraction. In this context, a groundbreaking paper by Paul Lauterbur emerged, presenting a new imaging technique that would revolutionize the field. Published in 1973, Lauterbur's introduced a novel concept in the realm of magnetic resonance imaging (MRI). Unlike CT and ultrasound, MRI relies on the nuclear magnetic resonance (NMR) to capture detailed images of the full body. The principles of NMR imaging have a rich history dating back to the late 1930s, when Isidor Rabi demonstrated the emission of radio waves by particles passing through a magnetic field [1]. Building on this foundation, Bloch and Purcell extended the principles to solids and liquids [2][3]. In medical applications, NMR exploits the presence of water molecules in the human body, specifically hydrogen nuclei, which possess a net dipole moment and can precess or spin around themselves, generating a magnetic field. When a strong external magnetic field is applied, the nuclei align themselves parallel or perpendicular to the magnetic field based on their energy states. By applying a radio-frequency pulse perpendicular to the magnetic field, the nuclei undergo a relaxation process, releasing or absorbing energy and inducing a detectable voltage signal. This signal returns to thermal equilibrium over time, as described by Hahn [4]. Different water components in the body exhibit varying energy states, leading to different relaxation times based on their chemical composition. By analyzing the temporal signal through Fourier Transform, the differences can be quantified and observed in a frequency spectrum [5]. However, spatial localization of the NMR signal remained a significant challenge. Previous attempts to develop an MR imaging device had been largely unsuccessful. In this essay, we will delve into the details of Lauterbur's seminal paper, exploring the methods he employed to create the first recognized MR images and achieve spatial localization. We will study his innovative approach that laid the foundation for modern MRI technology which is now used ubiquitously in medical diagnostics and research. The

significance of Lauterbur's paper goes beyond the mere advancement of MRI technology. By leveraging the principles of NMR, Lauterbur envisioned a non-invasive imaging technique that could provide unprecedented insights into the human body, surpassing the capabilities of other imaging modalities and anticipating a new class of image generation, as stated by Lauterbur himself within the paper. [6]

2 Methods

Lauterbur's basic approach was to use magnetic field gradients in three dimensions and to combine it with the back-projection technique from computed tomography. He proposed a technique called zeugmatography. Derived from the Greek term meaning "that which is used for joining," zeugmatography involved the coupling of two fields by the sample. The key idea behind zeugmatography was to add a second field that restricts the interactions of the sample with the first field. By doing so, Lauterbur aimed to overcome the wavelength-dependence limitation observed in traditional NMR imaging methods. This approach introduced a new concept in spatial localization and provided a means to achieve higher resolution and improved image quality.

An important method described in the paper involved constructing a two-dimensional projected image of the sample. This was achieved by acquiring multiple projections through the rotation of the sample around an axis perpendicular to the gradient direction. By capturing projections from different angles, Lauterbur obtained a comprehensive representation of the sample's spatial information. To do so, he applied an algorithm similar to Gordon and Herman [7], using four projections. Lauterbur also acknowledged previous works in the field that focused on reconstructing images from projections, providing a foundation for his research. Although not explicitly elaborated upon in the paper, these references indicate the existing techniques for image reconstruction from projection data.

3 Results

Lauterbur conducted two experiments to demonstrate the capabilities of his technique to achieve spatial localization in NMR imaging. The experiments were conducted with 60 MHz radiation and a static magnetic field gradient of 700 Hz cm^{-1} .

In the first experiment, the test object consisted of two thin-walled glass capillaries filled with pure water, attached to the inside wall of a glass tube containing deuterium oxide (D_2O). The resulting image displayed the locations and dimensions of the two columns of water within the capillaries. The representation was produced by shading within contours interpolated between the matrix points, providing a visual depiction of the spatial localization achieved through induced local interactions.

The second experiment involved one capillary filled with pure water and the other with a solution of manganese sulfate (MnSO_4) in water at a concentration of 0.19 mM. At low radiofrequency (RF) levels, both capillaries exhibited practically identical images. However, at higher RF levels, the water-filled capillary displayed much more saturated signals compared to the MnSO_4 -filled capillary. This difference in signal intensity was attributed to the paramagnetic properties of the Mn^{2+} ions in the solution, which shortened the relaxation time of the spin-lattice T_1 . As a consequence, the image of the MnSO_4 -filled capillary disappeared. By constructing a plot of the difference between the two images, Lauterbur was able to highlight the region with high relaxation, effectively demonstrating the ability to identify and visualize regions with different relaxation properties.

Overall, the results of the experiments showcased the power of induced local interactions in achieving spatial localization and highlighting variations in relaxation properties within a sample. Lauterbur's findings provided evidence of the potential of this new approach in nuclear magnetic resonance imaging, paving the way for further advancements in the field.

4 Discussion

Lauterbur's experiments provide two key conclusions. Firstly, they demonstrate the successful achievement of spatial localization in NMR imaging through induced local interactions. The generated images effectively localize and visualize specific regions within the test object, showcasing the potential of the technique. Secondly, the observed relative intensities in the images, influenced by relaxation times, offer a valuable tool for imaging soft structures and potentially biological tissues. This finding opens up new avenues for studying and understanding the internal composition and properties of biological samples using NMR imaging, including applications such as tumor detection.

Lauterbur's contributions extend beyond a single method, representing a paradigm shift in NMR imaging. The introduction of zeugmatography and the coupling of two fields introduced a groundbreaking approach with significant implications for MRI. The combination of Lauterbur's innovative methods enables spatial localization, higher resolution, and improved image quality, advancing the capabilities of NMR imaging. Lauterbur's foresight in anticipating variations of the technique, allowing for two- and three-dimensional image displays of chemical compositions and diffusion coefficients, further expands the possibilities for research and analysis.

Despite the groundbreaking nature of Lauterbur's work, some uncertainties remain. The paper focuses primarily on describing the techniques and only presenting two specific examples rather than exploring the underlying principles and mechanisms in depth. To fully grasp the potential and limitations of induced local interactions, further studies are necessary. More comprehensive experiments are required to explore the capabilities and applications of the technique, particularly in the context of human subjects. Although it is plausible to argue that the technique would work on patients, at the time of the paper's publication, certainty regarding its applicability to human medical imaging was not yet established.

Building on the findings reported in the paper, possible future experiments could be exploring variations of the technique to generate two- and three-dimensional image displays of chemical compositions and diffusion coefficients which could provide more comprehensive insights.

Additionally, investigations into the internal structures, states, and compositions of different types of microscopic objects using the presented techniques can be conducted.

In conclusion, Lauterbur's experiments support the conclusions of achieving spatial localization in NMR imaging through induced local interactions and utilizing relative intensities for imaging soft structures and potentially biological tissues. However, further experiments are necessary to fully explore the technique's potential and limitations, as well as to expand its applications to different sample types and properties of interest. Lauterbur's work laid the foundation for significant advancements in MRI. Subsequent progress has been observed in areas such as improved scanning time, enhanced resolution, and the use of contrast agents to enhance visibility of internal body structures, and also the field of brain imaging, particularly through the development of functional MRI (fMRI). This innovative technique, based on detecting changes in blood flow associated with neural activity, has revolutionized our understanding of brain functions and underlying mechanisms. Moreover, Lauterbur's foresight regarding the impact of MRI is evident, as seen in his anticipation and awareness of its applications that were to come. Lauterbur's exceptional contributions to the field of MRI were acknowledged in 2003 when he was awarded the Nobel Prize in Physiology or Medicine together with Peter Mansfield.

References

- [1] Rabi, I., Zacharias, S., Millman, S., Kusch, P., "A new method of measuring nuclear magnetic moment", *Phys Rev* 53 (1938): p.318
- [2] Bloch, F., "Nuclear induction", *Phys Rev* 70 (1946): p.460-474
- [3] Purcell, E., Torrey, H., Pound, R., "Resonance absorption by nuclear magnetic moments in a solid", *Phys Rev* 69 (1946): p.37-38
- [4] Hahn, E., "Nuclear induction due to free larmor precession", *Phys Rev* 77 (1950): p.297-298
- [5] Carr, H., Purcell, E., "Effects of diffusion on free precession in nuclear magnetic resonance experiments", *Phys Rev* 94 (1954): p.630-638

- [6] Grutter, R., "Fundamentals of biomedical imaging", *EPFL Course*
- [7] Gordon, R., Herman, G., "Reconstruction of pictures from their projections", *Communications of the ACM* 14 (1971) p.759–768