
Chapter 8

Random Walks and the
Structure of
Macromolecules

“The journey of a thousand miles begins with a single step.” - Lao Tsu from
“Tao Te Ching”

Chapter Overview: In Which We Think of Macromolecules as Ran-
dom Walks

There are many different ways of characterizing biological structures. A
useful alternative to the deterministic description of structure in terms of well
defined atomic coordinates is the use of statistical descriptions. For example, the
arrangement of a large DNA molecule within the cell is often best characterized
statistically in terms of average quantities such as the mean size and position.
The goal of this chapter is to examine one of the most powerful ideas in all
of science, namely, the random walk, and to show its utility in characterizing
biological macromolecules such as DNA. We will show how these ideas culminate
in a probability distribution for the end-to-end distance of polymers and how
this distribution can be used to compute the “structure” of DNA in cells as well
as to understand recent single-molecule experiments in which molecules of DNA
(or proteins) are pulled on and the subsequent deformation is monitored as a
function of the applied force. In addition, we will show how these same ideas
may be tailored to thinking about proteins.

8.1 What is a Structure: PDB or RG?

The study of structure is often a prerequisite to tackling the more interesting
question of the functional dynamics of a particular macromolecule or macro-
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molecular assembly. Indeed, this notion of the relation between structure and
function has been elevated to the status of the true central dogma of molecular
biology, namely, “sequence determines structure determines function” (Petsko
and Ringe, 2004), which calls for uncovering the relation between sequence and
consequence. The idea of structure is hierarchical and subtle, with the relevant
detail that is needed to uncover function often living at totally disparate spatial
scales. For example, in thinking about phosphorylation-induced conformational
changes, an atom-by-atom description is required, whereas in thinking about
cell division, a much coarser description of DNA is likely more useful. The
key message of the present chapter is that there is much to be gained in some
circumstances by abandoning the deterministic, PDB mentality described in
earlier chapters for a statistical description in which we attempt only to charac-
terize certain average properties of the structure. We will argue that this type
of thinking permits immediate and potent contact with a range of experiments.

8.1.1 Deterministic vs. Statistical Descriptions of Struc-
ture

PDB Files Reflect a Deterministic Description of Macromolecular
Structure

The notion of structure is complex and ambiguous. In the context of crystals,
we can think of structure at the level of the monotonous regular packing of the
atoms into the unit cells of which the crystal is built. This thinking applies even
to crystals of nucleic acids, proteins or complexes such as ribosomes, viruses and
RNA polymerase. Indeed, it is precisely this regularity that makes it possible
to deposit huge PDB files containing atomic-coordinates on databases such as
the Protein Data Bank and VIPER. In this world view, a structure is the set
(r1, r2, · · · rN ), where ri is the vector postion ri = (xi, yi, zi) of the ith atom
in this N -atom molecule. However, the structural descriptions that emerge
from x-ray crystallography provide a deceptively static picture which can only
be viewed as a starting point for thinking about the functional dynamics of
macromolecules and their complexes in the crowded innards of a cell.
Statistical Descriptions of Structure Emphasize Average Size and
Shape Rather Than Atomic Coordinates

In the context of polymeric systems such as DNA, the notion of structure
brings us immediately to the question of the relative importance of universality
(for example, how size scales with the number of monomers) and specificity in
macromolecules. In particular, there are certain things that we might wish to
say about the structure of polymeric systems that are indifferent to the precise
chemical details of these systems. For example, when a DNA molecule is ejected
from a bacteriophage into a bacterial cell, all that we may really care to say
about the disposition of that molecule is how much space it takes up and where
within the cell it does so. Similarly, in describing the geometric character of
a bacterial genome, it may suffice to provide a description of structure only
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Figure 8.1: Random walk model of polymer. Schematic representation of a (A)
one-dimensional random walk and a (B) three-dimensional random walk as an
arrangement of linked segments of length a.

at the level of characterizing a blob of a given size and shape. Indeed, these
considerations bring us immediately to the examination of statistical measures
of structure. As hinted at in the title to this section, one statistical measure of
structure is provided by the radius of gyration, RG, which, roughly speaking,
gives a measure of the size of a polymer blob. In the remainder of the chapter
we show the calculable consequences of statistical descriptions of structure.

8.2 Macromolecules as Random Walks

Random Walk Models of Macromolecules View Them as Rigid Seg-
ments Connected by Hinges

One way to characterize the geometric disposition of a macromolecule such
as DNA is through the deterministic function r(s). This function tells us the
position (r) of that part of the polymer which is a distance s along its contour.
An alternative we will explore here is to discretize the polymer into a series
of segments, each of length a, and to treat each such segment as though it is
rigid. The various segments that make up the macromolecular chain are then
imagined to be connected by flexible links that permit the adjacent segments
to point in various directions. The one- and three-dimensional versions of this
idea are shown in fig. 8.1. In the one-dimensional case the segments are at
±180 degrees with respect to each other. We draw them as non-overlapping
for clarity. For the three-dimensional case, we illustrate the situation in which
the links are restricted to 90 degree angles, though there are many instances in
which we will consider links that can rotate in arbitrary directions (the so-called
freely jointed chain model).

Fig. 8.2 shows an example of the correspondence between the real structures
of these molecules and their idealization in terms of the lattice model of the
random walk. In particular, fig. 8.2 shows a conformation of DNA on a surface.
Using the discretization advocated above, we show how this same structure can
be approximated using a series of rigid rods (the Kuhn segments) connected
by flexible hinges. We will argue that this level of description can be useful
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Figure 8.2: DNA as a random walk. (A) Structure of DNA on a surface as
seen experimentally using atomic-force microscopy. (B) Representation of the
DNA on a surface as a random walk. (Adapted from P. A. Wiggins et al., Nat.
Nanotech., 1:37, 2006.)

in settings ranging from estimating the entropic cost of confining DNA to a
bacterial cell, to the stretching of DNA by laser tweezers.

8.2.1 A Mathematical Stupor

In Random Walk Models of Polymers, Every Macromolecular Con-
figuration Is Equally Probable

In this section we work our way up by degrees to some of the full beauty
and depth of the random walk model. The aim of the analysis is to obtain a
probability distribution for each and every macromolecular configuration and
to use these probabilities to compute properties of the macromolecule that can
be observed experimentally, such as the mean size of the macromolecule and
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the free energy required to deform that molecule. Our starting point will be an
analysis of the random walk in one-dimension, with our discussion being guided
by the ways in which we will later generalize these ideas and apply them in what
might at first be considered unexpected settings.

We begin by imagining a single random walker confined to a one-dimensional
lattice with lattice parameter a as already shown in fig. 8.1(A). The life history
of this walker is built up as a sequence of left and right steps, with each step
constituting a single segment in the polymer. In addition, for now we postulate
that the probabilities of left and right steps are given as pr = pl = 1/2. The
trajectory of the walker is built up by assuming that at each step the walker
starts anew with no concern for the orientation of the previous segment. We
note that for a chain with N segments, this implies that there are a total of
2N different permissible macromolecular configurations, each with probability
1/2N .
The Mean Size of a Random Walk Macromolecule Scales as the
Square Root of the Number of Segments,

√
N

Given the spectrum of possible configurations and their corresponding prob-
abilities, one of the most immediate questions we can pose concerns the mean
distance of the walker from its point of departure as a function of the number
of segments in the chain. In the context of biology, this question is tied to
problems such as the cyclization of DNA, the likelihood that a tethered ligand
and receptor will find each other and to the gross structure of plasmids and
chromosomal DNA in cells. To find the end-to-end distance for the molecule
of interest we can use both simple arguments as well as brute force calculation,
and we will take up both of these options in turn. The simple argument notes
that the expected value of the walker’s distance from the origin, R, after N
steps can be obtained as

〈R〉 = 〈
N∑

i=1

xi〉, (8.1)

where xi = ±a is the displacement suffered by the walker during the ith step
and where we have introduced the bracket notation 〈· · · 〉 to signify an average.
Recall that to obtain such an average we sum over all possible configurations
with each configuration weighted by its probability (in this case they are all
equal). This result may be simplified by noting that the averaging operation
represented by the brackets 〈· · · 〉 on the righthand side of the equation can be
passed within the summation symbol (i.e. the average of a sum is the sum of
the averages) and through the recognition that 〈xi〉 = 0. Indeed, this leaves
us with the conclusion that the mean displacement of the walker is identically
zero.

A more useful measure of the walker’s departure from the origin is to examine

〈R2〉 = 〈
N∑

i=1

N∑
j=1

xixj〉 . (8.2)



396CHAPTER 8. RANDOM WALKS AND THE STRUCTURE OF MACROMOLECULES

This is the variance of the probability distribution of R, while
√
〈R2〉 is the

standard deviation. Its significance is that the probability of finding our random
walker within one standard deviation of the mean is close to 70%. In other
words, the standard deviation is the measure of the typical excursion of the
random walker after N steps, and therefore serves as a good surrogate for the
typical size of the related polymer.

In order to make progress on eqn. 8.2 we break up the sum into two parts
as

〈R2〉 =
N∑

i=1

〈x2
i 〉+

N∑
i 6=j=1

〈xixj〉. (8.3)

Note that each and every step is independent of all steps that precede and follow
it. This implies that the second term on the righthand side is zero. In addition,
and since xi = ±a, we note that 〈x2

i 〉 = a2, with the result that

〈R2〉 = Na2. (8.4)

Thus, we have learned that the walker’s departure from the origin is charac-
terized statistically by the assertion that

√
〈R2〉 = a

√
N , meaning that the

distance from the origin grows as the square root of the number of segments in
the chain.
The Probability of a Given Macromolecular Configuration Depends
Upon its Microscopic Degeneracy

In addition to the simple argument spelled out above, it is also possible to
carry out a brute force analysis of this problem using the conventional machinery
of probability theory. We consider this an important alternative to the analysis
given above since it highlights the fact that there are many microscopic config-
urations that correspond to a given macroscopic configuration. In particular,
in the case in which the walker makes a total of N steps, we pose the question,
what is the probability that nr of those steps will be to the right (and hence
nl = N −nr to the left)? Since the probability of each right or left step is given
by pr = pl = 1/2, the probability of a particular sequence of N left and right
steps is given by (1/2)N . On the other hand, we must remember that there are
many ways of realizing nr right steps and nl left steps out of a total of N steps.
In particular, there are

W (nr;N) =
N !

nr!(N − nr)!
, (8.5)

distinct ways of achieving this outcome. This kind of counting result was derived
in the “Math Behind the Models” box on pg. 304. A particular example of this
thinking to the case N = 3 is shown in fig. 8.3 where we see that there is one
configuration where all three segments are right pointing, one configuration in
which all three segments are left pointing and three configurations each for the
cases in which nr = 2, nl = 1 and nr = 1, nl = 2.

We have now enumerated the microscopic degeneracies of each macroscopic
configuration (characterized by a given end-to-end distance). As a result, we
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Figure 8.3: Random walk configurations. The schematic shows all of the allowed
conformations of a polymer made up of three segments (23 = 8 conformations)
and their corresponding degeneracies.

are poised to write down the probability of an overall departure nr from the
origin which is given by

p(nr;N) =
N !

nr!(N − nr)!

(
1
2

)N

. (8.6)

With this probability distribution in hand, we can now evaluate any average
characterizing the geometric disposition of the chain by summing over all of the
configurations.

To develop facility in the use of this probability distribution, we begin by
confirming that it is normalized. To do so, we ask for the outcome of the sum

N∑
nr=0

p(nr;N) =
N∑

nr=0

N !
nr!(N − nr)!

(
1
2

)N

. (8.7)

To evaluate this sum, we recall the binomial theorem that tells us

(x + y)N =
N∑

nr=0

N !
nr!(N − nr)!

xnryN−nr . (8.8)

For the case in which x = y = 1, we see that this implies

N∑
nr=0

N !
nr!(N − nr)!

= 2N . (8.9)
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Figure 8.4: End-to-end probability distribution for a one-dimensional “macro-
molecule” with 100 segments. The figure shows a comparison of the Binomial
distribution (dots) given in eqn. 8.10 and the approximate Gaussian distribution
(curve) given in eqn. 8.16.

Plugging this result back into eqn. 8.7 demonstrates that the probability distri-
bution is indeed normalized (i.e.

∑N
nr=0 p(nr;N) = 1).

Entropy Determines the Elastic Properties of Polymer Chains

The probability distribution for nr can be used to deduce a more telling
quantity, the probability distribution for the end to end distance, R = (nr−nl)a.
If we use the condition nr + nl = N to solve for nl and substitute this into
R = (nr −nl)a, it follows that nr = (N + R/a)/2 and eqn. 8.6 can be rewritten
as

p(R;N) =
N !(

N
2 + R

2a

)
!
(

N
2 −

R
2a

)
!

(
1
2

)N

, (8.10)

to give the probability distribution of the end-to-end distance. This distribution
is plotted in fig. 8.4. For large N this probability distribution is sharply peaked
at R = 0. Next we show that it takes on the form of a Gaussian distribution
for R � Na. This calculation involves two math methods we have discussed
previously, the Stirling approximation (pg. 280 and the problems at the end of
chap. 5, lnn! ≈ n lnn − n + 1

2 ln(2πn) for n � 1, and the Taylor expansion
(pg. 273), ln(1 + x) ≈ x − x2/2 for x � 1. Note that here we take the first
three terms in the Stirling approximation, and keep terms up to x2 in the Taylor
expansion, in anticipation of the fact that the leading term in ln p(R;N) is of
order R2.

We begin by taking the logarithm of the probability distribution for R shown
in eqn. 8.10 and then we apply the Stirling approximation to each of the three
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factorials resulting in,

ln p(R;N) = N lnN −N +
1
2

ln(2πN)︸ ︷︷ ︸
ln N !

−
[(

N

2
+

R

2a

)
ln
(

N

2
+

R

2a

)
−
(

N

2
+

R

2a

)
+

1
2

ln
(

2π

(
N

2
+

R

2a

))]
︸ ︷︷ ︸

ln(N/2+R/2a)!

−
[(

N

2
− R

2a

)
ln
(

N

2
− R

2a

)
−
(

N

2
− R

2a

)
+

1
2

ln
(

2π

(
N

2
− R

2a

))]
︸ ︷︷ ︸

ln(N/2−R/2a)!

− N ln 2 . (8.11)

In the next step we rewrite the logarithms,

ln
(

N

2
± R

2a

)
= ln

[
N

2

(
1± R

Na

)]
= ln

N

2
+ ln

(
1± R

Na

)
(8.12)

where we have used the rule about logarithms that ln [AB] = ln(A)+ln(B). We
can now make use of the Taylor expansion,

ln
(

1± R

Na

)
≈ ± R

Na
− 1

2

(
± R

Na

)2

(8.13)

which we substitute repeatedly in eqn. 8.11. After a bit of algebra (which is left
as an exercise for the reader) we arrive at the formula

ln p(R;N) = ln 2− 1
2

ln(2πN)− R2

2Na2
. (8.14)

If we now exponentiate both sides of this equation, we find the coveted Gaussian
distribution,

p(R;N) =
2√

2πN
e−

R2

2Na2 . (8.15)

Note that the derived approximate formula is a probability for values of R which
come in multiples of 2a, since R is either always even or always odd, depending
on whether N is even or odd. To turn this into a probability distribution
function, P (R;N), such that P (R;N)dR is the probability that R falls within
an interval of length dR, all that remains is to divide out the result in eqn. 8.15
by the density of integer R values per unit length, which is 1/2a. This yields
the result for the probability distribution function for the end to end distance
of a freely jointed chain,

P (R;N) =
1√

2πNa2
e−

R2

2Na2 , (8.16)

which we will make use of repeatedly throughout the book.
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The result derived above is a special case of the so-called central-limit the-
orem which is arguably the most important result of probability theory. In a
nutshell, it states that the probability distribution of x1 + x2 + · · ·+ xN , which
is a sum of identically distributed independent random variables, is Gaussian
in the limit of large N , as long as the mean and variance of each individual xi

is finite. Since the individual displacements of the random walker satisfy this
condition, it immediately follows that for large number of steps N , the total
displacement R will be Gaussian distributed, with mean 〈R〉 = 0 and variance
〈R2〉 = Na2. Note that this will hold regardless of whether the walk is exe-
cuted in 1, 2 or 3 dimensions, and independent of the allowed angles between
subsequent steps of the walk, as long as each step is taken independently of the
previous one.

We leave it as a homework problem to show that the Gaussian distribution
of R for a 1-dimensional walk given in eqn. 8.16 indeed has the required mean
and variance. Here we make use of this result to derive the large-N distribution
for the end-to-end distance of a 3-dimensional random walk. Since the mean is
zero the distribution is of the form

P (R;N) = N e−κR2
(8.17)

where the parameters N and κ are to be determined from the two identities∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
P (R, N)d3R = 1 (Normalization)∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
R2P (R, N)d3R = Na2 (Variance) . (8.18)

Since both integrands are functions of R2 we can transform the volume integral
in both cases to an integral over spherical shells of radius R to obtain,∫ +∞

0

P (R, N)4πR2dR = 1 (Normalization)∫ +∞

0

R2P (R, N)4πR2dR = Na2 (Variance) . (8.19)

To compute the integrals in the above equations we make use of the Gaussian
integral formulas∫ +∞

0

4πNR2e−κR2
dR = 4πN 1

4

√
π

κ3
= 1∫ +∞

0

4πNR4e−κR2
dR = 4πN 3

8

√
π

κ5
= Na2. (8.20)

To compute κ we can divide the second equation by the first to give

κ =
3

2Na2
. (8.21)
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Substituting this result into the first of the two integrals above gives us

N =
(κ

π

) 3
2

=
(

3
2πNa2

) 3
2

, (8.22)

the normalization constant. Putting this all together we obtain the end-to-end
distribution for a 3-dimensional random walk with N Kuhn segments of length
a,

P (R;N) =
(

3
2πNa2

) 3
2

e−
3R2

2Na2 . (8.23)

Note that P (R;N) has units of inverse volume, or concentration, and has the
nice intuitive interpretation as the concentration of one end of the random-walk
polymer at position R, with respect to the other end. Furthermore, P (R;N) is
sharply peaked at R = 0, and this property underlies the elasticity of polymer
chains. Namely, if you imagine stretching a polymer (say, the E. coli DNA) so
that R is non-zero, then upon release it will quickly find itself in the R ≈ 0 state
solely by virtue of this being a much more likely state. Note that this is not
the result of a physical force, such as, for example, the electric force, which is
ultimately responsible for the elastic properties of crystals, but purely a result
of statistics. As such it is, like the case of pressure of the ideal gas, another
example of an entropic force.

• Estimate: End-to-End Probability for the E. coli genome. One in-
teresting application of these ideas that will be explored more throughout
the chapter is to the structure of chromosomal DNA. The circular DNA
associated with an E. coli cell is roughly 5 million basepairs long. An open
DNA chain of the same size can be modeled as a random walk of roughly
N = 15000 steps since the Kuhn length (the length of the “rigid” seg-
ments in the chain model) for bare DNA is roughly 300 bp in length. The
probability that the end-to-end distance is zero for a one-dimensional walk
of this many steps can be estimated from eqn. 8.15 and is 7× 10−3. The
probability that R = 500a is 2×10−6 while for R = 1000a the probability
drops all the way down to 2×10−17. As discussed above, this overwhelm-
ing probability that R is close to zero is responsible for the elastic response
of polymer chains due to an applied load.

The Persistence Length Is a Measure of the Length Scale Over Which
a Polymer Remains Roughly Straight

With the random walk model in hand we can describe the structure of long
polymers, whose contour length L is much larger than the persistence length ξp,
which is the length over which the polymer is essentially straight. In particular,
the persistence length is the scale over which the tangent-tangent correlation
function decays along the chain. To see this idea more clearly, we imagine a
polymer as a curve in three dimensional space. At each point along that curve,
we can draw a tangent vector which points along the polymer at that point.
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As a result of thermal fluctuations, the polymer meanders in space and the
persistence length is the length scale over which “memory” of the tangent vector
is lost. From a mathematical perspective, we can write the tangent-tangent
correlation function as 〈t(s) · t(u)〉, where t(s) is the tangent vector evaluated
at a distance s along the polymer and the notation 〈· · · 〉 is an instruction to
average over all the configurations. The persistence length determines the scale
over which correlations in tangent vectors decay through the equation

〈t(s) · t(u)〉 = e
− |s−u|

ξp . (8.24)

In chap. 10 we derive this equation in the context of a model where the polymer is
thought of as a long and thin elastic beam. Furthermore, we note that eqn. 8.24
is not universally valid. For example if the tangents are kept fixed and equal at
the ends of the polymer, say by laser tweezers, then 〈t(0) · t(s)〉 will decay at
first, but as s approaches the contour length of the polymer L it will necessarily
increase, since t(0) · t(L) = 1. Other constraints on the polymer, such as
confinement by the cell wall, will also lead to deviations from eqn. 8.24. Still,
for small enough separations |s− u| the exponential law is expected to hold.

A good example of a long flexible polymer is provided by genomic DNA
of viruses such as λ-phage with a contour length of 16.6 µm. This should be
compared to the persistence length ξp ≈ 50 nm of DNA at room temperature
and solvent conditions typical of the cellular environment. Since the persistence
length is the length over which the tangent vectors to the polymer backbone
become uncorrelated, we can think of the polymer as consisting of N ∼ L/ξp

connected links which take random orientations with respect to each other. This
is the logic which gives rise to the freely jointed chain model (essentially the
random walk picture undertaken in the previous section). As already described,
in the freely-jointed-chain model, polymer conformations are random walks of
N steps. The length of the step is the Kuhn length which is roughly equal to
the persistence length. As promised in the earlier discussion, we now establish
the relation between the persistence length and the Kuhn length invoked in
the random walk model. To make a more precise determination of the Kuhn
length we calculate the mean-squared end-to-end distance of an elastic beam
undergoing thermal fluctuations, and compare it to the same quantity obtained
for the freely jointed chain. The end-to-end vector R of a beam can be expressed
in terms of the tangent vector t(s),

R =
∫ L

0

ds t(s). (8.25)

As a result, we can write

〈R2〉 = 〈
∫ L

0

ds t(s)
∫ L

0

du t(u)〉 (8.26)

where 〈· · · 〉 is an average over all polymer configurations. Using the average of
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the tangent-tangent correlation function, eqn. 8.24, we find

〈R2〉 = 2
∫ L

0

ds

∫ L

s

du e−(u−s)/ξp . (8.27)

The above integral is obtained by splitting up the integration over the L × L
box in s-u space to integrals over the two triangles, one with s < u and the
other with s > u, which give equal contributions (thus the factor of two). In
the limit L � ξp we are considering here, we have

〈R2〉 ≈ 2
∫ L

0

ds

∫ ∞

0

dx e
− x

ξp = 2Lξp . (8.28)

To obtain this result we made a change of variables x = u − s in the second
integral and then replaced the upper bound of integration L − s by ∞, which
is justified in the L � ξp limit. Comparing the above formula to the result
that follows from the random walk model, eqn. 8.4, 〈R2〉 = aL, we see that
Kuhn length a is twice the persistence length, a = 2ξp. In rewriting the random
walk result we made use of the relation between the length of the walk and the
number of Kuhn segments, L = Na. We are now prepared to make estimates
of the physical size of genomes in solution.

8.2.2 How Big is a Genome?

A simple estimate of the size of a polymer in solution can be obtained using the
end-to-end distance, √

〈R2〉 =
√

2Lξp. (8.29)

The radius of gyration is perhaps a more precise measure of the polymer size
and is defined through the expression

〈R2
G〉 =

1
N

N∑
i=1

〈(Ri −RCM )2〉. (8.30)

Roughly speaking it measures the average distance between the monomers and
the center of mass of the polymer. The center of mass is defined as

RCM =
1
N

N∑
i=1

Ri. (8.31)

With this definition of the radius of gyration in hand, a simple relation between
radius of gyration, contour length (L) and persistence length ( ξp) can be written
as (proven by the reader in the problems at the end of the chapter)

√
〈R2

G〉 =

√
Lξp

3
. (8.32)
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Figure 8.5: Size of genomic DNA in solution. Plot of the average size of a DNA
molecule in solution as a function of the number of base pairs using the random
walk model. The labels correspond to particular chromosomes from viruses,
bacteria, yeast, flies, worms and humans.

We may write this result in an alternative form in terms of the number of base
pairs in the genome of interest by noting that L ≈ 0.34 nm×Nbp, and hence,√

〈R2
G〉 ≈

1
3

√
Nbpξp nm. (8.33)

This relation between the radius of gyration of DNA in solution and the number
of base pairs is plotted in fig. 8.5.

• Estimate: The Size of Viral and Bacterial Genomes. One ap-
plication of ideas like those described above in the setting of biological
electron microscopy is to images of viruses and cells that have ruptured
and are thus surrounded by the DNA debris from their genome. We
already mentioned in conjunction with fig. 1.13 (pg. 48) that the appear-
ance of DNA in electron microscopy images can be used as the basis of
an estimate of genome length. A second example is shown in fig. 8.6
where it is seen that the DNA adopts a configuration in solution which
is much larger than the configuration it has when packed inside of the
virus or bacterium. To develop intuition for what is seen in such images,
we exploit eqn. 8.32 to formulate an estimate of the size of the DNA.
Consider fig. 1.13 which shows bacteriophage T2. As seen in the figure,
the viral genome has leaked from what is apparently a ruptured capsid
and we will assume that this DNA in solution has adopted an equilib-
rium configuration. The genomes of T2 and T4 are very similar with a
genome length of roughly 150 kB. Recalling that the persistence length
is ξp ≈ 50nm, eqn. 8.33 tells us that the mean size of the DNA seen in
fig. 1.13 is

√
〈R2

G〉 = 1/3
√

150× 103 × 50 nm ≈ 0.9 µm. This result is
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Figure 8.6: Illustration of the spatial extent of a bacterial genome which has
escaped the bacterial cell. The expanded region in the figure shows a small
segment of the DNA and has a series of arrows on the DNA, each of which have
a length equal to the persistence length in order to give a sense of the scale over
which the DNA is stiff. (Adapted from Ruth Kavenoff.)

comparable to though larger than the length scale of the exploded DNA
seen in fig. 1.13. Given the crudeness of the model and probably more
importantly, the fact that the DNA seems to be constrained via links to
the capsid itself, this analysis provides a satisfactory first approximation
to the structures seen in electron microscopy.

These same arguments can be invoked again to coach our intuition con-
cerning the size of the DNA cloud surrounding a bacterium that has lost
its DNA as well. In this case, the genome length is substantially larger
than that of the T2 phage, namely, Nbp ≈ 4.6×106 base pairs. Once again
invoking eqn. 8.33 tells us that the mean size of the DNA seen in fig. 8.6 is√
〈R2

G〉 ≈ 5 µm. As with the phage calculation, the random walk calcula-
tion should be seen as an overestimate since the DNA is clearly forced to
return to the bacterium repeatedly, inhibiting the structure from adopting
a fully expanded configuration.

8.2.3 The Geography of Chromosomes

Genetic Maps and Physical Maps of Chromosomes Describe Different
Aspects of Chromosome Structure.
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In our discussion of DNA so far, we have described it as a featureless, self-
similar polymer chain. However, of course, DNA is much better known and
appreciated as the carrier of genetic information. Classical genetics focused on
identification and characterization of genes as abstract entities, ignoring the
importance of their physical location on chromosomes and overlooking the con-
sequences of the physical nature of the carrier DNA molecule. The ground
breaking work of Thomas Hunt Morgan and his gene hunters which we described
in chap. 4 was an early and vivid illustration of the fact that the abstract in-
formational entities known as genes exist with concrete physical relationships
to one another. As we have learned more about the regulation and activity
of genes, it has become more and more clear that the physical location and
dynamic properties of the DNA molecule that carries them are critical compo-
nents of their biological activity. For example, Morgan’s mapping strategy relied
on measuring the frequency of recombination between two or more genes. The
physical process of recombination requires that two homologous DNA molecules
be mobile within a nucleus such that they can physically encounter one another
with a measurable frequency. Recombinations do not seem to occur in all nuclei.
In the fruit fly, chromosomes are able to recombine in meiosis during oogenesis
in the female germline, but not during spermatogenesis in the male germline.
Why is it that sometimes DNA segments are able to physically encounter one
another and sometimes they are not? What determines the probability of such
encounters? These issues in polymer conformations set physical limits on ge-
netic events ranging from transformation and transduction in bacterial cells to
the generation of diverse antibodies in the immune system of mammals.
Different Structural Models of Chromatin Are Characterized by the
Linear Packing Density of DNA.

One of the themes that we will keep revisiting is the question of DNA pack-
ing. In eukaryotic cells, DNA is condensed into chromatin fibers. The basic unit
of chromatin is the nucleosome. How nucleosomes are packaged into chromatin
depends on whether the cell is dividing or not. In the interphase the cell is ac-
tively transcribing genes, and the chromosomes are not as condensed as during
mitosis when the two copies of the complete genome need to be equally divided
among the two daughter cells.

One measure of the degree of DNA packaging into chromosomes is the linear
density of chromatin ν, which specifies the number of base pairs of DNA in
a nanometer of chromatin fiber. For the 30 nm-fiber, shown in fig. 8.7(A),
ν ≈ 100 bp/nm, while for the 10 nm-fiber the packing density is about an
order of magnitude smaller. A simple estimate of ν can be made based on the
micrograph in fig. 8.7(B) which shows individual nucleosomes along the 10 nm-
fiber. We see that there are on average 2 nucleosomes for every 50 nm of fiber.
We assume there are 200 bp per nucleosome (150 bp wound around the histones
plus 50 bp of linker DNA) therefore ν ≈ 2 × 200 bp/50 nm = 8 bp/nm. For
comparison, for metaphase chromosomes ν ≈ 30, 000 bp/nm.
Spatial Organization of Chromosomes Shows Both Elements of Ran-
domness and Order.
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Figure 8.7: Electron microscopy images of chromatin. (A) Chromatin extracted
from an interphase nucleus appears as a 30 nm thick fiber. (B) The 10 nm
fiber structure shows individual nucleosomes. (Adapted from B. Alberts et al.,
Molecular Biology of the Cell, 4th ed. New York: Garland Science, 2002.)

Until recently it was believed that interphase chromosomes were randomly
distributed within the cell nucleus resembling a bowl of spaghetti. Contrary to
this view there is mounting evidence from experiments with fluorescently tagged
chromosomes that the spatial organization of genes in the cell is ordered, as de-
picted in fig. 8.8. These experiments have put forward the notion of chromosome
territories whereby individual chromosomes and particular genetic loci are al-
ways found in the same region of the nucleus. The existence of chromosome
territories raises a number of questions about how gene expression and pairing
interactions of genes (such as during recombination) are orchestrated in space
and time.

The observation that interphase chromosomes are segregated would not be
surprising if we were dealing with a polymer system which is very dilute, but
in a dense situation free polymers in solution will interpenetrate each other.
Simple estimates can be made for the density of chromatin within the nucleus,
and they typically lead to the conclusion that the expected, equilibrium state
of chromosomes should be that of a dense polymer system. The fact that seg-
regation is observed nonetheless, points to the existence of mechanisms beyond
polymer chain entropy and confinement that affect the spatial distribution of
chromosomes. We will examine chromosome tethering as one such mechanism.
Tethering scenarios posit that molecules have particular physical locations be-
cause they are held there by tethering molecules. Possible tethering scenarios
are shown in fig. 8.9.

• Estimate: Chromosome Packing in the Yeast Nucleus. Using
polymer physics, here we examine the question of whether chromosomes
in yeast are more likely to resemble spaghetti mixed in a bowl, or segre-
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Figure 8.8: Fluorescently stained chromosomes 18 and 19 in a human cell. The
chromosomes assume separate territories within the nucleus. (Adapted from
B. Alberts et al., Molecular Biology of the Cell, 4th ed. New York: Garland
Science, 2002.)
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Figure 8.9: Cartoon representation of possible tethering scenarios of interphase
chromosomes. (A) Tethering at the centromere and the two telomeres at the
nuclear periphery. (B) Tethering at intermediate locations. (Adapted from
W. F. Marshall, Curr. Biol., 12:R185, 2002.)
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gated blobs not unlike meatballs. The yeast cell has 16 chromosomes in
its nucleus. The diameter of the interphase nucleus is about 2 µm. The
chromosome size varies between 230 kb to 1500 kb, with a total genome
size of 12 Mb. This gives a mean density of c = 12 Mb/(4π/3× 1µm3) ≈
3 Mb/µm3. We now compare this density with the density of a typical
yeast chromosome released from the confines of the cell nucleus. If we
adopt the random walk model of a polymer to describe chromatin free
in solution, this density can be estimated as c∗ = Nbp/(4π/3R3

g) where
Nbp is the chromosome size in base pairs, and Rg is the radius of gyration
of the polymer. If we take an average size of a yeast chromosome to be
12 Mb/16 = 750 kb and a packing density of 8bp/nm the length of this
polymer is 750kb/(8bp/nm) = 94 µm. Using the in vitro measured value
of the persistence length for a 10 nm-fiber, ξP = 30 nm, the estimate for
the radius of gyration is, Rg = 0.97 µm. This then leads to a density for a
”free” chromosome c∗ = 750 kb/(4π/3×(0.97 µm)3) ≈ 200 kb/µm3, which
is about 10 times smaller than the density of chromosomes in the nucleus.
The same qualitative conclusion is reached assuming a 30 nm-fiber model
for the chromosomes. Namely, using a packing density of 100 bp/nm
and the reported persistence length of 200 nm, an average chromosome
has a density of c∗ ≈ 500 kb/µm3. This indicates that the chromosomes
in the yeast nucleus should typically be found in an entangled melt-like
configuration since there is not enough room for them to adopt their pre-
ferred configurations without overlap. The fact that yeast chromosomes
are segregated with each chromosome taking up a well defined region of
the nucleus indicates the need for a specific mechanism for segregation,
such as tethering to the nuclear periphery, as shown in fig. 8.9.

Chromosomes Are Tethered at Different Locations.

One experimental trick that has made it possible to examine chromosome
geography is the use of repeated DNA binding sites that are the target of par-
ticular fluorescently labeled proteins. Conceptually, the experiment can be de-
signed by having two distinct sets of DNA binding sites that are separated by
a known genomic distance. Then, by measuring the physical distance between
these binding sites in space as revealed by where the colored spots appear in a
fluorescence image, it is possible to map out the spatial distribution of different
sites on the genome.

Experiments that utilize fluorescence in-situ hybridization, or lacO arrays
inserted into the chromosomes and labeled with GFP fused Lac repressors, can
yield detailed information about the distribution of distances between chromo-
somal loci. Note that our use of the word “distance” depends upon context; in
some cases we will be referring to the scalar distance between two points and
in other cases to the displacement vector connecting them. We will pass freely
back and forth between these two cases and their relation is explored in the
problems at the end of the chapter. In the absence of tethering (or if there is
a single tether present) a random walk model of chromatin predicts a Gaussian
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Figure 8.10: Simple configuration of a tethered chromosome. The two tethers
are at fixed locations in space, and the second tether is at position R with
respect to the first. The distribution of distances between the two fluorescent
markers, one being at the same position on the chromosome as the tether, is a
displaced Gaussian.

distribution of distances r between the two fluorescent markers,

P (r) =
(

3
2πNa2

)3/2

exp
(
−3r2

2Na2

)
. (8.34)

Here a = 2ξp is the Kuhn or segment length of the polymer and N is the total
number of Kuhn segments between the two markers.

The simplest tethering configuration that leads to a distance distribution
different than that described above is one with two tethers, as shown in fig. 8.10.
One tether is assumed to coincide with the location of one of the two fluorescent
markers, and the other tether is at a position R between the two markers. This
configuration of markers and tethers leads to a displaced Gaussian distribution
of distances r between the markers,

P (r) =
(

3
2πNa2

)3/2

exp
(
−3(r−R)2

2N ′a2

)
, (8.35)

where N ′ is now the number of Kuhn segments between the second tether and
the second marker. This formula follows simply from eqn. 8.34 when applied
to the distribution of distances (r−R) between the second tether and the sec-
ond marker. It is interesting to note that mathematical properties of Gaussian
distributions, like the one that says that a convolution of two Gaussian distri-
butions is a Gaussian distribution, dictate that any tethering configuration will
result in a displaced Gaussian distribution of distances.

The implicit assumption we have made in writing down eqns. 8.34 and 8.35 is
that chromosomes configurations can be described by random walks. In light of
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the dense packing of chromosomes in cells this might seem like an overly zealous
use of a simple physical model. However, as we demonstrate using several
examples later in this chapter, this model captures key features of experimental
data on chromosomes and, more importantly, it makes falsifiable predictions
suggesting new directions for experimentation. As a result, this model is a
good starting point for quantitative investigations of chromosome geography.
This idea is further bolstered by the Flory theorem which states that for dense
polymer systems, such as chromosomes confined to cells, polymer configurations
are described by random walks.

The contour length of the chromosome between the two tagged loci, Na,
can be expressed in terms of the genomic distance between the two fluorescent
markers as Na = Nbp/ν, where ν is the linear packing density of DNA in chro-
matin. For example, two genomic loci Nbp = 100 kb apart would be separated
by a 30 nm fiber which is 100 kb/100 bp/nm = 1 µm in contour length. Assum-
ing that the chromatin structure is that of a 10 nm fiber the contour distance
along the fiber between the loci would be ten times as large given the ten times
smaller packing density.

The end-to-end distribution function for a random walk polymer is deter-
mined by a single parameter Na2, the mean end-to-end distance squared. Since
the contour length Na = Nbp/ν, the mean end-to-end distance squared can also
be written as

〈
R2
〉

= Nbpa/ν. Therefore the material parameter that charac-
terizes the random-walk model of chromosomes is the ratio of the Kuhn length
and the packing density. This parameter can be determined from measurements
of the average distance squared between two labeled regions of the chromosome
as a function of their genomic distance. The results of such a measurement
on human chromosome four are shown in fig. 8.11. The fit to the data yields
an estimate of a/ν = 2 nm2/bp, which is nothing but the initial slope of the
linear portion of the data. The fact that the data levels off at large genomic
distance can be attributed to the effect of chromosome confinement within the
cell nucleus. Below we analyze this confining effect using a random walk model
for chromosome configurations in the bacterium V. cholerae.

With a measurement of the chromatin material parameter a/ν in hand, we
can compute the expected probability distribution of distances between fluores-
cently tagged loci on the chromosome. Typically, due to random orientations
of cells in the microscope, experiments with tagged chromosomes only yield
information about the magnitude r of the distance vector r between the two
marked spots on the chromosome. Probability distributions for this quantity
follow from eqns. 8.34 and 8.35 by integrating out the angular variables θ and
φ associated with the vector r. This procedure yields

P (r) =
(

3
2πNa2

)3/2

4πr2 exp
(
−3r2

2Na2

)
, (8.36)

for the free-polymer case, and

P (r) =
(

3
4πNa2

)1/2
r

R

[
exp

(
−3(r −R)2

2N ′a2

)
− exp

(
−3(r + R)2

2N ′a2

)]
(8.37)
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Figure 8.11: Physical distance between two fluorescently labeled loci on human
chromosome four as a function of the genomic distance. The physical distance
is measured in terms of the average squared distance between the two labels.
(Adapted from G. van den Engh et al., Science, 257:1410, 1992.)

when the polymer is tethered. Note that that tethering gives a different func-
tional form for the distribution of distances. This provides us with a mathe-
matical tool with which to detect tethering of chromosomes in cells.

Measurement of the distribution of distances between tagged regions on yeast
chromosome III suggests that this difference in distributions can be observed in
vivo. Namely, in fig. 8.12 we show the distance distribution measured between
two fluorescent tags, one placed near the HML region of chromosome III of bud-
ding yeast and the other on the spindle pole body, which is at a fixed location on
the nuclear periphery and essentially marks the location of the centromere. The
measured distribution is poorly fitted by the free-polymer formula, eqn. 8.36,
while the tethered polymer formula, eqn. 8.37 does the job nicely.

The fit to the tethered-polymer distribution yields two quantities that char-
acterize the model, the mean squared distance between the tether and the flu-
orescent marker at HML, N ′a2 = 0.5 µm2, and R ≈ 0.9 µm, the distance from
the spindle pole body to the tethering point. Note that in order to compute
the genomic location of the putative tethering point we need the quantity a/ν
which characterizes chromatin structure. For that, measurements like the ones
leading to fig. 8.11 for human chromosome four are needed.
Chromosome Territories Have Been Observed in Bacterial Cells.

Bacterial chromosomes were until recently thought of as unstructured and
random. This view has been seriously challenged by experiments that utilize
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Figure 8.12: Statistics of yeast chromosome III. Distribution of distances be-
tween two fluorescent tags placed in proximity of the centromere and the HML
region on yeast chromosome III. These two regions are separated by approxi-
mately 100 kb in genomic distance. The full line is a fit to the free-polymer
distance distribution, eqn. 8.36, while the dashed line is a fit to the tethered-
polymer formula, eqn. 8.37. (Courtesy of S. Gordon-Messer, J. Haber and
D. Bressan.)
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Figure 8.13: Chromosome geography in Caulobacter crescentus. Average posi-
tions (x/L) and the standard deviation (∆x/L) of the position along the long
axis of the cell, for 112 different fluorescently tagged locations along the chro-
mosome of C.crescentus. The locations of the fluorescent tags are shown on the
diagram. (Adapted from P. H. Viollier et al., Proc. Nat. Acad. Sci., 101:9257,
2004.)

fluorescent markers placed at different genomic locations, as shown in fig. 8.13.
In this experiment 112 different mutants of C.cresentus were created with fluo-
rescent tags placed at 112 different locations covering the length of its circular
chromosome. Measurements of the average position of the marker along the
length of the cell revealed a linear relationship between the genomic distance
from the origin of replication and the physical distance away from the pole of
the bacterium. This is not to be expected assuming a simple model of the 4 Mbp
circular chromosome as a polymer loop confined to the cell.

• Estimate: Chromosome organization in C. crescentus. Another
measure of the organization of chromosome in C.cresentus is provided
by the width of the distribution of positions of the marked regions. As
shown in fig. 8.13 the standard deviation of the position is independent
of genomic distance from the origin of replication, and is approximately
0.2 µm (cell length L ≈ 2 µm). We can rationalize this measurement
within a simple model where the chromosome is partitioned into loops.
This can be affected by proteins that make contact between different lo-
cations on the chromosome (H-NS is one example). To estimate the size
of a loop we assume that the observed dispersion of the position is due to
the random walk nature of the loop. Since the mean of the square of the
end-to-end distance, r2 = x2 + y2 + z2, is Na2, the mean of x2 is three
times less (assuming a spherically symmetric distribution), or Na2/3. Us-
ing the relation between genomic distance and the mean distance squared,
Na2 = Nbpa/ν, and assuming that the chromosome has the same Kuhn
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length (a = 100 nm) and packing density (ν = 3 bp/nm) as naked DNA,
we arrive at an estimate (0.2 µm)2 = Na2/3 = Nbp/3(100/3) nm2/ bp,
Nbp ≈ 4 kb, which means that the loop should be 8 kb or less. (A more
careful analysis would take into account the closed nature of a loop yield-
ing an estimate which is higher by a factor of two.) This correlates nicely
with other measurements of topological domains in bacterial chromosomes
which find them to be roughly 10 kb in size.

Chromosome Territories in V. cholerae Can Be Explained by Models
of Polymer Confinement and Tethering

Another experiment placed fluorescent markers close to each of the two ori-
gins of replication on the two chromosomes of the bacterium V. cholerae. This
bacterium has two chromosomes, roughly 3 Mb and 1 Mb in size. In this case
the position of the fluorescent marker along the length of the cell (x) and per-
pendicular to it (y) were both measured. The distribution of x and y are shown
in fig. 8.14 for the origin of replication for the larger of the two chromosomes.
For comparison, the length of the cell is about 3.2 µm, while its diameter is
roughly 0.8 µm.

The width of the distribution of x positions is roughly half a micron, which is
considerably less than the length of the cell. The distribution is centered around
x0 = 0.6 µm, consistent with a tether located at this position in the cell, and
is well described by a Gaussian, as expected for a random walk polymer that
is unaffected by the presence of cell walls. By fitting the Gaussian distribution
for the end-to-end distance of a simple one-dimensional random walk polymer,
eqn. 8.16,

P (x) =

√
1

2πNa2
e−(x−x0)

2/Na2
(8.38)

we extract the parameter Na2 = 0.16 µm2. Assuming once again the Kuhn
length of bare DNA, a = 0.1 µm, we conclude that the number of Kuhn segments
between the fluorescent marker and the tethering point at x0 = 0.6 µm, is
N = 16. Taking ν = 3 bp/nm this gives a genomic distance of 16 × 0.1 µm ×
3 bp/nm = 4.8 kb to the tether. Therefore the simple one-dimensional model of
the chromosome predicts a tether at genomic position roughly 5 kb away from
the location of the fluorescent marker.

The distribution of positions along the y-direction is spread over the width of
the cell and is centered at zero. The latter is a consequence of the experimental
procedure used to collect distance data from cells whose orientation along the
azimuthal direction was random. Furthermore, the distribution is not Gaussian,
indicative of confinement by the cell walls. To develop quantitative intuition
about confinement we develop a model of a one-dimensional polymer made up
of N segments, each of length a, tethered at position x0 and confined to a cell
of size L as shown in fig. 8.15. Our goal is to calculate the distribution of the
end-to-end distance P (x;N).

To compute P (x;N) we once again make use of the mapping to the random
walk model in which polymer configurations are identified with trajectories of a
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Figure 8.14: Chromosome position distributions in vivo. (A) The position of
the fluorescently tagged origin of replication on the larger of the two V.cholerae
chromosomes, is measured along the long axis of the cell (x-direction) and per-
pendicular to it (y-direction). The cell can be modeled as a cylinder, while the
distribution of x and y positions can be explained with a model of a chromosome
as a confined and tethered random walk polymer. (B-C) Measured distance dis-
tribution functions and comparison to theory. P (x) is the Gaussian distribution
characteristic of a free random walk polymer, while P (y) is non-Gaussian due to
effects of confinement by the cell walls. Calculation of P (y) for a random walk
polymer confined to a cylinder is left as a homework assignment. (Courtesy of
A. Fiebig and J. Theriot, unpublished data.)
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Figure 8.15: Simplified one-dimensional model of a chromosome confined to a
cell of size L and tethered at position x0. The model makes a prediction for the
distribution of distances to the fluorescent marker, P (x).
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random walker that has taken N steps starting at position x0. As we are only
interested in those random walks that stay within the cell, we impose absorbing
boundary conditions. In other words we demand that P (x;N) vanishes for
x = 0 and x = L and for any N . This guarantees that any walk that crosses
the boundary of the cell is excluded from the ensemble of allowed walks. The
fraction of random walks that start at x = x0 and end up at x without leaving
the cell is then G(x;N). This quantity satisfies the diffusion equation,

∂G(x;N)
∂N

=
a2

2
∂2G(x;N)

∂x2
. (8.39)

This connection between random walks and diffusion leading to the above equa-
tion is explored in chap. 13 (see discussion on pg. 685) and in the problems at
the end of this chapter.

The probability that a walk which stays in the cell also ends up at position
x, is then

P (x;N) =
G(x;N)∫ L

0
G(x;N)dx

. (8.40)

Therefore, to obtain the probability distribution P (x;N) we must first solve
eqn. 8.39 with boundary conditions G(0;N) = G(L;N) = 0 and the initial
condition G(x; 0) = δ(x− x0) which says where the polymer walk begins. The
delta function δ(x − x0) is sharply peaked at x0 indicating that the random
walker starts at this position.

To solve eqn. 8.39 we expand the function G(x;N) into a Fourier series (see
“The Math Behind the Models” on pg. 420),

G(x;N) =
∞∑

n=1

An(N) sin
(nπ

L
x
)

. (8.41)

Note that every term in the sum satisfies the absorbing boundary condition.
We still need to satisfy the initial condition and the differential equation itself.

The initial condition states

δ(x− x0) =
∞∑

n=1

An(0) sin
(nπ

L
x
)

(8.42)

and it needs to be solved for the constants An(0). To do this we multiply both
sides with sin(mπx/L) and integrate the equation from 0 to L. The left hand
side gives sin(mπx0/L) while the right hand side is

∞∑
n=1

An(0)
∫ L

0

sin
(nπ

L
x
)

sin
(mπ

L
x
)

dx = Am(0)
L

2
(8.43)

where we have used the orthogonality property of sine functions given by∫ L

0

sin
(nπ

L
x
)

sin
(mπ

L
x
)

dx = δn,m
L

2
. (8.44)
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Putting the results of integration of the left and right hand side of eqn. 8.42
together, we find

Am(0) =
2
L

sin
(mπ

L
x0

)
. (8.45)

Now we turn to the differential equation itself. The question at hand is
what should we choose for the coefficients An(N) so that the diffusion equa-
tion, eqn. 8.39, is satisfied. To figure this out we simply substitute the Fourier
expansion of G(x;N) into the differential equation. This yields

∞∑
n=1

∂An(N)
∂N

sin
(nπ

L
x
)

= −a2

2

∞∑
n=1

An(N)
(nπ

L

)2

sin
(nπ

L
x
)

. (8.46)

Now we once again use the trick of multiplying both sides of this equation
with sin (mπx/L) and integrating from 0 to L. Employing the orthogonality
property this time yields a differential equation for the coefficient Am(N) given
by

∂Am(N)
∂N

= −a2

2

(mπ

L

)2

Am(N) . (8.47)

The solution to this equation is an exponential function,

Am(N) = Am(0) exp
(
−
(mπ

L

)2 a2

2
N

)
, (8.48)

where the coefficient Am(0) was determined above (eqn. 8.45) from the initial
condition.

Finally, the solution to eqn. 8.39 that satisfies the initial condition that all
walkers start at x0 and the absorbing boundary conditions at the cell boundaries,
is

G(x;N) =
∞∑

n=1

2
L

sin
(nπ

L
x0

)
sin
(nπ

L
x
)

exp
(
−
(nπ

L

)2 a2

2
N

)
. (8.49)

To turn this quantity into the probability distribution for the end-to-end dis-
tance of a polymer confined in a cell, we make use of eqn. 8.40, to yield

P (x;N) =
1
L

∑∞
n=1 sin

(
nπ
L x0

)
sin
(

nπ
L x
)
exp

(
−
(

nπ
L

)2 a2

2 N
)

∑∞
n=1 sin

(
nπ
L x0

)
1

nπ (1− cos(nπ)) exp
(
−
(

nπ
L

)2 a2

2 N
) . (8.50)

This probability distribution is plotted in fig. 8.16(A) for DNA (a = 100 nm)
confined to a cell 2 µm in length, for DNA lengths ranging from 0.5 µm to
10 µm. Note that for the shortest chain the confining cell has no effect and
the end-to-end distance distribution is a simple Gaussian function, eqn. 8.38.
For the intermediate chain length, Na = 2 µm, the effect of the cell is to skew
the distribution owing to the fact that the tethering point, x0 = 0.75 µm, was
chosen closer to the left cell boundary. Finally, for very long DNA lengths the
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Figure 8.16: Distributions for confined polymers. (A) The distribution of dis-
tances to the fluorescent marker for the one-dimensional chromosome model for
different contour lengths of the chromatin fiber between the tethering point (at
x0 = 0.75 µm) and the fluorescent marker. The cell size is L = 2 µm, and the
packing density and Kuhn length are that of bare DNA. (B) Same as in A, for
a 1 µm long chromatin fiber confined to cells of different size and tethered in
the middle of the cell.

distribution is once again symmetric, with all memory of the tethering point
lost.

The confined random walk model provides us with the quantitative intuition
that allows us to conclude that the observed distribution of average positions
of markers along the C.crescentus chromosome shown in fig. 8.13 is inconsistent
with a model of a polymer confined to the cell interior and tethered only at
the poles of the bacterium. This tethering configuration would lead to the
average position for most markers (except ones close to the origin and terminus
of replication which are thought to be co-localized with the poles) being at the
midpoint of the cell. Therefore, further constraints need to be imposed on the
chromosome to establish the observed chromosome geography.

In fig. 8.16(B) we once again plot the end-to-end distance distribution using
eqn. 8.50, but this time for a DNA molecule that has a length of Na = 1 µm
(a = 100 nm), tethered at the center of the confining box, for box sizes ranging
from 1 µm to 3 µm. We note that the effect of confinement sets in rather rapidly:
there is little evidence for it in the largest box size, while for the smallest one
the distribution is practically that of a very long polymer confined to a small
box. This provides an explanation of the difference in the observed distance
distributions in the x and y direction for the fluorescent markers placed on the
V. cholerae chromosome. We can check this assertion quantitatively by fitting
the measured x-distribution to the derived formula. This gives two parameters,
the position of the assumed tether, x0, and the size of the chain characterized by
the quantity Na2. With the quantity Na2 in hand and assuming the y position
of the tether to be at y = 0 (this has little effect given the strong confinement
in the y-direction, which, as remarked above, erases the effect of the tether
position) we can simply plot the expected y-distribution and ask whether it
matches the data. This comparison is shown in fig. 8.14 where we model the cell
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as a cylinder and take into account the fact that the experimentally measured
y-position of the fluorescent marker is the projection of its radial distance onto
the plane of the cover-slip, on which the cells rest. The details of this calculation
are left as a homework exercise.

• The Math Behind the Models: Expanding in Sines and Cosines.
Throughout the book we are often invited to consider functions that are
defined on the interval between 0 and L. A useful property of such func-
tions that we employ over and over again is that they can be expanded
into a Fourier series given by

f(x) =
a0

2
+

∞∑
n=1

an cos
(

2πn

L
x

)
+ bn sin

(
2πn

L
x

)
. (8.51)

Here an and bn are Fourier coefficients, numbers that need to be computed
for a given function f and that encode the special features of the function
of interest. The above equality is true for all points on the interval with the
possible exception of x = 0 and x = L. Since all the functions appearing
in the sum on the right hand side take on the same value at 0 and L, we
would have to conclude that f(0) = f(L) is also true. If this if not the
case, it can be shown that the Fourier series representation of f(x) takes
on the value (f(0) + f(L))/2 at the boundaries of the interval.

Computing the Fourier coefficients relies on the orthogonality property of
sine and cosine functions. In particular, the integral of the product of two
such functions is non-zero only in the case when both functions are sines,
or both are cosines, and they have the same period; the period of sin

(
2πn
L

)
is L/n. We can restate this mathematically as

∫ L

0

sin
(

2πn

L
x

)
cos
(

2πm

L
x

)
dx = 0∫ L

0

sin
(

2πn

L
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)
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(

2πm

L
x

)
dx = δn,m

L

2∫ L

0

cos
(

2πn

L
x

)
cos
(

2πm

L
x

)
dx = δn,m

L

2
, (8.52)

where the Kronecker symbol, δn,m, is one for n = m and zero otherwise.
With these identities in hand, we can compute the Fourier coefficients of
the function f(x) by multiplying it with sines and cosines with different
periods, and integrating over the interval between 0 and L. Looking at
the right hand side of eqn. 8.51 and taking into account the orthogonality
identities above, we see that the only surviving term on the right hand
side will be the sine or cosine term with the same period. Therefore, we
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have the following identities∫ L

0

f(x)dx =
a0

2
L∫ L

0
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2πn

L
x

)
dx = an

L

2∫ L

0
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(

2πn

L
x

)
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L

2
(8.53)

from which we can compute the Fourier coefficients

a0 =
2
L

∫ L

0

f(x)dx

an =
2
L

∫ L

0

f(x) cos
(

2πn

L
x

)
dx

bn =
2
L

∫ L

0

f(x) sin
(

2πn

L
x

)
dx . (8.54)

To illustrate the procedure of expanding a function into a Fourier series,
consider the simple example given by the function f(x), which is equal to
1 for 0 < x < L/2 and equal to zero for L/2 < x < L (i.e. a square wave).
Fourier coefficients are computed using eqn. 8.54, and we find a0 = 2/L,
an = 0, bn = 0 for n even and bn = 2/(πn) for n odd. How the function
f(x) emerges from the Fourier series as more and more terms are kept in
the sum is shown in fig. 8.17.

8.2.4 DNA Looping: From Chromosomes to Gene Regu-
lation

The organization of genomes occurs at many different scales. A shorter scale
phenomenon of widespread significance is the formation of loops of various kinds
in both genomic DNA and RNAs as well. Fig. 8.18 shows how nucleic acids form
“loops” in a wide variety of different settings. For example, as illustrated in
fig. 8.18(A), melting of DNA results in bubbles of single stranded fragments and
the meandering of the single-stranded fragments can be evaluated as a problem
in random walks. Similar ideas are relevant in evaluating the propensity of
RNA to form hairpin loops which are an important element of RNA secondary
structure. Another favorite example involves the formation of DNA loops by
transcription factors as part of the process of gene regulation. Yet another
example shown in fig. 8.18(D) involves genetic recombination in which distant
parts of chromosomal DNA find one another as a precursor to the recombination
event itself. These events are important in situations ranging from mating type
switching in yeast to V(D)J recombination in B cells, to the stochastic decision
making that attends olfactory receptor selection.
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Figure 8.17: Fourier series representation of a square wave. Different graphs
correspond to the Fourier series representation of the square wave function where
the first N terms have been retained in the sum on the right hand side of
eqn. 8.51.
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Figure 8.18: Examples of looping. (A) bubble formation in a double-stranded
DNA helix, (B) hairpin loop in RNA secondary structure, (C) DNA looping due
to a transcription factor, (D) long distance DNA looping of chromosomal DNA.
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5 nm

Figure 8.19: Model for DNA loop formation by the Lac repressor. The interface
between the protein and the DNA was determined by x-ray crystallography, but
the overall position and shape of the DNA in the loop is an artist’s rendition.
(Courtesy of David Goodsell.)

The Lac Repressor Molecule Acts Mechanistically By Forming a Se-
questered Loop in DNA

In fig. 4.13 (pg. 200) and section 4.4.3 (pg. 202), we introduced the lac
operon as a particularly notable example of gene regulation. One part of the lac
operon story is how the genes of this operon are repressed by the Lac repressor
protein as shown in fig. 8.19. Thus far, our description of Lac repressor has
been largely schematic without particular reference to the mechanical actions
responsible for repression. The actual story of the action of Lac repressor is
more complicated than that illustrated in fig. 4.15 (pg. 204). In fact, there are
several other operator sites (O2 and O3) in addition to the primary operator
site (O1) described there where the repressor can bind resulting in a DNA loop
like that shown in fig. 8.19. The effectiveness of repression is highest when the
Lac repressor tetramer (built up from four copies of the lacI gene) binds to two
operators simultaneously.
Looping of Large DNA Fragments Is Dictated by the Difficulty of
Distant Ends Finding Each Other

In order for a protein molecule such as the Lac repressor to spontaneously
form a loop in the DNA, the DNA and protein must together suffer a fluctuation
that brings all of the pieces into physical proximity. As will be shown in chap. 10,
for the DNA to bend in this way costs elastic energy. However, there is also
a contribution to the free energy of looping from entropy since when the DNA
is looped, there are fewer conformations available to the system and hence a
reduction in the entropy.

As a warm-up exercise to evaluate the entropic cost of loop formation we
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consider a one-dimensional model and examine the fraction of conformations
which close on themselves. The probability, p◦, of loop formation is the prob-
ability that the one-dimensional random walker returns to the origin. Using
eqn. 8.10 for R = 0, we conclude

p◦ =
number of looped configs.
total number of configs.

=

N !

(N
2 )!(N

2 )!
2N

(8.55)

where N is the number of Kuhn segments. Here we are interested in the long
chain limit, which corresponds to N � 1. This is also the limit in which
the random walk model can be applied to DNA conformations, as discussed
previously. To further simplify eqn. 8.55 we make use of our trusty Stirling
formula (pg. 280), N ! ≈ (N/e)N

√
2πN , which holds for N � 1 and implies

p◦ ≈
√

2
πN

. (8.56)

The interesting prediction of the model is that the cyclization probability of
long DNA strands will decay with polymer length to the power −1/2.

This result for the probability that the two ends will be within some small
distance of each other can also be obtained using the Gaussian approximation to
the end-to-end distribution derived earlier in the chapter. To use the continuous
distribution, we need the probability that the two ends of the chain are within
some critical distance of one another, namely, δ �

√
Na2. In this case the

end-to-end distribution of eqn. 8.16 can be approximated by

P (R;N) ≈ 1√
2πNa2

(8.57)

where we have made the substitution exp(−R2/2Na2) ≈ 1, valid for −δ < R <
δ. The cyclization probability is obtained by integrating over all the distances
of near contact in the form

p◦ =
∫ δ

−δ

1√
2πNa2

dR =

√
2

πN

δ

a
(8.58)

which, as expected, is the same as eqn. 8.56 for δ = a.
Unlike the scaling of the polymer size with its length which we found to

be independent of the dimensionality of space, the effect of dimensionality on
cyclization is quite significant. In particular, the cyclization probability has a
different form depending upon whether we evaluate this quantity for one-, two-
or three-dimensional random walks. To see this, consider the 3-dimensional
random walker of N steps. The probability of returning to the origin can be
written as the ratio of the number of walks that return to the origin to the total
number of walks in much the same way as we did above (the precise details of
this calculation in the discrete language is left to the problems at the end of the
chapter). However, a more immediate route to the result can be obtained by
exploiting the continuous distribution.
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Consider the end-to-end distribution of a three-dimensional random walk.
In particular, the probability that the two ends of the chain are at distance δ
or smaller, is given by the integral

p◦ =
∫ δ

0

4πR2P (R;N)dR =
∫ δ

0

4πR2

(
3

2πNa2

) 3
2

e−
3R2

2Na2 dR . (8.59)

Since we are interested in cyclization we can assume that the distance δ is much
smaller than the polymer size, N1/2b. In this case the exponential function in
the integrand can be approximated by one, and the resulting integral is

p◦ =
∫ δ

0

4πR2

(
3

2πNa2

) 3
2

dR =
(

6
πN3

) 1
2
(

δ

a

)3

. (8.60)

The main conclusion that follows from this calculation is that the cyclization
probability decays as the number of Kuhn segments of the chain to the power
−3/2. In section 10.3 (pg. 508), we will finish these arguments by showing how
to link the entropic and energetic description of DNA looping. These ideas will
then be applied to compute the probability of gene expression in section 19.2.5
(pg. 1028).

8.2.5 PCR, DNA Melting and DNA Bubbles

So far, we have examined biological processes associated with DNA loops where
the double stranded molecule stays intact. During DNA processing by various
polymerases, loops of single stranded DNA are formed by local melting of the
double helix. This melting process is also at the heart of the polymerase chain
reaction, which is one of the key tools of modern molecular biology. Here we
use random walk models of DNA to consider how complementary base pairing
competes with the melted state in which the bases are no longer linked in pairs.
DNA Melting Is the Result of Competition Between the Energy Cost
and the Entropy Gain of Separating the Two Complementary Strands

The melting process is a competition between entropy, which favors the
melted state, and energy, which is minimized when all the bases are paired
up and hydrogen bonds are formed between them. As a result, melting can
be induced by an increase in temperature, which changes the relative weights
of entropy and energy in the DNA free energy, or, for example, by changing
salt concentrations which change the energetics of hydrogen bonding. When a
cell needs to melt its DNA helix, it does not change the temperature or salt
concentration, but rather uses an energy-consuming enzyme called a helicase to
pay the energetic penalty of separating the two DNA strands.

The polymerase chain reaction (PCR) has been a revolution within the rev-
olution of molecular biology. PCR permits the amplification of DNA fragments
so that these fragments can be used for processes such as cloning genes for ex-
pressing insulin in bacteria, finding rare mutations in a population, identifying
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the origin of a blood sample at a crime scene and comparing the sequence of
human vs. neanderthal. The basic idea is shown schematically in fig. 8.20. The
goal of the PCR reaction is to take some fragment of a DNA molecule and make
a huge number of copies of it. In fig. 8.20, it is seen that the reaction con-
sists of the template DNA (the piece to be copied), “primers” which are small
(approximately 20bp) DNA fragments that are complementary to sites on the
DNA adjacent to the region of interest, DNA polymerase which is the molecular
xerox machine that makes the copies and a host of nucleotides (the As, Gs, Ts
and Cs) that are the raw material for constructing new DNA molecules.

The way that a typical PCR reaction goes is based on a series of cycles in
which the temperature is alternately raised and lowered. The point of raising
the temperature is to melt the DNA. Once the DNA has been melted into
single strands, there is an annealing step during which the primers bind to
their target sites. After this, there is an elongation stage where the polymerase
molecules add the appropriate nucleotides to the nascent DNA double helix.
Once this cycle is finished, the whole thing is repeated, but now there are
more template molecules to use to build new DNA molecules. As a result, the
overall concentration of reaction product increases exponentially. Our aim in
this section is to analyze a simple model of one part of the overall PCR reaction,
namely, DNA melting. The goal of this analysis, as in many cases where we
have employed toy models, is to illustrate some important ideas rather than to
shed any deep light on DNA melting or PCR themselves.

DNA Melting Temperatures Can Be Estimated Using a Random
Walk Model

A simple model of DNA melting is based on a two-state internal-variable
model, like the ones introduced in chapter 7. In this model the base pairs are
either in the double-helical state or the melted state. A number of consecutive
base-pairs in the melted state are said to form a ”bubble”. A bubble costs an
energy due to the breaking of the favorable hydrogen bonds but is favored by
entropy since the single stranded DNA that makes up the bubble is considerably
more flexible than its double stranded counterpart and can therefore assume
many more configurations. The melting transition is therefore the result of the
contest between the energy and the entropy of bubble formation.

To examine this competition quantitatively we consider a simplified version
of the so-called Poland-Scheraga model where we allow the formation of only one
bubble as shown in fig. 8.21. This is a reasonable assumption for a DNA strand
of moderate length (100− 1000bp) as the energy penalty for initiating a bubble
is considerably larger than for elongating the bubble. For short strands the
entropy gained by having more than one bubble will not be enough to overcome
this energy penalty for bubble initiation.

The quantity of interest for the one-bubble model is the equilibrium prob-
ability that the bubble is of length n base pairs. Statistical mechanics tells us
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Figure 8.20: Schematic of the polymerase chain reaction (PCR) and its depen-
dence upon DNA melting. The thermometer icons show how the temperature
is varied at each step during a cycle of the polymerase chain reaction.
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(A)

(B)

Figure 8.21: One-bubble Poland-Scheraga model. The possible states of a DNA
strand of length N base pairs are labeled by the length of the single bubble,
1 ≤ n ≤ N . (A) Schematic of a single bubble in the DNA. (B) One-dimensional
random walk picture of the DNA with a bubble. The significance of the lengths
of the cylinders is to characterize the difference in persistence length between
the stiff dsDNA and the much more flexible ssDNA.

that this probability is given by

p1(n) =
e−∆G1(n)/kBT

Z
(8.61)

where ∆G1(n) is the free energy of formation for a bubble of length n and

Z =
N∑

n=1

e−∆G1(n)/kBT (8.62)

is the partition function of the one-bubble model. The free energy of formation
can be written as

∆G1(n) = Ein + nEel − kBT ln (Ω◦(n)(N − n)) (8.63)

where Ein and Eel are the energies for initiating and for elongating a bubble
by one base pair, respectively, while Ω◦(n) is the number of ways of making
a bubble of two strands of ssDNA each n nucleotides long. The factor N − n
accounts for the number of ways of choosing the position along the DNA chain
at which the bubble is located. The precise form of the bubble entropy will
depend on the polymer model one adopts for the ssDNA. Here, in the name of
simplicity, we adopt the one-dimensional random walk model of a polymer. In
this case we can write the number of configurations of the part of the DNA that
is single stranded

Ω◦(n) = 22np◦(2n) (8.64)

which is nothing but the number of random walks of total 2n steps that return
to the origin, introduced in eqn. 8.55. This reduces to

Ω◦(n) =
22n

√
πn

(8.65)
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for n � 1, where we have made use of eqn. 8.56 for the cyclization probability,
p◦(2n).

The (reduced) free energy of our one-bubble model of DNA melting is there-
fore

∆G1(n)
kBT

= (εel − 2 ln 2)n +
1
2

lnn− ln(N − n) , (8.66)

where the energy parameter is given by εel ≡ Eel/kBT , and we have dropped
the initiation energy which is the same for all one-bubble states, and other
unimportant, n-independent constants.

In order to tease out quantitative intuition provided by this model, we ex-
amine how the bubble length n∗ at which the free energy is minimum (which
is also the most likely bubble length in thermal equilibrium) depends on the
temperature, or equivalently, the dimensionless elongation energy εel. Setting
the first derivative of the free energy with respect to n to zero, leads to the
equation

(εel − 2 ln 2) +
1
2n

+
1

N − n
= 0 (8.67)

whose solutions are

n∗± = N
1 + ∆ε±

√
1 + 6∆ε + ∆ε2

∆ε
(8.68)

where we have introduced a new variable

∆ε ≡ 2(εel − 2 ln 2) . (8.69)

Consider first the situation when ∆ε > 0. In this case both solutions, n∗± are
not of interest as they do not correspond to bubbles whose length is positive and
smaller than N . This means that on the interval 0 < n ≤ N the free energy is
monotonically increasing and therefore we expect that the state with no bubble
wins out as one with the lowest free energy. (Note that this conclusion is not
100% guaranteed because the Stirling approximation gets worse as n becomes
smaller.) Going back to the original parameters in the model, this means that
for temperatures low enough so that Eel/kBT > 2 ln 2, the no-bubble state wins
out. At higher temperatures, when ∆ε < 0, the situation is very different. In
this case both solutions n∗± are of interest as they are both positive and less than
N . One of the solutions is typically small compared to N and is a local maximum
while the other is close in value to N and is a local minimum. In fig. 8.22 we show
plots of the reduced free energy as given in eqn. 8.66 (i.e. without making the
Stirling approximation) for values of εel close to 2 ln 2 ≈ 1.39, which explicitly
demonstrate this behavior. It is interesting to note that for Eel/kBT < 2 ln 2
even though the no-bubble configuration has the lowest free energy one should
observe fluctuations into the one-bubble states with a typical bubble size that
will depend on temperature. Also, close to the critical value of temperature the
free energy as a function of bubble size becomes fairly flat so the prediction of
the model is that one should observe bubbles of varying sizes appear simply due
to thermal fluctuations.
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Figure 8.22: Free energy of the one-bubble model as a function of the bubble
size. As the temperature is increased the reduced energy for bubble elongation
εel becomes smaller and smaller. For small temperatures the most likely bubble
size is zero, while at high temperatures it is close to the DNA length (here
chosen to be N = 100 base pairs), and the chain is completely melted. At
intermediate temperatures, the model predicts strong fluctuations of the bubble
size indicated by the rather flat free energy landscape.

8.3 The New World of Single Molecule Mechan-
ics

Models such as the random walk model described here have extraordinary reach.
Yet another interesting application of these ideas is to the recent development
of single-molecule techniques for measuring the response of macromolecules to
external forcing.
Single Molecule Measurement Techniques Lead to Force Spectroscopy

There are a number of different ways of applying forces to individual macro-
molecules. Several of these techniques are represented in schematic form in
fig. 8.23. One such technique shown in fig. 8.23(A) involves the use of micron-
sized cantilevers which are attached to a macromolecule which is, in turn, teth-
ered to a surface. Through control of the height of the surface to which the
molecule is tethered, for example, the cantilever will suffer a deflection which can
be measured using reflected laser light. A second example shown in fig. 8.23(B)
is optical tweezers which permit the application of forces of order 1-50 pN on
macromolecules of interest. In this case, the key idea is that by attaching a
macromolecule to a micron-sized bead, it is possible to pull on the bead (and
hence the molecule) by shining laser light on the bead and using the resulting
radiation pressure from the laser light to manipulate the bead. The same con-
cept is similarly played out in the context of the magnetic tweezers shown in
fig. 8.23(C) where the bead is manipulated by magnetic fields rather than laser
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Figure 8.23: Schematic showing a variety of single molecule techniques. (A)
single molecule atomic-force microscopy being used to stretch a multi-domain
protein, (B) optical tweezers being used to measure the rate of transcription,
(C) magnetic tweezers being used to measure the torsional properties of DNA
and (D) pipette-based force apparatus being used to measure ligand-receptor
adhesion forces.

light. One of the interesting variations on the forcing scheme provided by the
magnetic tweezer is the opportunity to apply torsional forces which examine
the response of molecules to twist. The final example shown in fig. 8.23(D) is
the use of a pipette-controlled force apparatus in which the strengths of ligand
receptor interactions as well as the mechanical response of lipid bilayer vesi-
cles can be examined. Our main point in this discussion is to alert the reader
to the emergence of single-molecule techniques that complement the tools of
traditional solution biochemistry and permit the measurement of not only the
average properties of the various macromolecules of biological interest, but also
the fluctuations about this average response.

8.3.1 Force-Extension Curves: A New Spectroscopy

Different Macromolecules Have Different Force Signatures When Sub-
jected to Loading

The techniques introduced above permit the explicit measurement of the
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Figure 8.24: Force-displacement curves for a variety of different macromolecules:
(A) double-stranded DNA, (B) RNA and (C) protein made of repeats of Ig
module 27 of the I band of human cardiac titin. The measured curves illus-
trate the sense in which single molecule experiments serve as the basis of force
spectroscopy. Non-monotonic features seen in the plots correspond to changes
in structure due to an applied force. (A, adapted from C. Bustamante et al.,
Curr. Op. Struc. Biol., 10:279, 2000; B, adapted from J. Liphardt et al., Sci-
ence, 292:733, 2001; C, adapted from M. Carrion-Vazquez et al., Proc. Nat.
Acad. Sci., 96:3694, 1999.)

force-extension characteristics of a range of different molecules. Fig. 8.24 shows
the force-extension properties of several characteristic examples ranging from
DNA to proteins. In particular, fig. 8.24(A) shows the force-extension charac-
teristics of a single DNA molecule subjected to loading (a similar example was
shown in fig. 5.14, pg. 265). Note that the same characteristic force-extension
signature will be found for a given DNA molecule regardless of which of the
various techniques is used to measure it, and further, that this curve provides
a unique fingerprint which serves as the basis of force spectroscopy of macro-
molecules. Fig. 8.24(B) shows a plot of the force-extension properties of a
particular RNA molecule. Note that the character of the secondary structure
associated with a given RNA molecule is translated, in turn, into the character
of the force-extension curve, illustrating the idea that the force-extension curve
provides a spectroscopic fingerprint of different macromolecules. Fig. 8.24(C)
shows yet a third example of the intriguing diversity of force-extension curves
associated with different macromolecules, this time revealing how the multido-
main protein titin unfolds in the presence of force. One immediate statement
that can be made in this example is that the number of load drops in the curve
corresponds to the number of unfolded domains in the protein. We empha-
size that these three examples are but a tiny representation of the broad class
of measurements that have been made on polysaccharides, lipids, proteins and
nucleic acids as well as their assemblies.
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8.3.2 Random Walk Models for Force-Extension Curves

Given that different macromolecules exhibit different force-extension signatures,
it is of interest to see if we can compute some characteristics of these curves
using what we know about random walks. Indeed, the calculation of these force-
extension curves gives us the opportunity to further explore entropic forces.
The Low-Force Regime in Force-Extension Curves Can Be Under-
stood Using the Random Walk Model

One of the simplest models that can be written to capture the relation be-
tween force and extension in polymers is based on a strictly entropic interpreta-
tion of the free energy. In particular, by remembering that as the chain molecule
is stretched to lengths approaching its overall contour length, the overall number
of configurations available to the molecule goes down, and with it so too does
the entropy. This reduction in entropy corresponds to an increase in the free
energy. To the extent that the pulling experiment is done sufficiently slowly, we
can think of the force as being given by

force = −∂G

∂L
, (8.70)

where G is the free energy and L is the length.
We begin with a one-dimensional rendition of the freely-jointed chain model.

We imagine a polymer of overall length Ltot = Na, where N is the number of
monomers and a is the length of each monomeric segment. The basic thrust
of our argument will be to construct the free energy G(L) as a function of the
length L = (nr−nl)a from which the force necessary to arrive at that extension
is given by eqn. 8.70. As before, we use the notation nr and nl to signify how
many of the total links are right pointing (nr) and how many are left pointing
(nl). In order to proceed, we need an explicit formula for the free energy. As
noted above, in this simplest of models we ignore any enthalpic contributions
to the free energy, with the entirety of the free energy of the molecule taking
the form

G(L) = −kBT ln W (L;Ltot), (8.71)

where W (L;Ltot) is the number of configurations of the molecule which have
length L given that the total contour length of the molecule is Ltot.

As shown in fig. 8.25, we are interested in the equilibrium of our random
walk representation of the polymer when it is subjected to external forcing such
as can be provided by an optical tweezers setup. A particularly transparent
way to imagine this problem is to think of weights being dangled from the ends
of the polymer as shown in fig. 8.26 (this idea of representing the energy of
the loading device via weights was introduced in fig. 5.12 (pg. 263)). In this
case, the free energy of eqn. 8.71 must be supplemented with a term of the
form Uweights = −2mgL. What this term says physically is that the more the
molecule is stretched, the lower the weights will dangle with the result that their
potential energy is decreased.
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Figure 8.25: Model polymer subjected to loading. Schematic of a model one-
dimensional polymer subjected to external forcing by optical tweezers.

Figure 8.26: Polymer subject to external load. Schematic of a model one-
dimensional polymer subjected to external forcing through the attachment of
weights on the end. This scenario is a pedagogical device to illustrate how to
include the forcing in the overall free energy budget.

Putting together this term with the contribution from eqn. 8.71, we have for
the total free energy of the system

G(L) = −2mgL︸ ︷︷ ︸
contribution from weights

− kBT lnW (L;Ltot)︸ ︷︷ ︸
entropic contribution of polymer conformations

.

(8.72)
To make further progress with this result, and in particular, to obtain the free
energy minimizing length as a function of the applied force, we must first find
a concrete expression for W (L;Ltot). To that end, we note that this reduces to
nothing more than the combinatoric question of how many different ways there
are of arranging N arrows, nR of which are right pointing and nL = N − nR of
which are left pointing. The result is

W (nR;N) =
N !

nR!(N − nR)!
, (8.73)

where we have found it convenient to replace our reference to L and Ltot with
reference to the number of right pointing arrows and the total number of such
arrows with the recognition that they are related by L = (nR − nL)a and
Ltot = Na.

Given the free energy, our task now is to minimize it with respect to length
(or nR). To that end, we first invoke the Stirling approximation (pg. 280), which
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we remind the reader allows us to replace ln N ! by N ln N −N . In light of this
approximation, the overall free energy may be written as

G(nR) = −2mgnRa + kBT (nR ln nR + (N − nR) ln (N − nR)). (8.74)

Note that we have neglected all constant terms since they will not contribute
during the minimization. Differentiation of this expression with respect to nR

results in

∂G

∂nR
= −2mga + kbT ln nR − kBT ln (N − nR) = 0 . (8.75)

Solving this equation for the quantity nR/nL we obtain

nR

nL
= e

2mga
kBT (8.76)

which we use to obtain a simple relation for the extension

z =
〈L〉
Ltot

=
nR − nL

nR + nL
= tanh

mga

kBT
. (8.77)

The construct of using weights to load the molecule was a convenient peda-
gogical device to provide a concrete mechanism for seeing how the energy of the
loading device can be included in the free energy budget. More generally, the
two ends are subjected to a force f with the result that z = tanh(fa/kBT ).
This force-extension relation is shown in fig. 8.27. To gain further insight
into the quantitative aspects of the model we consider the limiting case of a
small force, i.e. fa � kBT . For a dsDNA molecule in physiological conditions
(a ≈ 100nm) this corresponds to f � 40 fN while for the much more flexible
ssDNA (a ≈ 1.5nm) the small force regime is obtained for f � 3 pN. In the
small force limit the force-extension curve is linear (as shown in the problems
at the end of the chapter),

〈L〉 =
Ltota

kBT
f , (8.78)

i.e. in this regime the polymer behaves like an ideal Hookean spring with a
stiffness constant k = kBT/Ltota. The fact that the stiffness of this spring is
proportional to the temperature reveals its true entropic nature. For λ-phage
dsDNA whose contour length is Ltot = 16.6 µm the effective spring constant
is k ≈ 2.3 fN/µm while for the same length ssDNA the stiffness is given by
k ≈ 160 fN/µm. Note that the larger flexibility of ssDNA, as evidenced by
its smaller persistence length, leads to a larger value for the effective spring
stiffness.

Thus far, our model of the macromolecule has been highly idealized in that
we have imagined that each monomer can only point in one of two directions.
Though that model is instructive, clearly it is of interest to expand our horizons
to the more physically realistic three-dimensional case. The generalization of our
freely-jointed chain analysis to three dimensions holds no particular surprises.
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Figure 8.27: Relation between force and extension as obtained using the freely
jointed chain model. Results for one-, two- and three-dimensions are shown and
the three-dimensional case is shown for both the version in which the monomers
can only point in the Cartesian directions and for the case in which they can
point in any direction. The curves are related to their corresponding model by
the cartoon showing the random-walk chain. A comparison of this model to the
data was shown in fig. 5.14, pg. 265
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The fundamental idea is that now instead of constraining the monomers that
make up the molecule of interest to point only right or left, we give them full
three-dimensional motion. The simplest variant of this model is to permit each
monomer to point in one of six directions (i.e. e1, −e1, e2, −e2, e3 and −e3).
We quote the result for this model, namely,

z =
〈L〉
Ltot

=
2sinhβfa

4 + 2coshβfa
, (8.79)

and leave the details as an exercise for the reader.
The more interesting case which we work out in greater detail is that in which

each monomer can point in any direction. In this case, rather than writing out
the free energy explicitly, we compute the partition function and use it to deduce
the relevant averages, such as the average length at a given applied force. As
each link in the chain is independently fluctuating the partition function for
N = Ltot/a links is ZN = ZN

1 with

Z1 =
∫ 2π

0

dφ

∫ π

0

efa cos θ/kBT sin θdθ. (8.80)

This equation instructs us to compute the Boltzmann factor for every orientation
of the monomer, characterized by the angles φ and θ, and then sum (integrate)
over all possible values of the two angles. This integral over the unit sphere can
be evaluated with the change of variables x = cos θ, to give

Z1 = 4π
kBT

fa
sinh

fa

kBT
. (8.81)

Now the free energy G(f) = −kBT lnZN is a function of the applied force f
and we differentiate it with respect to f to obtain an expression for its thermo-
dynamic conjugate, the average polymer length,

〈L〉 = −∂G

∂f
= Na

(
coth

fa

kBT
− kBT

fa

)
. (8.82)

The small force limit, fa/kBT � 1 in this case gives the same Hookean
expression, f = k〈L〉 as the one-dimensional freely jointed chain, except the
effective spring constant is three times as large, k = 3kBT/Ltota. The same
result follows from eqn. 8.79. Not surprisingly, the two-dimensional version of
the model, whether it be defined on a lattice or not, gives k = 2kBT/Ltota.

At large forces when the polymer approaches full extension, the force-extension
formula, eqn. 8.82, derived from the freely jointed chain model no longer ad-
equately describes experimental data obtained by pulling on dsDNA. In that
regime the elastic properties of dsDNA begin to matter and a more sophisti-
cated model, which incorporates bending stiffness, describes the experimental
data much better. This so-called worm-like chain model is taken up in chap. 10.
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8.4 Proteins as Random Walks

One of the key ideas driving research in structural biology, which seeks to de-
scribe protein structure in atomic detail, is that protein function follows from
its structure. So far, we have shown how the random walk model can be applied
to nucleic acids. Proteins are polymers comprised of amino acids. Therefore,
a natural question to ask is what, if any, aspects of protein structure can be
understood from simple coarse-grained models of polymers, such as the various
random walks introduced in this chapter.

Globular proteins in their native state form compact structures which are
quite different from the open configurations implied by the random walk model.
Therefore, we might be tempted to conclude that the random walk model has
no business commenting on proteins. Instead we consider a modification of the
random walk model we have employed so far by explicitly accounting for the
compact nature of proteins.

The compact random walk model we employ in this section is defined on a
lattice, meaning that the random walker, whose trajectories represent polymer
configurations, jumps from one lattice site to the next. Usually when repre-
senting the polymer by a random walk on a lattice, the sites not occupied by
the monomers (or, equivalently, those sites not visited by the random walker)
are thought of as representing the solvent molecules. Simple random walks de-
scribed in the previous sections are open structures with the monomer sites
typically surrounded by solvent sites. As remarked above, this is inadequate
for describing protein conformations which are compact with solvent typically
making contact only with amino-acids at the surface of the protein. To mimic
this property of proteins we invoke compact random walks (also referred to as
Hamitonian walks) which are self-avoiding random walks that visit every site
of the lattice, usually taken to be cubic, as depicted in fig. 8.28. By virtue of
covering all the lattice sites by monomers, all the solvent sites are pushed to
the surface. These compact random walks, are a very coarse grained model
of proteins and, as with all coarse-grained models, one is limited in scope and
precision of the questions that the model is equipped to address. The rewards
on the other hand come in the form of simplicity and generality of the answers
obtained. Furthermore, as with any good model, compact random walks reveal
new questions and sharpen old ones about the structure of naturally occurring
proteins.

8.4.1 Compact Random Walks and the Size of Proteins

The Compact Nature of Proteins Leads to an Estimate of their Size

Possibly the simplest property of a globular protein is its size, as measured
by its linear dimensions, or more precisely, its radius of gyration. Examination
of representative proteins from the Protein Data Bank reveals a systematic
dependence of the protein size on its mass. In particular, for globular proteins
the radius of gyration scales roughly with the cube root of the mass. The
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Figure 8.28: Compact polymer configuration on a 4x4x3 cubic lattice. Each ball
represents an amino acid. (Adapted from K. A. Dill et al., Protein Sci., 4:561,
1995.)

relation between the physical size of proteins and their sequence size is shown
in fig. 8.29.

The observed scaling is a simple consequence of the compact nature of pro-
teins, and is thus also a property that is captured by compact random walks.
Since a compact random walk completely fills the lattice (see fig. 8.28), its lin-
ear size will scale with the linear dimension of the lattice or with the cube root
of the number of lattice sites, given that we have in mind a three-dimensional
lattice. If we associate a single residue with each site, and take these to be of
roughly equal mass, we arrive at the scaling law observed for many real proteins.
Compactness implies that all the space occupied by proteins is filled, with no
holes present. Therefore, the volume occupied by the protein, which necessarily
scales as the cube of its linear dimension, is proportional to the mass. For pro-
teins in the unfolded state, the structures are better described as random walks.
The size of a random walk polymer, unlike compact polymers, scales as the 1/2
power of the mass. If one were to examine random self-avoiding walks (random
walks with the additional constraint of no self-intersections), an argument due
to Flory predicts scaling of the linear size with mass to the 3/5 power, indicating
a structure which is even more expanded that that of a simple random walk.

8.4.2 Hydrophobic and Polar Residues: The HP Model

One of the challenges brought in on the heels of the successes of the great ge-
nomic sequencing initiatives is that of figuring out the structural and functional
implications of these vast libraries of genes. One step in unraveling the meaning
of all of this genomic data is to figure out how to go from a particular protein
sequence to the corresponding structure. The problem is that when confronted
with some new gene sequence, one would like to be able to state what proteins
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Figure 8.29: Scaling of protein size as a function of the number of amino acid
residues. The line has a slope of 1/3 corresponding to a space-filling packing.

are implied by the various sequences and what structures these proteins have.
Like for the analysis of protein-ligand binding in chap. 7, here too we will find
that the use of internal-state variables to characterize the amino acid identity
of a given residue is extremely powerful.

The process by which a chain of amino acids assumes the specific three-
dimensional native structure of a protein is often not understood in enough
detail to allow for a prediction of the structure based on the known sequence.
The complexity of the problem is illustrated in part by the observation that
the number of possible three-dimensional conformations of a protein is so large
that a random search in structure space would never uncover the native state.
Though nature is clever enough to wiggle its way out of this problem, sometimes
we are not. Even if we are to model structures using a highly simplified and
contracted scheme in which a given structure is viewed as a random walk on a
cubic lattice as introduced above, the number of structures for a 100-monomer
chain is 6100 or 6.5 × 1077. The way we obtain this estimate is based on the
idea that the link connecting every successive set of residues can point in one of
the 6 directions along the three Cartesian axes. If we imagine doing a random
search among these structures at a (very optimistic) rate of one structure per
femtosecond (10−15 seconds), it would take roughly 2× 1055 years to complete
the search. This is about 1045 times the age of the Universe!

The above estimate tells us that the folding of a protein into its native
structure is most certainly not a random process. The hydrophobic interaction
between amino-acid residues and the water molecules that surround them leads
to a collapse of the chain as was illustrated in fig. 5.8 (pg. 258). As a result the
hydrophobic residues are sequestered to the interior of the protein, while the
surface is populated by polar residues. Thus hydrophobicity is one force that
can steer the protein to a folded state avoiding a random search of configuration
space. Indeed, the spirit of the class of models introduced here is that collapse
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Figure 8.30: Mapping of the amino acids onto an HP alphabet. The 20 amino
acids are coarsely separated into two categories, hydrophobic (H) or polar (P).

induced by hydrophobic effects drives the formation of secondary structure as
opposed to an alternative view in which the formation of the hydrogen bonds
that define secondary structure lead to collapse.
The HP Model Divides Amino Acids Into Two Classes: Hydrophobic
and Polar

The idea that the hydrophobic force plays a prominent role in protein folding
has led to coarse-grained models of proteins where the 20 naturally occurring
amino acids are replaced with a two-letter alphabet that identifies each amino
acid as being hydrophobic (H) or polar (P). This leads to a drastic reduction
of the complexity of the sequence space as the number of possible sequences for
a 100-mer goes down from 20100 ≈ 10130 to 2100 ≈ 1030. To implement such
a model, we need to decide how to partition the 20 amino acids into the two
categories H and P. An example of such a partitioning is shown in fig. 8.30.
Indeed, as shown in fig. 8.31, there is a hierarchy of possible classifications of
the amino acids based on various properties for grouping them.

In the remainder of the book, we will use the HP model introduced here as
the basis of a variety of different discussions. Our reasoning is that classify-
ing amino acids according to just these two broad categories allows us to take
otherwise analytically intractable problems and to render them tractable. For
example, in section 18.4.1 (pg. 988), we will consider an HP model of translation
and kinetic proofreading featuring only two species of tRNA. This simplifica-
tion will allow us to carry out the analysis completely. Similarly, the entirety of
chap. 18 on bioinformatics will be based on sequence alignments using only the
HP alphabet. Though we compromise on biological realism, our sense is that
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the pedagogical payoff is worth it.

8.4.3 HP Models of Protein Folding

The protein folding problem of finding the native structure given the amino acid
sequence of a protein is one of a class of problems concerning the relationship
between the amino-acid sequence space and the space of three-dimensional pro-
tein structures. Just as introducing a two letter alphabet greatly reduces the
sequence space, constraining the space of structures to compact random walks
on a lattice makes the exploration of structure space more tractable. In par-
ticular the number of compact polymer structures on a 3× 3× 3 lattice, often
used in numerical studies, is 103,346, while the number of possible sequences is
227 = 134, 217, 728.

To gain intuition about lattice HP models we will investigate the toy model
that consists of 6 monomers on a 2×3 lattice. The number of possible sequences
is 26 = 64 while the number of compact structures that are unrelated by lattice
rotations, translations or reflections is only 3. These are shown in fig. 8.32(A).
Beside the list of sequences and structures, the other ingredient of the model is
the hydrophobic energy which measures the extent to which the H-monomers
make energetically unfavorable contacts with the solvent and with P-monomers.
(Solvent molecules are the lattice lattice sites on the outside surface of the six-
mer.) A simple model of this interaction is to assign a free energy penalty ε
for every contact an H monomer makes with either a solvent molecule or a P
monomer. These unfavorable contacts are shown as dashed lines in fig. 8.32(B).
A more refined model might distinguish the interaction energy associated with
an H-solvent and an H-P contact.

The protein folding problem within this toy model can be formulated in
the following way: Given an HP sequence, which of the possible structures
minimizes the hydrophobic interaction energy? Then the lowest energy state is
identified as the native state of the protein. To shed more light on this question
we consider the example of two model sequences: HPHPHP and PHPPHP.
The energies for each of these two sequences in each of the 3 possible compact
structures are given in fig. 8.32(B). We see that the first sequence has the same
energy regardless of the compact structure the six-mer assumes. This implies
that independent of temperature the probability of finding the polymer in any
of the three compact structures is 1/3. Such a sequence is not protein-like in
the sense that it does not have a unique low energy, native structure.

On the other hand the sequence PHPPHP has a unique native structure, the
Π-shaped structure shown in fig. 8.32(B). The probability of finding the chain
in the native structure is proportional to the Boltzmann factor associated with
its energy,

pfold =
e−2βε

e−2βε + 2e−4βε
; (8.83)

the denominator is nothing but the partition function for the three possible
structures. The probability of this toy protein adopting the folded state as a
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Figure 8.32: HP model of protein folding. (A) Possible compact structures of an
HP six-mer on a 2 × 3 lattice, unrelated by symmetries. (B) The hydrophobic
energy of an HP six-mer in a particular compact structure depends on its se-
quence. The energy function assigns a cost ε for every contact, represented here
by a dashed line, between an H-monomer and either a P-monomer or a solvent
molecule. The sequence in the top panel, HPHPHP, has the same energy in all
three compact structures, while PHPPHP has one structure as its unique lowest
energy state, which is characteristic of protein-like sequences.
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Figure 8.33: Probability of finding the PHPPHP polymer in its native state.

function of temperature is shown in fig. 8.33. Note the sigmoidal character of
the plot which is characteristic of many real proteins.

Another interesting question we can pose in the context of this toy model
of folding is: What sequences are protein-like? Such questions are practically
impossible to address in more realistic models of proteins given the astronom-
ically large (literally!) number of sequences and structures. The hope is that
by asking these types of questions in simple lattice models one might uncover
patterns that are also present in real proteins.

In the context of our toy model we can address this question systematically
as there are only 64 sequences to go through. For every sequence we would
need to determine its energy in each one of the three possible compact struc-
tures, in order to identify the protein-like sequences with a unique lowest-energy
structure.

Instead of going through all the sequences a simple solution presents itself
if we notice that a necessary condition for a sequence to have a unique native
structure is for there to be at least one HH contact. This is the case for the
PHPPHP sequence in fig. 8.32(B). Then we can construct, for each of the 3
possible compact structures, all the sequences that have that particular structure
as its unique native state. One strategy is to begin by choosing two residues
that are in contact in the chosen structure and not in any other; for example
this is the case for residue 2 and 5 in the Π structure. We make both these
residues an H and then we assign an H or a P to all the other residues so that
no favorable contacts are made in any of the other compact structures. The
outcome of implementing this algorithm is shown in fig. 8.34.

An interesting feature of this model is that it predicts the Π structure to
be the most designable one. Namely, this structure has 9 sequences of total
64 which fold into it. The least designable structure has only 3 sequences that
fold into it. This observation suggests a question whether observed protein
structures in Nature are highly designable or not.
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Figure 8.34: Protein-like sequences fold into a unique compact structure. The
number of protein-like sequences varies from compact structure to compact
structure. The structures with a particularly large number of protein-like se-
quences associated with them are highly designable.

The HP model of proteins suggests an interesting strategy for protein design.
The idea is to use the degeneracy of the genetic code to create a library of amino-
acid sequences which are identical when translated into HP language. For any
particular sequence the amino acids are chosen randomly from the pool of H or
P residues. For example, a four-helix bundle has been designed by following the
pattern: HPPHHPPHPPHHPPH... which ensures that there is a hydrophobic
residue every three or four amino acids in the sequence; see fig. 8.35. This is
consistent with the structural repeat of 3.6 amino-acids per turn of an alpha-
helix. It has been shown experimentally that these sequences not only properly
fold into helices but also have enzymatic activity. Identical design principles
have been used to make beta-sheets which can aggregate into structures akin to
amyloid fibers.

8.5 Summary and Conclusions

The random-walk model is useful in many different scientific settings. One
powerful application of these ideas is to the structure and properties of polymers,
including many of the “giant molecules” of life. In this chapter, we have shown
how simple ideas from the physics of random walks can be used to explore the
size and distribution of DNA, the force-extension properties of polymers and
the emergence of entropic elasticity and as a toy model that captures some of
the features of protein folding.
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Figure 8.35: The four-helix bundle designed by using an HP sequence strategy.
The HP sequence is chosen to conform to the 3.6 amino-acids per turn of an
alpha-helix. The hydrophobic residues are sequestered in the interior of the
bundle, while the polar ones are on the surface facing the solvent. (Adapted
from M. H. Hecht et al., Protein Sci., 13:1711, 2004.)

8.6 Problems

1. Gaussian chain in 3D. Perform all the steps that lead to eq. 8.14.

2. 1-dimensional random walk. Show that the Gaussian distribution of
R for a 1-dimensional random walk given in eqn. 8.16 indeed has the required
mean and variance.

3. Radius of gyration. Prove the relation between the contour length and
the radius of gyration given by eqn. 8.32.

4. Mean departure from the origin. Compute the mean departure of a
one dimensional random walker from its starting point. In particular, use the
fact that the mean excursion can be written as 〈R〉 = (〈nr〉 − 〈nl〉)a and that
the probability distribution for nr right steps out of a total of N steps is given
by the binomial distribution.

5. Diffusion and master equations. Eqn. 8.39 characterizes the proba-
bility distribution for random walkers. Derive this equation by using the fact
that the probability that the walker will be at position x at step N implies that
the walker was either at x − a or x + a at step N − 1. In particular, write
an equation for p(x,N) in terms of p(x ± a,N − 1) and by Taylor expanding
p(x± a,N − 1) ≈ p(x,N) + derivative terms.
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6. Random walk in a cylinder. Use a generalization of eqn. 8.39 to three
dimensions to solve for the probability distribution for the end-end distance for
a polymer tethered along the axis of a cylinder at position x0. Use your results
to compare to the data shown in fig. 8.14.

7. Chromosome tethering. (a) Given P (R), the probability density for
the vector R which characterizes the probability that the random walk will end
in a little volume element at R, find the probability density for P (R) - the
probability density that the random walk will end at a distance R from the
origin. and then write an expression for the probability that the end to end
distance is R.
(b) Obtain a careful derivation of the result given in 8.35.

8. 3D random walk and polymer cyclization. Calculate the cyclization
probability of a discrete random walk in one, two and three dimensions.

9. Bubbles on DNA Compare the free energy of the one bubble state vs the
two bubble state as a function of the chain length N . The point is to show that
for short DNA strands the one-bubble state is dominant over the two bubble
state.

10. Freely Jointed Chain in 3D (a) Derive eqn. 8.79, use the result to
derive the relation between force and extension and make a plot of the resulting
function.

(b) In the small force limit the force-extension curve is linear, i.e. in this
regime the polymer behaves like an ideal Hookean spring with a stiffness con-
stant k ∝ kBT/Ltota. Demonstrate this claim and deduce the numerical factors
that replace the proportionality with a strict equality.

11. Force-induced unfolding of multidomain proteins can be modeled
using the random walk model. We can generalize the discussion of force-
extension curves to the case of multidomain proteins. The data relevant to the
particular case of the muscle protein titin has already been shown in fig. 8.24(C).
The idea of the analysis we will bring to bear on this problem is shown in
fig. 8.36, where it is seen that the overall contour length of the chain increases
in a systematic and calculable way as a function of the number of domains that
have unfolded. Use a model like that suggested in fig. 8.36 to compare to the
data shown in fig. 8.24(C).

12. Transition between B and S form DNA. DNA subjected to a
stretching force exceeding 60pN undergoes a structural transition from the usual
B-form to the so-called S-form (“S” for stretch). Here we examine a simple
model of this transition based on the freely-jointed chain model of DNA and
compare it to experimental data.
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Figure 8.36: Random walk model for elastic parts of the titin force- extension
curve.

(a) Consider the freely-jointed chain model in one dimension. Each link of the
polymer points in the +x or the -x direction. There is a force F in the +x
direction applied at one of the ends (see Fig.b). To account for the B to S
transition we assume that links are of length b (B state) or a (S state), with
a > b. Furthermore, there is an energy penalty ε of transforming the link from
a B state to an S state. (This is the energy, presumably, for unstacking the
base pairs.) Write down the expressions for the total energy and the Boltzmann
factor for each of the four state of a single link, shown in fig. 8.37.
(b) Compute the average end-to-end distance for one link. The average end-to-
end distance for a chain of N links is N times as large.
(c) Plot the average end-to-end distance normalized by Na (ie. the relative
extension) as a function of force using the numbers appropriate for DNA: b =
100 nm, a = 190 nm. To estimate ε take the energy per base pair for transforming
B-DNA to S-DNA to be 5 kBT (the length of one base pair is 1/3 nm long).
How does your plot compare to fig. 8.37?

13. Scaling of Protein Size The scaling of a polymer’s size as a function

of the number of monomers is one of the central results to emerge from simple
lattice models of polymers. The goal of this problem is to investigate the extent
to which such arguments are in fact appropriate for biological polymers, and
in particular, proteins. To that end, use the Protein Databank in order to
download the coordinates for a variety of globular proteins, including myoglobin,
hemoglobin, bovine pancreatic trypsin inhibitor (BPTI), lysozyme, cytochrome
c, G-actin and tubulin. In each case, compute the radius of gyration and then
make a single plot which shows the radius of gyration for each of these proteins
as a function of the number of residues in the protein. The goal of the problem
is to reproduce fig. 8.29.
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Figure 8.37: Force-extension curve for dsDNA. (Adapted from C. Bustamante
et al., Nature, 421:423, 2003.)

8.7 Further Reading

A. Y. Grosberg and A. R. Khokhlov, Giant Molecules, Academic Press, San
Diego, California, 1997. This book is a thoughtful discussion of polymer physics
that is pleasing to novices and professionals alike. Interested readers should also
see their more advanced Statistical Physics of Macromolecules, American
Institute of Physics, Woodbury: New York, 1994.

G. B. Benedek and F. M. H. Villars, Physics With Illustrative Examples
from Medicine and Biology: Statistical Physics, Springer-Verlag, Inc.,
New York: New York, 2000. We have referred to the series by Benedek and
Villars throughout the book - as always, a great source of interesting material.

H. Berg, Random Walks in Biology, Princeton University Press, Princeton:
New Jersey, 1993. Berg’s book is an enlightening classic. The discussion on ran-
dom walks pertains to diffusion, but the understanding garnered in that setting
can be used to think about polymers.

M. Doi, Introduction to Polymer Physics, Oxford University Press, Oxford:
England, 1995. and M. Doi and S. F. Edwards, The Theory of Polymer Dy-
namics, Oxford University Press, Oxford: England, 1986. These books give
the interested reader insights into the statistical physics of polymers.

S. Chandrasekhar, “Stochastic Problems in Physics and Astronomy”, Rev. Mod.
Phys. 15, 1 (1943). Chandrasekhar’s amazing article is a compendium of ele-
gant and useful results pertaining to random walks and more general ideas on
stochastic processes.
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P. Nelson, Biological Physics: Energy, Information, Life, W. H. Freeman
and Company, New York: New York, 2004. Nelson’s treatment of the elasticity
and force-extension properties of DNA is excellent.

D. Poland and H. A. Scheraga, Theory of helix-coil transitions in biopoly-
mers; statistical mechanical theory of order-disorder transitions in
biological macromolecules, Academic Press, New York: New York, 1970.
This book illustrates the use of simple lattice models like that we used for DNA
melting applied also to problems in protein folding.

P. G. de Gennes, Scaling Concepts in Polymer Physics, Cornell University
Press, Ithaca: New York, 1979. One of the great classics in the field of polymer
physics. de Gennes’ approach to intuitive models and simple arguments should
inspire the next generation of physical biologists.

A. Fiebig, K. Keren and J.A. Theriot, “Fine-scale time-lapse analysis of the
biphasic, dynamic behaviour of the two Vibrio cholerae chromosomes”, Molec-
ular Microbiology, 60, 1164 (2006). An interesting example of the experimental
study of chromosome geography.

K. A. Dill, S. Bromberg, K. Yue, K. M. Fiebig, D. P. Yee, P. D. Thomas and
H. S. Chan, “Principles of protein folding - A perspective from simple exact
models”, Protein Sci., 4, 561 (1995) and K. Dill, “Polymer principles and pro-
tein folding”, Protein Sci., 8, 1166 (1999). These articles give many interesting
insights into the use of lattice models and reduced alphabet amino acid reper-
toires to examine protein folding.

M. H. Hecht, A. Das, A. Go, L. H. Bradley and Y. Wei, “De novo proteins
from designed combinatorial libraries”, Protein Sci., 13, 1711 (2004). This very
interesting review describes the use of the HP model in carrying out protein
design.

K. Rippe, “Making contacts on a nucleic acid polymer”, Trends Biochem. Sci.
26, 733 (2001). This article demonstrates some of the interesting ways that
polymer physics can be used to study biological problems pertaining to chro-
mosome structure and organization.
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