Lectures /7, 8, 9

» Paul Hansma: Development of AFMs to monitor individual protein
molecules, in liquids (1990-2000)

"For pioneering contributions to the development of biological scanning probe
microscopy and for the molecular resolution imaging of biological molecules in
aqueous solutions.” (2000)

 Carlos Bustamante: Study of DNA, RNA, and protein molecular
mechanics (1990-2000)

"For his pioneering work in single molecule biophysics and the elucidation of the
fundamental physics principles underlying the mechanical properties and forces
involved in DNA replication and transcription.” (2002)

» Steven M. Block: Optical tweezers, molecular motors (kinesin, RNA
polymerase) (1990-2000)

"For his originality in the direct measurement of forces and motions in single
biomolecular complexes undergoing the nucleoside triphosphate hydrolysis
reactions that drive intracellular transport, cell motility, and DNA and RNA
replication.” (2008)




Guiding questions

 Pay attention to the sources, their attributes and “genre”

* What was the scientific breakthrough?

« Can you identify a key insight(s) needed for the breakthrough?

« How do the findings align with or challenge existing models?

« Can you put this work in the context of others in the course? Compare/contrast.

* What are some potential implications of their findings?
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Atomic force microscope

LAUREATES AND PRIZES / 2016 KAVLI PRIZE IN NANOSCIENCE

2016 KAVLI
PRIZE IN

NANOSCIENCE

History

Gerd Binnig Christoph Gerber Calvin Quate
Former Member of IBM Zurich Research Stanford University, USA
Laboratory, Switzerland

University of Basel, Switzerland

https://www.kavliprize.org/prizes/nanoscience/2016
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State of the art

Atomic Force Microscope

G. Binnig, C. F. Quate, and Ch. Gerber
Phys. Rev. Lett. 56, 930 - Published 3 March 1986
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FIG. 2. Experimental setup. The lever is not to scale in
(a). Its dimensions are given in (b). The STM and AFM
piezoelectric drives are facing each other, sandwiching the
diamond tip that is glued to the lever.

Despite its immense potential, the STM only works on
conductive samples. Gerd Binnig came up with an idea to
modify it and create an instrument that would provide
images of all types of sample, conductive or insulating, and
in 1985 filed a patent for an instrument that he called the
atomic force microscope (AFM). The ingenious modification
was to place a conductive cantilever, terminated by a tip,
just under the tip of an STM. The current between the
cantilever and the STM tip would therefore vary with the
vertical movement of the cantilever. By scanning the
cantilever over the sample’s surface, the vertical movement
of the cantilever, hence the profile of the sample, could be
recorded by monitoring the changes in current.

The Atomic Force Microscope (AFM) can measure small
forces in air, for conductors and non-conductors, but it
can’t work for samples in aqueous solution
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Paul Hansma

Imaging Crystals, Polymers, and Processes in Water
with the Atomic Force Microscope

RECH F_QUATE NN ANSMA, AND P K. HANSMA  Authors Info & Affiliations

SCIENCE - 24

The AFM now works in agueous solutions,
opening the technique to the investigation
of biological materials.
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Fig. 1. In this sche-
matic diagram of our
AFM, laser light is
focused on a cantile-
ver and bounces off |\
toward a photodiode |||
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flection of the canti- xyz Translator
lever by sensing the
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constant, which is ac- 2 g
complished by mov-

ing the sample up and down with the z-axis of the
piezoclectric translator as the sample is scanned
underneath it with the x- and y-axes. An optional
small cell formed by the sample and a microscope
cover glass can be filled with water to image
samples in water.
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Impact
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is a large modular protein composed of 244 repeats of Ig-like and fibronectin-like domains (inset). These
SCIENCE - 26 Fe ; DOl 10.1126/science.275.5304.129° - domains are 89 to 100 amino acids long. Each domain folds into a seven-stranded beta-barrel. The sawtooth

pattern observed while stretching titin segments is consistent with the sequential unfolding of individual titin
domains.
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History

https://www.aip.org/history-programs/niels-bohr-library/oral-histories/45465

Paul Hansma (36 min)

9:45-26:50 Bachelor degree, New College in Florida - PhD, UC Berkeley

29:24 - 32:26 UC Berkeley - moving to UC Santa Barbara

33:28 - 36:40 Do every experiment as poorly as possible

38:29 - 47:52 Finding research area that fit. Electron tunnelling -> surface science -> STM -> AFM -> liquid AFM
bio collaborations

patents ($10-20 M)

1:09:34 — 1:12:13 applications (+ EPFL Prof. Fantner)

bone mechanics

chronic pain


https://www.aip.org/history-programs/niels-bohr-library/oral-histories/45465
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Last time:

Photodetector 3 Laser

Cantilever

Silicon nitride tip

Multi-modular

protein Piezoelectric
@ J positioner
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AFM cantilever probes by moving its tip
along surface, or pulling on a protein
Cantilever movement is detected with a
focused laser beam that refracts into a
photodetector

The deflection of the cantilever deflects
the laser correspondingly and can map
the surface

In single molecule force spectroscopy,
the cantilever is pressed against a layer
of proteins attached to a substrate, the
tip adsorbs a single protein molecule,
which is then extended.

Extension of the molecule by retraction
of the piezoelectric positioner results in
deflection of the cantilever.
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