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Lecture content and schedule
• Chapter 1: Introduction (galaxy definition, astronomical 

scales, observable quantities — repetition of Astro-I) 

• Chapter 2: Brief review on stars

• Chapter 3: Radiation processes in galaxies and telescopes; 

• Chapter 4: The Milky Way

• Chapter 5: The world of galaxies I

• Chapter 6: The world of galaxies II

• Chapter 7: Black holes and active galactic nuclei

• Chapter 8: Galaxies and their environment; 

• Chapter 9: High-redshift galaxies

• Chapter 10: 


• Cosmology in a nutshell; Linear structure formation in 
the early Universe


• Chapter 11: 

• Dark matter and the large-scale structure 

• Cosmological N-body simulations of dark matter


• Chapter 12: Populating dark matter halos with baryons: 
Semi-empirical & semi-analytical models 


• Chapter 13: Modelling the evolution of gas in galaxies: 
Hydrodynamics


• Chapter 14: Gas cooling/heating and star formation

• Chapter 15: Stellar feedback processes

• Chapter 16: Black hole growth & AGN feedback processes

• Chapter 17: Modern simulations & future prospects

Part I:

Observational 

basics & facts of 
galaxies


first 7 lectures

Part II:

Theory & models 

of

galaxy evolution 

processes

second 7 lectures}

}



Outline of this lecture

•Why hydrodynamics?

•Eulerian methods/mesh codes
•Advection schemes
•Riemann problems
•Adaptive mesh refinement

•Lagrangian methods/SPH codes
•SPH & Equations of motions
•Modern SPH: Density-entropy formulation

•“Combined” methods: Moving-mesh scheme
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The importance of modelling gas
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• Everything we can observed/see is gas or is made from gas

• Need to follow gas dynamics

• To form galaxies and stars in a 
spatially resolved fashion

• To study the interstellar,                                                 
intergalactic & intracluster                                            
medium in 3D

• …e.g. to compare images of 
simulated with observed 
galaxies 



What is fluid/hydrodynamics ?
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•Study of the behaviour of fluids—liquids and gases—
and their interactions via external forces.

•Focus on understanding the macroscopic properties of 
fluids, such as velocity, pressure, density, and 
temperature.

•Approximation that the individual gas/fluid elements 
are treated collectively as a continuous medium with 
well-defined macroscopic properties. 

•Founded on the principles of conservation of mass, 
momentum, and energy —> the total mass, total 
momentum, and total energy of a fluid system are 
constant —> hydrodynamic equations

•Collisional Nature: gas particles in galaxies can interact 
collisions, pressure forces, and radiative processes. —> 
energy dissipation, mass redistribution, and shocks



• Several advantages compared to semi-analytics: 

• Interaction between DM and baryons is taken into account 
(without relying on approximations like adiabatic contraction)

• Dynamics of the diffuse cooling gas is captured in full generality 
(no spherical symmetry or quasi-static evolution)

• Once some sub-resolution schemes for feedback are adopted, 
hydro-sims can treat the subsequent evolution of the 
supernovae/AGN-driven winds fully self-consistently 

• Automatically account for morphological transitions during 
mergers, environmental processes etc.

• Hydrodynamics suitable for such complex problems, but there is no 
perfect numerical recipe for all hydrodynamic problems

• Depending on the problem of investigation, one may also include 
different other physics (see e.g. Springel+10) like

• radiation-hydrodynamics (accounting for the interaction of 
photons with the gas)

• magneto-hydrodynamics (accounting for the interaction of 
magnetic fields with the gas) and cosmic rays

Advantages of hydrodynamic approach



Eulerian versus Lagrangian methods
Eulerian/grid methods

discretise space
finite-volume scheme

Moving mesh

discretise space
finite-volume scheme

Lagrangian/SPH methods

discretise mass

use a grid fixed in
space uses an unstructured 

mesh moving with the flow

use particles for the 
gas (like in N-body) 

which move with the 
flow

Flow through fixed 
cell

Fixed element moving 
with flow

Flow through cell 
moving with flow



Outline of this lecture
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•Why hydrodynamics?

•Eulerian methods/mesh codes
•Advection schemes
•Riemann problems
•Adaptive mesh refinement

•Lagrangian methods/SPH codes
•SPH & Equations of motions
•Modern SPH: Density-entropy formulation

•Combined methods: Moving-mesh scheme



The hydrodynamic equations

•Eulerian/Grid-based methods are based on the fluid-dynamical, so 
called Euler equations

•These equations are expressed in terms of conserved quantities:
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The Euler equations
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• The equations of hydrodynamics can be written in terms of 
conserved quantities
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•Continuity equation, mass 
conservation

•Momentum equation,  
momentum conservation

•First law of thermodyna-
mics, energy conservation

where e = internal energy per unit mass

•Equation of state for an 
ideal, monoatomic gas 
with the polytropic index 
𝛾 = 5/3
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Basic methodology of a grid code
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⇢, ~u, P• Primitive variables:

• Conservative variables, density, momentum                
density and total energy density q = (⇢, ⇢~u, ⇢e)

• Standard approach: divide space into grid cells 
and store the cell-averaged conservative 
quantities at all the grid points

• Use re-construction schemes, which can take 
several neighbouring cells into account to 
reconstruct the field/distribution of any 
variable

• Advection: solve hydro-equations by computing 
the flux of mass, momentum and energy across 
grid cell boundaries/contact discontinuities, i.e. 
solve Riemann problem

• Calculate new cell-averaged conservative 
quantities and do re-constructions etc…

Advection on a grid

Ewald Puchwein Cosmic Structure formation on Supercomputers (and laptops) - Lecture 3 28/10/2014
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Figure 4.2. Illustration of the piecewise linear advection algorithm. The slope is chosen ac-
cording to Lax-Wendroff’s method.

and similar for fi+1/2(t). The difference is:

〈fi+1/2(t)〉tn+1
tn − 〈fi−1/2(t)〉tn+1

tn = u(qn
i − qn

i−1) +
1

2
u(σn

i − σn
i−1)(∆x − u∆t) (4.20)

Using Eq. (4.10) we then obtain the update of the state after one time step:

qn+1
i = qn

i −
u∆t

∆x
(qn

i − qn
i−1) −

u∆t

∆x

1

2
(σn

i − σn
i−1)(∆x − u∆t) (4.21)

where we defined fn+1/2
i+1/2 ≡ 〈fi+1/2(t)〉tn+1

tn . Eq. (4.21) is the update of the state for a flux-
conserving piecewise linear scheme (assuming that the grid spacing is constant). This is the
higher-order version of the donor-cell algorithm. Note that it is identical to donor-cell if the
slopes are chosen to be zero. Note also that since we chose the grid to be constantly spaced and
the velocity to be globally constant, the algorithm is like an upwind scheme with a correction
term.

The question is now: how shall we choose the slope σn
i of the linear function? The idea

behind the piecewise linear scheme is that one uses the states at adjacent grid points in some
reasonable way. There are three obvious methods:

Centered slope: σn
i =

qn
i+1−qn

i−1

2∆x (Fromm’s method) (4.22)

Upwind slope: σn
i =

qn
i −qn

i−1

∆x (Beam-Warming method) (4.23)

Downwind slope: σn
i =

qn
i+1−qn

i

∆x (Lax-Wendroff method) (4.24)

All these choices result in second-order accurate methods.
→ Exercise: Prove that the piecewise linear scheme with a downwind slope indeed produces

the Lax-Wendroff scheme of Eq. (3.96) in Chapter 3.

image credit: C.P. Dullemond

i-1 i

i-1/2
What should we use for 
the slope (for u>0)?
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∆t ∝ 1/
√
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∂ρ

∂t
+∇ · (ρu) = 0 (23)

∂(ρu)

∂t
+∇ · (ρuu) +∇P = 0 (24)

∂ρetot
∂t

+∇ · ((ρetot + P )u) = 0 (25)

etot = e+
u2

2
(26)

P = (γ − 1)ρe (27)

∂ρ

∂t
+∇ · (ρu) = 0 (28)

∂(ρu)

∂t
+∇ · (ρuu) +∇P = 0 (29)

∂ρetot
∂t

+∇ · ((ρetot + P )u) = 0 (30)

fi−1/2 = qi−1u (31)

fi−1/2 =
1

2
ui−1/2

[

(1 + θi−1/2)qi−1 + (1− θi−1/2)qi
]

(32)

θi−1/2 = sgn(ui−1/2) (33)

qaverage,i−1/2 = qi−1 + σi−1

(

∆x

2
−

u∆t

2

)

(34)

fi−1/2 = qaverage,i−1/2u (35)

σi−1 =
qi − qi−1

∆x
(36)

2

Lax-Wendroff (downwind)

Reconstruct

Evolve

Average

Advection on a grid
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• update conserved quantities


• simplest method: donor-cell algorithm


• or in general


where


image credit: C.P. Dullemond
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Figure 4.1. Illustration of the piecewise constant (donor-cell) advection algorithm.

Since we (by definition of the fact that we solve a numerical problem) do not know exactly what
this average state is, it is the task of the algorithm to provide a recipe that estimates this as well
as possible. In the two examples below we shall describe two such algorithms.

4.2 Donor-cell advection
The simplest flux conserving scheme is the donor-cell scheme. In this scheme the “average
interface state” is simply:

q̃n+1/2
i+1/2 =

{

qn
i for ui+1/2 > 0

qn
i+1 for ui+1/2 < 0

(4.14)

This means that the donor-cell interface flux is:

fn+1/2
i+1/2 =

{

ui+1/2 qn
i for ui+1/2 > 0

ui+1/2 qn
i+1 for ui+1/2 < 0

(4.15)

The physical interpretation of this method is the following. One assumes that the density is
constant within each cell. We then let the material flow through the cell interfaces, from left to
right for ui+1/2 > 0. Since the density to the left of the cell interface is constant, and since the
CFL condition makes sure that the flow is no further than 1 grid cell spacing at maximum, we
know that for the whole time between time tn and tn+1 the flux through the cell interface (which
is q̃i+1/2 ui+1/2) is constant, and is equal to Eq. (4.15). Once the time step if finished, the state
in each cell has the form of a step function (Fig. 4.1). To get back to the original sub-grid model
we need to average the quantity q(x) out over each cell, to obtain the new qn+1

i . This is what
happens in the donor-cell algorithm.

This method is very strongly similar to the upstream differencing scheme of Section 3.3.2.
The difference comes to light mainly when either the velocity u is space-dependent or the grid
xi is non-constantly spaced (see Section 4.1.2). The Donor-Cell algorithm is easily implemented
but, as the upstream differencing method, it is very diffusive.
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q … conserved quantity

A(q) != const (57)

λ− = u−

√

γP

ρ
= u− cs (58)

λ0 = u (59)

λ+ = u+

√

γP

ρ
= u+ cs (60)

q(x, t = t0) = qL forx < x0 (61)

q(x, t = t0) = qR forx > x0 (62)

(63)

q(x, t) = q(x − x0/(t− t0)) (64)

∂tqk = ∂xfk → qn+1/2
k,i−1/2,L = qnk,i−1/2,L +

∆t

2

fk(qn
i−1/2,L)− fK(qn

i−3/2,R)

∆x

qnk,i−1/2,R (65)

qnk,i−3/2,R (66)

qn+1
i = qni +

∆t

∆x
(fn+1/2

i−1/2 − fn+1/2
i+1/2 ) (67)
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• With suitable advection scheme, we can solve a simple test case

• Hydrodynamic equations are, however, coupled —> No simple 
global decomposition possible

• To finally fully solve the hydro equations at each cell interface (and 
to capture shocks and contact discontinuities), we have to solve 
the “Riemann” problem

• Specific example for Riemann problem: shock tube

How to solve coupled hydro equations?

11

Characteristics
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Riemann problems
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• What about shocks and contact discontinuities? 


➡ eigensystems differ significantly on both sides


• Let’s look at the full Riemann problem:


• e.g. for uL=uR=0


A(q) != const (57)

λ− = u−

√

γP

ρ
= u− cs (58)

λ0 = u (59)

λ+ = u+

√

γP

ρ
= u+ cs (60)

q(x, t = t0) = qL forx < x0 (61)

q(x, t = t0) = qR forx > x0 (62)

(63)

q(x, t) = q(x − x0/(t− t0)) (64)

4



• There exists an exact solution for the general Riemann 
problem, can be found in textbooks (e.g. Courant & 
Friedrichs ’48)

• One can show that solutions are self-similar, i.e. they 
only depend on 

• Very time-consuming

• Various approximate solutions, e.g. 

• Roe’s linearised Riemann solver (Powell+99)

• HLLE method (Harten, Lax, van Leer and Einfeldt)

• HLLC method (Harten-Lax-van Leer-Contact)

• A more detailed description of these methods is outside 
the scope of this lecture…

• They all have their pro’s and con’s…

Riemann solvers
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q(x, t) = q(x� x0/(t� t0))



Grid codes in 3D

• So far, discussed everything in 1D, but galaxies are 3D

• Directionally split schemes

• Apply 1D hydro-solver alternately along the different 
directions

• Less memory needed

• But spherical symmetry is less well preserved

• Unsplit schemes

• Compute fluxes for all interfaces of cells

• Update cell values once per time step

• E.g. used in Ramses

• (Self-)gravity (hydro in combination with DM-N-body) can be 
simply added in the momentum equation

13



Success and Limitations

• Main strength is the accurate hydro, 

• Automatically accounts for contact 
discontinuities, shocks etc. 

• One major limitation of grid codes is their 
spatial resolution when we use a fixed grid 
size, increasing the grid size globally is 
computationally very expensive

• Advection errors: somewhat diffusive (no 
exact energy conservation) —> unphysical 
forces

• No exact conservation of angular momentum

• No Galilean invariance (Galilean 
transformation to a different inertial system)

14



Adaptive mesh refinement

• A good possibility to overcome the limitation in spatial resolution 
is the adaptive mesh refinement technique:

•  the local resolution (i.e. number of grid cells) is adapted 
according to refinement criteria (typically high density, more 
cells at high density regions)

15

Adaptive mesh refinement

29 Numerical Cosmology & Galaxy Formation 6 25.05.2016

• In AMR the local resolution is adapted according to refinement 

criteria (usually high density)
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A test case for AMR: Sedov explosion



Summary: Eulerian methods on a grid
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•Gas flow through fixed cells/grids

•Basic variables: density, momentum density and energy 
density

•Their evolution described by Euler equations —> conservation 
of mass, momentum and energy

•Transport of fluid flow through cells: reconstruction — 
advection (solving Riemann problem) — cell averaging

•Variable local resolution —> adaptive mesh refinement

•Different advantages and disadvantages…



Outline of this lecture
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•Why hydrodynamics?

•Eulerian methods/mesh codes
•Advection schemes
•Riemann problems
•Adaptive mesh refinement

•Lagrangian methods/SPH codes
•SPH & Equations of motions
•Modern SPH: Density-entropy formulation

•Combined methods: Moving-mesh scheme



The hydro-equations in Lagrangian form
•Follow a gas element along its path and see how it changes its 
direction of motion, its density & its pressure…

•To derive the corresponding  Lagrangian form of the hydro equations, 
we need do introduce the co-moving convective derivative Dt as

19

The Euler equations
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• The equations of hydrodynamics can be written in terms of 
conserved quantities

vn+1/2 = vn + an∆t/2 (19)

xn+1 = xn + vn+1/2∆t (20)
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+∇ · (ρuu) +∇P = 0 (24)

∂ρetot
∂t
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etot = e+
u2

2
(26)

2

mass conservation

momentum conservation

energy conservation
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equation of state

with                              and      =  internal energy per unit mass
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•Continuity equation, a gas parcel 
changes its density when the gas 
motion converges

•Momentum equation, a gas parcel 
will be accelerated due to a force which 
is the pressure gradient (+ grav. pot.)

•First law of thermodynamics, 
the thermal energy of a gas parcel 
changes only as a result of adiabatic 
compression/expansion

where e = thermal energy per unit mass
•Equation of state for an 
ideal, monoatomic gas with 
the polytropic index 𝛾 = 5/3

d~u

dt
= �

�!rP

⇢
��!r�

d⇢

dt
+ ⇢

�!r · ~u = 0

de

dt
= �P

⇢

�!r · ~u

d

dt
=

@

@t
+ ~u ·�!r•With that we can re-write the hydro-equations 

for an inviscous fluid:

‣Exercise: 
conversion for 
momentum and 
energy equation





Smoothed particle hydrodynamics

• Idea: Treat a hydrodynamic fluid in a completely mesh-free fashion 
—> Use a set of sampling particles to represent the fluid

• Technique to approximate the continuum dynamics of fluids 
through the use of particles which can be viewed as interpolation 
points

• The density of a particle in SPH is given by smoothing                
over nearest neighbour particle masses within a “Kernel”

• Kernel depends on inter-particle distance r=|xi-xj| and on 
“smoothing length” h

• Most commonly the cubic spline Kernel is used

21

h

W (r, h) =
8

⇡h3{1� 6(r/h)2 + 6(r/h)3

2(1� r/h)3

0

0  r/h  1/2

1/2  r/h  1
1 < r/h

⇢(~x) =
X

j

mW (~x� ~xj , h)



• For any field F, we can define a smoothed version

• The derivative of field F is given by

Smoothed particle hydrodynamics

22

Fs(~x) =

Z
d~xF (~x0)W (~x� ~x0, h) =

X

j

mj

⇢j
FjW (~x� ~xj , h)
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Meshless Godunov methods
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• In principle, one could take these equations for F (replace with P or 
u*), and insert these expressions into the Lagrangian fluid equations to 
get the equations of motions.

�!rFs(~x) =
X

j

mj

⇢j
Fj

�!rW (~x� ~xj , h)

Fs(~x) =

Z
d~xF (~x0)W (~x� ~x0, h) =

X

j

mj

⇢j
FjW (~x� ~xj , h)

*Note that bold print means vector!

• Define constraints for the smoothing length hi, e.g. requiring that 
the Kernel volume contains a constant mass for the estimated 
density ⇢ih

3
i = const. / Mkernel = Nngb ⇤mi



• In essence,  we have transformed a complicated system of partial 
differential equations into a much simpler set of ordinary differential 
equations, we only have to solve one equation

• The continuity equation does not have to be evolved explicitly: density 
can be, at any point, calculated from the particle positions and masses 

• The thermal energy and pressure can be derived from the density

• In these forms, the velocity (and thus, the positions dr/dt = u) of SPH 
particles can be integrated forward in time as in N-body simulations 
(e.g. using the leap-frog scheme)

Entropy conserving equation of motion

• After some algebra, as demonstrated by Springel & Hernquist 2002, 
we obtain the EoM

d~u

dt
= �

X

j

mj

 
fj

Pj

⇢2j

�!rW (~xi � ~xj , hj) + fi
Pi

⇢2i

�!rW (~xi � ~xj , hi)

!

• where the coefficients fi are defined as
fi =

✓
1 +

hi

3⇢i

@⇢i
@hi

◆



Advantages of classic SPH
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Advantages:

• Numerically rather robust

• Excellent conservation properties

• Lagrangian nature: trace flow and galilean invariant

• Good spatial resolution in high-density regions due to adaptive 
nature in density

• Couples straight forward to N-body gravity methods

• Intuitive for including sub-resolution physics



Problems of classic SPH
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Trad. SPH “Expected” Trad. SPH

Short-comings:
• Poor description of fluid-mixing: dynamical instabilities/contact 

discontinuities (Rayleigh-Taylor, Kelvin-Helmholtz) —> modern SPH 
(smoothing over Pressure)

• Surface tension error: cold Kauffmann “blobs” form, not destroyable 
—> modern SPH

• Slow numerical convergence

• Compromised accuracy when modelling ISM and galaxy formation

Classic Pressure-entropy



Modern SPH Hydrotests

Kelvin-Helmholtz instabilities

‣How does the 
modern SPH 
algorithm affect 
galaxy formation?



Summary: Smoothed Particle Hydro
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•Gas flow described by particles moving with the flow

•Their evolution described by hydro equations in Langragian 
form —> conservation of mass, momentum and energy

•Particles are interpolation points, Kernel-weighted density, 
pressure etc.

•Key quantity: smoothing length, related to the Kernel volume

•Solve one equation of motion for u (integrate), and change 
hydro properties of gas particle (r, u, e) accordingly 

•Modern SPH solves problems of contact discontinuities/fluid 
mixing (by smoothing over pressure/entropy instead of 
density )

•Automatic refinement on density/pressure, exactly Galilean 
invariant, conserves angular momentum (& entropy) exactly

•Somewhat less accurate hydro (contact disc.), slower 
convergence, but largely alleviated in modern SPH



Outline of this lecture
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•Why hydrodynamics?

•Eulerian methods/mesh codes
•Advection schemes
•Riemann problems
•Adaptive mesh refinement

•Lagrangian methods/SPH codes
•SPH & Equations of motions
•Modern SPH: Density-entropy formulation

•“Combined methods”: Moving-mesh scheme



Moving mesh hydrodynamics

• To combine advantages of both Lagrangian and Eulerian codes: 
“moving mesh scheme”, e.g. Arepo (Springel+10)

• Transform a set of points into an unstructured mesh using a 
Voronoi tessellation (cell size dependent on density, each particle 
represents a cell)

• Cells/points are allowed to move with the fluid like in a Lagrangian 
scheme

• Hydro-solver: based on a second-order                                              
unsplit Godunov scheme with an                                                   
exact Riemann solver

• Transform updated cell average quantities                                                         
back to particle scheme and move “particles”                                          
i.e. grid cells

•Galilean invariant, automatic refinement, good in 
capturing shocks and contact discontinuities



Moving mesh hydrodynamics
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Moving mesh hydrodynamics
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Moving mesh hydrodynamics
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• Thanks to automatic refinement in Arepo, better performance for 
Rayleigh-Taylor instabilities

Moving mesh

Fixed mesh



Summary: Eulerian vs Lagrangian methods
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Eulerian methods
discretise space

finite-volume scheme

Moving mesh
discretise space

finite-volume scheme

Lagrangian methods
discretise mass

use a grid fixed in
space

uses an unstructured 
mesh moving with the flow

use particles for the gas 
(like in N-body) which 

move with the flow

Pro

Con

Accurate hydro

Not galilean invariant
No conservation of 
angular momentum

Diffusive
Limited spatial resolution

alleviated in AMR

Accurate hydro, automatic 
refinement on density, exactly

Galilean invariant

Overhead ~30% for mesh
construction

Automatic refinement on 
density, exactly Galilean 

invariant, conserves angular 
momentum (& entropy)

exactly
Somewhat less accurate 

hydro (contact disc.),
slower convergence

But alleviated in modern SPH



Famous example simulation: Illustris
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• 2015: EAGLE simulation, 100Mpc box



After…
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having discussed these different and complex 
hydrodynamic schemes, 

how relevant are they compared to other 
models for baryons (SF, feedback etc.)?



Relevance of hydro vs baryon physics
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•Results from 
different 
hydrodynamic codes 
and feedback 
implementations 
show a great 
diversity

•Changes in the 
feedback model are 
more dramatic than 
from different 
hydrodynamic 
schemes!

Aquila comparison project (Scannapieco et al.)



Summary -- Chapter 13
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•The	evolution	of	gas	in	the	Universe	can	be	most	accurately	
modelled	via	hydrodynamic	simulations	accounting	for	
(self-)gravity


•Individual	gas	particles/cells	are	treated	collectively	as	a	
continuous	medium	with	well-defined	macroscopic	properties	
(density,	pressure,	velocity,	&	energy)


•System	described	by	Euler	equations	(mass,	momentum	and	
energy	conservation)	in	Eulerian	and	Lagrangian	forms


•Different	numerical	schemes	exist	to	solve	these	equations	


—>	adaptive	mesh,	SPH,	moving	mesh	[mesh-less]	codes


—>	each	of	them	has	their	advantages	and	disadvantages,	
but	moving-mesh	codes	combine	advantages



Up next…
• Chapter 1: Introduction (galaxy definition, astronomical 

scales, observable quantities — repetition of Astro-I) 

• Chapter 2: Brief review on stars

• Chapter 3: Radiation processes in galaxies and telescopes; 

• Chapter 4: The Milky Way

• Chapter 5: The world of galaxies I

• Chapter 6: The world of galaxies II

• Chapter 7: Black holes and active galactic nuclei

• Chapter 8: Galaxies and their environment; 

• Chapter 9: High-redshift galaxies

• Chapter 10: 


• Cosmology in a nutshell; Linear structure formation in 
the early Universe


• Chapter 11: 

• Dark matter and the large-scale structure 

• Cosmological N-body simulations of dark matter


• Chapter 12: Populating dark matter halos with baryons: 
Semi-empirical & semi-analytical models 


• Chapter 13: Modelling the evolution of gas in galaxies: 
Hydrodynamics


• Chapter 14: Gas cooling/heating and star formation

• Chapter 15: Stellar feedback processes

• Chapter 16: Black hole growth & AGN feedback processes

• Chapter 17: Modern simulations & future prospects

Part I:

Observational 

basics & facts of 
galaxies


first 7 lectures

Part II:

Theory & models 

of

galaxy evolution 

processes

second 7 lectures}
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