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Lecture content and schedule
Chapter 1: Introduction (galaxy definition, astronomical

scales, observable quantities — repetition of Astro-I)

Chapter 2: Brief review on stars

Chapter 3: Radiation processes in galaxies and telescopes; Part |:

Chapter 4: The Milky Way :
Chapter 5: The world of galaxies | Observatlonal

Chapter 6: The world of galaxies I basics & facts of
Chapter 7: Black.holes and gctweI galactic nuclei galaxies
Chapter 8: Galaxies and their environment; ,

Chapter 9: High-redshift galaxies fII’St I4 IeCtU res
Chapter 10:

e Cosmology in a nutshell; Linear structure formation in
the early Universe

Chapter 11: ]

* Dark matter and the large-scale structure Part ”

« Cosmological N-body simulations of dark matter Theory & models
Cha,t_)ter 12_:. Populating dark matter halos with baryons: Of
Semi-empirical & semi-analytical models
Chapter 13: Modelling the evolution of gas in galaxies: ga|axy evolution
Hydrodynamics
Chapter 14: Gas cooling/heating and star formation processes

Chapter 15: Stellar feedback processes second 7 lectures
Chapter 16: Black hole growth & AGN feedback processes

Chapter 17: Modern simulations & future prospects



Outline of this lecture

"' ) K . -~ ‘"

*Cosmology in a nutshell
*Motivation
* The cosmological principle
* Robertson-Walker Metric and Friedmann equation
* The age of the Universe

e Cosmological parameters
* The inhomogeneous Universe

* Linear perturbation theory
* Density fluctuations, power spectrum & transfer function
* Non-linear growth: The spherical collapse model

* Generating initial conditions for cosmological simulations
*Particles in a simulation box and in zoom-in simulations
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What is cosmology!?

-

® The study of the origin, overall structure,
composition, evolution and future of our Universe!

® Dedicated course to observational cosmology given
by Prof Kneib in the summer term

® |n this course: only very, very basics — needed to
describe the evolution of galaxies in our Universe



Evolution of the Universe in a nutshell
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Quantum fluctuations+inflation (period of exponential expansion) gave

rise to density inhomogeneities, in agreement with CMB

e |998: Perlmutter;, Schmidt & Riess:
Universe is expanding with increasing

N & . . . .
& 5 velpcity (accelerated) investigating
‘9\\ \3@ © %(7?, e A
s S S gh‘é SNla: SNIla were farer away than
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https://www.esa.int/ESA_Multimedia/lmages/2013/03/Planck_history _of Universe



Expansion of the Universe

oy : -

* Cosmological redshift: direct consequence of Hubble expansion, we can derive
a connection to the scale factor a

Ao — Ae a(t) = R(t)/R(to)
a(z=10) =1

Zcos — X 1+ Zcos — 1/@

* [998: Perlmutter,
Schmidt & Riess:
Universe is expanding
with increasing
velocity (accelerated)
investigating the SNIa:

.’Oo
» s

e Present .
= A\, ‘ &
* SNla were farer away & .
than expectedina EdS ¢ Acce,eratih f
Universe meaning the 0§ expansion . <
expansion of the = %, S
universe must have 72 Slowing >
been accelerated oy expansion
e Attributed to “dark Bads

’”»
energy Expanding universe



Cosmic microwave background

* With time, Universe expands, cools and density drops: photons
could propagate freely to “us” from a last scattering surface
(inheriting the blackbody spectrum) at ~380,000 after Big Bang

* Small temperature fluctuations (~10-3), fluctuations very smooth
* On large scales: Universe is very uniform

* We need theory to understand how initial small density fluctuations
emerged into the large-scale structure observed today

* For that, we need a cosmological back ground.



Cosmological principle
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e Cosmological principle: on sufficiently large scales, the
Universe is homogenous and isotropic

* the observed properties of the Universe are
isotropic, i.e. independent of direction

* our position is by no means preferred to any other

e the Universe is, thus, isotropic around all its points:it’s
homogeneous



Robertson - Walker m
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* Geometric properties of a homogeneous and isotropic and potentially non-
static universe are described by the 4D-space-time Robertson-VValker
metric, specified by the scale factor a(t) and the curvature k.

d 2
ds? = 2dt? — dI? = 2dt* — a2(t) [ ——— + r2dQ?
1 — kr?

what is a metric?

Spherical

specifies the distance between two points in

space k>0 Hyperbollc
depends on the geometry of the space It
what are some familiar examples? k=

MAPI20006

no change of coordinates can change one
metric into another
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From general relatlwty to cosmology

b : - *. R

* Cosmology is based on Einstein’s theory of general relativity according to
which the space-time geometry is determined by the matter distribution in the
Universe

two sentence General Relativity™®

* mass-energy tells space-time how to curve

* the curvature of space-time tells mass-energy
how to move

Einstein equation

curvature metric mass and energy

* due to John Wheeler




The dynamics of the Universe

* Dynamics of the space-time metric is reduced to dynamics of a(t)

* To obtain an expression for a(t) for any given k and matter/energy
content (being isotropic and homogeneous):

= Combination of Einstein field equation (GR) and the Robertson-
Walker metric (based on isotropy and homogeneity) results in the
Friedmann-Lemaitre equations

a 41 (G ) Ac? Spherical
— = (p+3P/c*) A |
a 3 3 - Hyperbolic
NG e
a ST G kCQ | ACQ s= [at
a 3 a 2 3 N SRR
* Energy conservation for Einstein equ. leads to a third useful “adiabatic”
equation
F: P\ a
- = — 1 + — _
p p) a



Hubble function and Critical density

* Hubble function H(t) is defined as the relative expansion rate:
a
H(t) ==, Hy= H(a =1) =100 h km/s/Mpc
a

* his the dimensionless Hubble parameter (historical origin since H
was long not known exactly)

* The critical density of the Universe is given by

3H*(t) 3H
pc(t) — e y PcO — pc(tO) — %

e If k =0 and A =0, this is the minimum density, under
which the Universe would collapse under its own gravity

12



Evolution of the Hubble function
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* Densities are often expressed in terms of critical densities, i.e. as
dimensionless matter/radiation density parameters

Pm T(t) Pm r(tO)
Qm/fr — / ; Q'rn/fr,O — Qm/r(tO) — /
pe(t) peo
* Dim.less density parameter for Lambda:
Ac? Ac?
A( ) 3H2(t)7 AO A( O) SHg

* Substituting these density parameters into the spatial Friedmann
equation yields the evolution of the Hubble fct H

QTO QmO kc?
H*(a) = H? ( e e~ Hg) — H2E(a)?

e Relative importance of (2’s change with time (radiation, matter and DE-

dominated phases)



Evolution of radiation, matter, DE den
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* Relative importance of 2’s change with time (radiation, matter and DE-
dominated phases)
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Age and size evolution of the Universe
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Dark Matter + Dark Energy
S affect the expansion of the universe
3—
2.l Qp Q, i
= 0.3 0.7
=
g 0.3 0.0
= 1.0 0.0 ® Einstein,de Sitpet
k= 2 L 5.0 0.0 -
Q
=
v
v
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=1 _
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0 | | | [
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Planck cosmology

e Combination of CMB, SNe and
clusters lead to accurate S
measurements of our
cosmological parameters

* Era of “precision cosmology” Dark Eneray
thanks to Planck measurements:

Qm =0.309 = Qdm + Qbar = 0.259 + 0.048 ~84% of all matter is dark

Qr=0.691 ~70% of the energy density is “dark”
Qr~ le-5
Q~0 Our Universe is spatially flat
h=0.678 The Hubble time is 13.8 Gyr
og = 0.823

We are living in a DARK Universe

16
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Dark energy
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what is the dark energy?

constant energy density in the vacuum of
space; acts as repulsive force, physical origin
and why its energy density is precisely tuned

* cosmological constant

class of theoretical models with a dynamic
. and evolving form of dark energy —> energy
¢ q ulintessence density varies over time and space; possibly

described by a scalar field (a new fundamental

° mod |f|ed g raVity attempt to explain the accelerated expansion

without invoking dark energy —> modify
Einstein's general relativity at cosmological
scales, altering the gravitational interactions on
large scales.




What is dark matter?
we don’t know what dark matter is, but we know what it must do
(and not do):

einteract via gravity in the same way as normal matter

enot interact via the strong or EM force

eit cannot radiate energy so it is dissipationless and collisionless

eCandidates:

— sterile neutrino (standard model)

—supersymmetric (SUSY) Lightest Supersymmetric Partner particle (LSP)
— e.g. neutralino (partner of photon, Z boson, or Higgs) — example of a
Weakly Interacting Massive Particle (WIMP)

—axions (symmetry breaking)

e mass of the dark matter particle largely determines how much
kinetic energy it has — more massive particles move more slowly

(C0|d) 18




Basics of cosmology — Summary

- rs T -

* Cosmological principle: on large scales, Universe is
homogeneous and isotropic

* Combining cosmological principle, Robertson-Walker
metric and GR results in the Friedmann equations, which
are describing the dynamics of the Universe

* Observations indicate that we are living in flat Universe
with ~30% of matter and 70% of dark energy

* Dark matter should interact via gravitational forces, not via
strong/el-mag force —> dissipation less and collision
less...

e |nitial (quantum) density fluctuations, which got (most
likely) amplified via inflation, grow further driven by gravity,
seeds of the present-day large-scale structure



Outline of this lecture
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*Cosmology in a nutshell
*Motivation
* The cosmological principle
* Robertson-Walker Metric and Friedmann equation
* The age of the Universe

* Cosmological parameters
* The inhomogeneous Universe

* Linear perturbation theory
* Density fluctuations, power spectrum & transfer function
* Non-linear growth:The spherical collapse model

* Generating initial conditions for cosmological simulations
*Particles in a simulation box and in zoom-in simulations

20



he inhomogeneous Universe
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* There are pronounced structures in the Universe from stars to
galaxy clusters (on comparably small scales) => How did they form!?

* |nitial density fluctuations (enlarged by inflation) and action of gravity
* To describe small density fluctuations in the linear regime, we can

use Newtonian perturbation theory for a self-gravitating fluid (for
simplicity no Lambda, for the non-linear evolution see lecture 7)

e Continuity equation op 5
(Mass cons.) o | ? - (pv) =0
e Euler equation oOvU . . ?P
(Mom. cons.) o - (U ?)U = ; ?CID

* Poisson equation ?2@ — 47 Gp

21



Linear perturbation theory

e Assume small perturbations p and v:
p(Z,t) = po(t) + 0p(Z,t) and v(Z,1) = vo(t) + 0v(Z, 1)

* Insert into continuity equation, neglect 2n-order terms:

O(pog + 0 . , .
e Ot 2 | ? - (poTo + dpto + pedv) =0
* Homogeneous quantities fulfil continuity equation as well
Jpo
;t —,00? Uo

* |nsert this into equation above results in:

0o
(‘%p Ty Vp+ poN - 6T+ 6pY Ty =0
* Define density contrast 0p

— — << | inlinear regime

Po

* We can re-write the equation to

D4b - VD+V-65=0



Linear perturbation theory

=N ' oS o

* Similarly, Euler and Poisson equations yield in: ?
00U 0P
Y (67 V)T + (T - V)0T = V6D
ot PO
V250 = 4G peD

* Now switch from X and Vv to co-moving coordinates r and U:

r=a-7 vo = ar 0U = u(= ar)
* ...with co-moving spatial and time derivatives of
ij > S AN, > — =7 - v'r
a Ot|, ~ 0t|. a

* With that, we can simplify the perturbation equations to

Vi

* Continuity equation %) _ — 0
a
S 5P Vb
* Euler equation ¢ + Hiy = Evarcisas!
a’/OO a Xercises.
* Poisson equation ?2&1) — 47TGpOa2@



Growth equation

T e
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* Combining the divergence of the Euler equation with time derivative
of the continuity and the Poisson equation yields in

0262@ Do analytic
CL2

calculations in
exercises!

D+ 2HD = (47TG,00@ |
where P = c2p

* “Growth equation”, decaying mode negligible after some time,
different solutions for different cosmologies

* In general solved by the growth function F(a):

D(r,a) =Do(r)F(a)

* By definition mean of the density contrast vanishes:

@@= (")~

24




Fourier decomposition of the density fi
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* In the linear regime (and in a flat Universe), expand perturbation
fields in some suitable mode functions, e.g. plane waves, and
perturbation field can be represented by its Fourier transform D’

N d°k Lo
@(r,t):/(zﬂ):g@’(k,t)e g

* With the Fourier transform we get growth equation in Fourier
space

a2

~ / ~/ / Cng
D'+ 2HD =23 | dnGpg

* Since the perturbation equation is linear in Fourier space, each
Fourier mode satisfies the growth equation separately, i.e. each
mode grows independently of all the others

25



Fourler decomposmon of the den5|ty Feld

GALACTIC DENSITY VARIATIONS

DENSITY VARIATIONS in the pregalactic universe followed a primordial plasma.) A small wave was superimposed on a
pattern that facilitated the formation of protogalaxies. The slightly larger wave, which was superimposed on an even larger
variations were composed of waves of various wavelengthsin  wave, and so on. Therefore, the highest density occurred over
a pattern that music connoisseurs will recognize as “pink the smallest regions. These regions collapsed first and became
noise.” (Indeed, they originated as sound waves in the the building blocks for larger structures. = —G.K. and F.v.d.B.

REGIONS THAT
COLLAPSE FIRST

DENSITY —>

POSITION ———

* Since the perturbation equation is linear in Fourier space, each
Fourier mode satisfies the growth equation separately, i.e. each
mode grows independently of all the others

26



Power spectrum

- y -~

* A convenient way to specify the cosmic density field is given by the
so called “power spectrum”, a probability distribution function for
different modes, defined by the variance of 2’, the density contrast

in Fourier space

P(k) = (|D'(k)[*)

e Statistical properties of density perturbations at different spatial
scales: P(k) characterizes the amplitude of these fluctuations at
different spatial scales, or equivalently, at different wavelengths or
wave numbers

27
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fourier space
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einflation predicts a primordial power spectrum P(k) ~
knthat is very close to scale free (n=1) and Gaussian
edeviates on small scales from today’s Universe




* Power spectrum has a
primordial component

PZ(k) = Ak" with n~|

predicted by inflation
theory

* and a “processed” one...

Roughness: P(k)

Power spectrum
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Power spectru

L

Wavelength A [h~! Mpec]
0 100

How do we get the observed P(k)? //h
;1000;—/4/‘ %
e Get P(k) from inflation with n~| bl
§ ®SDSS galaxies - S—kv
EE 3
Pi(k) = AE" Ep e
L. - koi:l/Mpc] 9
* Such a spectrum matches CMB constraints on large scales, but not on

smaller
* Many complex processes change Pi(k) before and during

recombination (linear regime) due to coupling of radiation and

matter
* Silk damping for baryons
* Free streaming damping for DM
* Different growth for DM and baryonic matter
= Can change the Power spectrum on smaller scales



Evolution of the Power spectrum

Primordial roughness Today' s roughness
= | [Galaxy cluste
3 alaxy clu 1 1\% |
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Position: x Position: x

Evolution of the power spectrum

spectral indices of these L |
two regimes as in r P kr 4l
observations.

e Merely by including these L Aeehr (00, -
effects of the transition r o ]
between a radiation- <[ . "° /\:
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dominated universe, the e £ | "™ i ]
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Power spectrum and transfer function

Ly o L. a

* To account for such processes before and during recombination, the
initial power spectrum is transferred to post-recombination time by

the Transfer function T(k) to compute a power spectrum at any later

time after to
P(k) = T*(k)P;(k)

* Transfer functions are calculated based on cosmological parameters, the
temperature of the CMB radiation and the mass of dark matter
particles (different for cold/warm/hot DM) etc.

* Absolute normalisation is not (yet) predicted by theory, thus
normalisation is taken from observed spectrum (CMB)

* Power spectrum and Transfer fct. can be computed using CAMB: http://
lambda.gsfc.nasa.gov/toolbox/tb_camb_form.cfm



http://lambda.gsfc.nasa.gov/toolbox/tb_camb_form.cfm
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Processed power spectrum
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[ Beyond Ilnear theory Spherlcl collapse

* Linear theory is strlctly restrlcted to small denS|ty perturbatlons W|th
D<<I| before and around recombination time.

* For larger density perturbations, let’s first consider a simple analytical,
non-linear model assuming spherical symmetry

-------
- "ee
.

* A spherical over-dense region

can be treated as a separate i } agoms
universe and its radius as a o e O
function of time is given by g A
solving the Friedmann’s

equations.

Spherical
Overdensity

* Should collapse under its own
gravity forming a bound,

=
t

virialised object turnaround virialize
* For a given mass, the spherical
overdensity can be related to * so that at turnaround:
the denSIty Of the unpertu rbEd psph/pbackground — (rbackground(tturn)/rsph(tturn))3

universe

3 — (31/4)* ~ 5.56 for Q, = 1

pSph/pbackground = (rbackground/l’sph) ,
5



The spherical collapse mo

e 5 o

del

* Assume system composed of DM: it cannot dissipate away its
energy —> potential energy is being converted into kinetic energy

* Energy conservation at the turnaround point:

Tvir -+ inr — Wturnaround

¢ Virial theorem:

27-vir inr — O,

* This implies:
inr — 2Wturnaround or Ivir = rturnaround/2

as W oc GM?/r.

* The density contrast in virial equilibrium becomes:

Avir — psph/pbackground — (rbackground(tvir)/rvir)3 Vll"lal mMass

— 187° ~ 178 for Q,,, = 1

36
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* This calculation can be easily repeated for any other cosmology,
the virial overdensity is always 100-200 p.it

= Pvlrﬁpcm

< 100

2 =

W

0 e 04 06 08
{2

1

* In reality, spherical overdensity doesn’t apply, and virialisation is
never complete, but these are useful guides to keep in mind
before turning to numerical simulations




Structure formation — summary
Quantum fluctuations thought to have been inflated to larger-
scale density fluctuations shortly after BB

Competition between pressure of expansion & attraction of
gravity

Over-densities become more overdense, under-densities
become more underdense

Early Universe: structure formation in the linear regime can be
described by Newtonian perturbation theory

Power spectrum: distribution of amplitude of density
fluctuation as a function of scales (often in Fourier space)

Transfer function: describes how density fluctuations in the
early universe evolve over time (e.g., Silk damping, Free
streaming etc.)

Beyond linearity: Eventually, in some places, gravity ‘wins’ and
a ‘gravitationally bound’ object forms (“dark matter halo”) —>
non-linear regime: simplest form: spherical collapse model;



Structure formation in the non-linear regime

,s" 3 - 4 .. .

® As the density perturbations become larger, the linear

approximation breaks down, and non-linear effects become
significant.

@ To study the later stages of structure formation and the
detailed properties of galaxies and clusters, more
sophisticated numerical simulations, such as N-body
simulations (for dark matter), are required.

@ For simplicity, consider only dark matter for now (as it
dominates the matter content, and thus, structure formation)

CMB




Outline of this lectur
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*Cosmology in a nutshell
*Motivation
* The cosmological principle
* Robertson-Walker Metric and Friedmann equation
* The age of the Universe

* Cosmological parameters
* The inhomogeneous Universe

* Linear perturbation theory
* Density fluctuations, power spectrum & transfer function
* Non-linear growth: The spherical collapse model

* Generating initial conditions for cosmological simulations

40



Structure formatlon in the non- Imear reglme

N - body codes

erepresent matter by particles

erepresent the Universe by a (usually) periodic ‘box’
eexpanding space-time

eif we know initial conditions (positions & velocities), we can
solve Newton'’s equations for each particle —> density field

|. Generation of 2. Running the 3. Creating
initial conditions! simulation mock catalogues




Generation of initial conditions

* On large scales,
density is isotropic
and homogenous

* Discretise initial
density field into
uniformly distributed
particle grid

= Assume periodic
boundary
conditions
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Perturbed densi

ty field

igh z

* Universe shows small density fluctuations already at h

* How to convert CMB into density fluctuations!?

IONS

= Use power spectrum to describe density fluctuat

)

ing advantage of the

2

? —> tak
43

How do we get P(k)

Transfer function!



The Zel’dowch apprOX|mat|on |

* Given the power spectrum at some time around recomblnatlon how to
impose a spectrum of fluctuations after recombination on a particle
grid, or i.a.w. how to get the displacements from an initial uniform
particle distribution? —> Zel'dovich approximation for pressure less fluid

* Using perturbation theory we have derived (in co-moving units)
- U

D - —0

£y

v T diams (wpwﬁf()
?25(1) — 47TG,OQCL :D

* Given that all fluctuations were small at early times, assume that at
more recent epochs only the growing mode has a significant

amplitude
D(r,a) =3;(r)F(a)

* After some algebra (get expression for Phi(F), integrate Euler and
Continuity and growth equations) get position displacements

44



The Zel'dovich approximation |I

=

* Get the position displacement from the unperturbed initial position

xi (in Co@n%ofniffa:;):_ FYe; _ aVa(a)
— 1 — 47.‘.sz - 47TG/0@

* [o displace particles on grid go to Fourier space using the power spectrum

* Displacement in k space: J/ o %@2 @;{ X \/P(k)

kK — k2
° ° ° ° °
* The Zel'dovich approximation

(applicable to a pressureless fluid, like T 0 o e e
DM) can be used to extrapolate the o @
evolution of structures into the regime . c o ® .
where displacements are no longer q
small e o o o o
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Free parameters and limitations of ICs

- [

* Free parameters (interwoven):

* Cosmology ACDM
* Box length B

* Number of particles N

* Starting redshift Zini

* |nitial redshift constraints:
* not too early (integration of numerical noise) and
* not too late (shell crossing may occur not taken into account)

* Wavenumber limitation: N/B3 has to be large enough to capture
small scales
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Initial conditions for simulations — Summary

=

| arge scales: Universe is homogenous and
iIsotropic: place DM particles on a uniform grid in a
box with periodic boundaries and in an expanding
space-time

« Small-scale density fluctuations based on
* Power spectrum and transfer function

e Zel’dovich approximation for a pressureless
fluid such as dark matter

= displacement of particles from a uniform
distribution dependent on P(k) at redshifts
~50-100

e Free parameters of cosmological simulations: Box
size, particle number, initial redshift and the
cosmological model
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Chapter 1: Introduction (galaxy definition, astronomical
scales, observable quantities — repetition of Astro-I)

Chapter 2: Brief review on stars

Chapter 3: Radiation processes in galaxies and telescopes; Part |:

Chapter 4: The Milky Way :
Chapter 5: The world of galaxies | Observatlonal

Chapter 6: The world of galaxies I basics & facts of
Chapter 7: Black.holes and gotivg galactic nuclei galaxies
Chapter 8: Galaxies and their environment; ,

Chapter 9: High-redshift galaxies fII’St I4 IeCtU res
Chapter 10:

e Cosmology in a nutshell; Linear structure formation in
the early Universe

Up next...

Chapter 11: ]

* Dark matter and the large-scale structure Part ”

« Cosmological N-body simulations of dark matter TheOry & models
Cha,t_)ter 12_:. Populating dark matter halos with baryons: Of
Semi-empirical & semi-analytical models
Chapter 13: Modelling the evolution of gas in galaxies: galaxy evo|ution
Hydrodynamics
Chapter 14: Gas cooling/heating and star formation processes

Chapter 15: Stellar feedback processes second 7 lectures
Chapter 16: Black hole growth & AGN feedback processes

Chapter 17: Modern simulations & future prospects



