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Astrophysics III
Formation and Evolution of galaxies



Lecture content and schedule
• Chapter 1: Introduction (galaxy definition, astronomical 

scales, observable quantities — repetition of Astro-I) 

• Chapter 2: Brief review on stars

• Chapter 3: Radiation processes in galaxies and telescopes; 

• Chapter 4: The Milky Way

• Chapter 5: The world of galaxies I

• Chapter 6: The world of galaxies II

• Chapter 7: Black holes and active galactic nuclei

• Chapter 8: Galaxies and their environment; 

• Chapter 9: High-redshift galaxies

• Chapter 10: 


• Cosmology in a nutshell; Linear structure formation in 
the early Universe


• Chapter 11: 

• Dark matter and the large-scale structure 

• Cosmological N-body simulations of dark matter


• Chapter 12: Populating dark matter halos with baryons: 
Semi-empirical & semi-analytical models 


• Chapter 13: Modelling the evolution of gas in galaxies: 
Hydrodynamics


• Chapter 14: Gas cooling/heating and star formation

• Chapter 15: Stellar feedback processes

• Chapter 16: Black hole growth & AGN feedback processes

• Chapter 17: Modern simulations & future prospects

Part I:

Observational 

basics & facts of 
galaxies


first 7 lectures

Part II:

Theory & models 

of

galaxy evolution 

processes

second 7 lectures}

}



Outline of this lecture
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•Cosmology in a nutshell

•Motivation

• The cosmological principle

• Robertson-Walker Metric and Friedmann equation

• The age of the Universe

• Cosmological parameters

• The inhomogeneous Universe

• Linear perturbation theory

• Density fluctuations, power spectrum & transfer function

• Non-linear growth: The spherical collapse model

• Generating initial conditions for cosmological simulations

•Particles in a simulation box and in zoom-in simulations



What is cosmology?
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• The study of the origin, overall structure, 
composition, evolution and future of our Universe!

• Dedicated course to observational cosmology given 
by Prof Kneib in the summer term 

• In this course: only very, very basics — needed to 
describe the evolution of galaxies in our Universe



Evolution of the Universe in a nutshell
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Quantum fluctuations+inflation (period of exponential expansion) gave 
rise to density inhomogeneities, in agreement with CMB

https://www.esa.int/ESA_Multimedia/Images/2013/03/Planck_history_of_Universe

• 1998: Perlmutter, Schmidt & Riess: 
Universe is expanding with increasing 
velocity (accelerated) investigating 
the SNIa: SNIa were farer away than 
expected



Expansion of the Universe
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• 1998: Perlmutter, 
Schmidt & Riess: 
Universe is expanding 
with increasing 
velocity (accelerated) 
investigating the SNIa: 

• SNIa were farer away 
than expected in a EdS 
Universe meaning the 
expansion of the 
universe must have 
been accelerated

• Attributed to “dark 
energy”

• Cosmological redshift: direct consequence of Hubble expansion, we can derive 
a connection to the scale factor a

zcos =
�o � �e

�e
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1 + zcos = 1/a
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a(t) = R(t)/R(t0)
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a(z = 0) = 1



Cosmic microwave background
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• With time, Universe expands, cools and density drops: photons 
could propagate freely to “us” from a last scattering surface 
(inheriting the blackbody spectrum) at ~380,000 after Big Bang

• Small temperature fluctuations (~10-5), fluctuations very smooth
• On large scales: Universe is very uniform

??

• We need theory to understand how initial small density fluctuations 
emerged into the large-scale structure observed today

• For that, we need a cosmological back ground.



Cosmological principle
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• Cosmological principle: on sufficiently large scales, the 
Universe is homogenous and isotropic
• the observed properties of the Universe are 

isotropic, i.e. independent of direction
• our position is by no means preferred to any other
• the Universe is, thus, isotropic around all its points: it’s 

homogeneous



Robertson - Walker metric
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• Geometric properties of a homogeneous and isotropic and potentially non-
static universe are described by the 4D-space-time Robertson-Walker 
metric, specified by the scale factor a(t) and the curvature k.

k<0

k=0

k>0

Spherical

Hyperbolic

Flat

ds2 = c2dt2 � dl2 = c2dt2 � a2(t)

✓
dr2

1� kr2
+ r2d�2

◆
ds2 = c2dt2 � dl2 = c2dt2 � a2(t)

✓
dr2

1� kr2
+ r2d�2

◆

what is a metric?

• specifies the distance between two points in 
space

• depends on the geometry of the space
• what are some familiar examples?
• no change of coordinates can change one 

metric into another
• curvature of a space defined in terms of 

second derivatives of the metric



From general relativity to cosmology

• Cosmology is based on Einstein’s theory of general relativity according to 
which the space-time geometry is determined by the matter distribution in the 
Universe

two sentence General Relativity*

• mass-energy tells space-time how to curve
• the curvature of space-time tells mass-energy 

how to move

* due to John Wheeler

Einstein equation

curvature metric mass and energy



The dynamics of the Universe

• Dynamics of the space-time metric is reduced to dynamics of a(t)

• To obtain an expression for a(t) for any given k and matter/energy 
content (being isotropic and homogeneous):
➡Combination of Einstein field equation (GR) and the Robertson-

Walker metric (based on isotropy and homogeneity) results in the 
Friedmann-Lemaitre equations

ä

a
= �4�G

3

�
⇥+ 3P/c2

�
+

�c2

3
✓
ȧ

a

◆2

=
8�G

3
⇥� kc2

a2
+

�c2

3

k<0

k=0

• Energy conservation for Einstein equ. leads to a third useful “adiabatic” 
equation

k>1

Spherical

Hyperbolic

Flat

⇢̇

⇢
= �3

✓
1 +

P

⇢

◆
ȧ

a
= �3(1 + w)

ȧ

a
with P = w⇢



Hubble function and Critical density
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• The critical density of the Universe is given by

⇥c(t) =
3H2(t)

8�G
, ⇥c0 = ⇥c(t0) =

3H2
0

8�G

• Hubble function H(t) is defined as the relative expansion rate:

H(t) =
ȧ

a
, H0 = H(a = 1) = 100 h km/s/Mpc

• h is the dimensionless Hubble parameter (historical origin since H 
was long not known exactly)

• If k = 0 and 𝛬 = 0, this is the minimum density, under 
which the Universe would collapse under its own gravity



Evolution of the Hubble function
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• Densities are often expressed in terms of critical densities, i.e. as 
dimensionless matter/radiation density parameters

• Dim.less density parameter for Lambda:

• Substituting these density parameters into the spatial Friedmann 
equation yields the evolution of the Hubble fct H

H
2(a) = H

2
0

✓
�r0

a4
+

�m0

a3
+

�k

a2
+ ��0

◆
= H

2
0E(a)2

• Relative importance of 𝛺’s change with time (radiation, matter and DE-
dominated phases)

⌦m/r =
⇢m/r(t)

⇢c(t)
, ⌦m/r,0 = ⌦m/r(t0) =

⇢m/r(t0)

⇢c0

⌦⇤0 �
kc

2

a2H2
0

⇥�(t) =
�

3H2(t)
, ⇥�0 = ⇥�(t0) =

�

3H2
0

�k = �kc
2

H
2
0

�k = �kc
2

H
2
0



Evolution of radiation, matter, DE densities
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• Relative importance of 𝛺’s change with time (radiation, matter and DE-
dominated phases)

NOW



Age and size evolution of the Universe
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31 Numerical Cosmology & Galaxy Formation 2 27.04.2016

Age of the Universe

We are here

• Einstein-de Sitter



Planck cosmology
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• Combination of CMB, SNe and 
clusters lead to accurate 
measurements of our 
cosmological parameters

• Era of “precision cosmology” 
thanks to Planck measurements:

We are living in a DARK Universe

𝛺m = 0.309 = 𝛺dm + 𝛺bar = 0.259 + 0.048
𝛺𝛬 = 0.691
𝛺r ~ 1e-5
𝛺k ~ 0
h = 0.678
𝜎8 = 0.823

~84% of all matter is dark
~70% of the energy density is “dark” 

Our Universe is spatially flat

The Hubble time is 13.8 Gyr



Dark energy
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what is the dark energy?

• cosmological constant

• quintessence

• modified gravity

constant energy density in the vacuum of 
space; acts as repulsive force, physical origin 
and why its energy density is precisely tuned 
unclear

 class of theoretical models with a dynamic 
and evolving form of dark energy —> energy 
density varies over time and space; possibly 
described by a scalar field (a new fundamental 
field) 

attempt to explain the accelerated expansion 
without invoking dark energy —> modify 
Einstein's general relativity at cosmological 
scales, altering the gravitational interactions on 
large scales.



What is dark matter?
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we	don’t	know	what	dark	matter	is,	but	we	know	what	it	must	do	
(and	not	do):


•interact	via	gravity	in	the	same	way	as	normal	matter


•not	interact	via	the	strong	or	EM	force


•it	cannot	radiate	energy	so	it	is	dissipationless	and	collisionless


•Candidates:

–	sterile	neutrino	(standard	model)


–supersymmetric	(SUSY)	Lightest	Supersymmetric	Partner	particle	(LSP)	
–	e.g.	neutralino	(partner	of	photon,	Z	boson,	or	Higgs)	–	example	of	a	
Weakly	Interacting	Massive	Particle	(WIMP)


–axions	(symmetry	breaking)


•	mass	of	the	dark	matter	particle	largely	determines	how	much	
kinetic	energy	it	has	–	more	massive	particles	move	more	slowly	
(cold)



Basics of cosmology — Summary
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•Cosmological principle: on large scales, Universe is 
homogeneous and isotropic

•Combining cosmological principle, Robertson-Walker 
metric and GR results in the Friedmann equations, which 
are describing the dynamics of the Universe

•Observations indicate that we are living in flat Universe 
with ~30% of matter and 70% of dark energy

•Dark matter should interact via gravitational forces, not via  
strong/el-mag force —> dissipation less and collision 
less…

•Initial (quantum) density fluctuations, which got (most 
likely) amplified via inflation, grow further driven by gravity, 
seeds of the present-day large-scale structure



Outline of this lecture
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•Cosmology in a nutshell

•Motivation

• The cosmological principle

• Robertson-Walker Metric and Friedmann equation

• The age of the Universe

• Cosmological parameters

• The inhomogeneous Universe

• Linear perturbation theory

• Density fluctuations, power spectrum & transfer function

• Non-linear growth: The spherical collapse model

• Generating initial conditions for cosmological simulations

•Particles in a simulation box and in zoom-in simulations



The inhomogeneous Universe
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• There are pronounced structures in the Universe from stars to 
galaxy clusters (on comparably small scales) ➙ How did they form?

• Initial density fluctuations (enlarged by inflation) and action of gravity

• To describe small density fluctuations in the linear regime, we can 
use Newtonian perturbation theory for a self-gravitating fluid (for 
simplicity no Lambda, for the non-linear evolution see lecture 7)

• Continuity equation
   (Mass cons.)

• Euler equation
   (Mom. cons.)

• Poisson equation

⇥�

⇥t
+

�⇥⇤ · (�⇤v) = 0

�!r2� = 4�G⇥

⇥⇤v

⇥t
+ (⇤v ·�⇥⇤)⇤v = �

�⇥⇤P

�
��⇥⇤�



Linear perturbation theory
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• Assume small perturbations 𝜌 and v:

• Insert into continuity equation, neglect 2n-order terms:

• Homogeneous quantities fulfil continuity equation as well

• Insert this into equation above results in:

• Define density contrast

• We can re-write the equation to

⇥(⇤x, t) = ⇥0(t) + �⇥(⇤x, t) and ⇤v(⇤x, t) = ⇤v0(t) + �⇤v(⇤x, t)

⇤(⇥0 + �⇥)

⇤t
+

�⇥⇤ · (⇥0⌅v0 + �⇥⌅v0 + ⇥0�⌅v) = 0

⇥�0
⇥t

= ��0
�⇥⇤ · ⇤v0

⇤�⇥

⇤t
+ ⌅v0 ·

�⇥⇤�⇥+ ⇥0
�⇥⇤ · �⌅v + �⇥

�⇥⇤ · ⌅v0

Ḋ+ ⇥v0 ·
�⇥⇤D+

�⇥⇤ · �⇥v = 0

D =
�⇢

⇢0
<< 1 in linear regime

Ḋ+ ⇥v0 ·
�⇥⇤D+

�⇥⇤ · �⇥v = 0



Linear perturbation theory

• Similarly, Euler and Poisson equations yield in:

⇤�⌅v

⇤t
+ (�⌅v ·�⇥⇤)⌅v0 + (⌅v0 ·

�⇥⇤)�⌅v = �
�⇥⇤�P

⇥0
��⇥⇤��

�!r2�� = 4⇥G⇤0D
• Now switch from x and v to co-moving coordinates r and u:      

• …with co-moving spatial and time derivatives of

• With that, we can simplify the perturbation equations to

�!r2�� = 4⇥G⇤0a
2D

~x = a · ~r ~v0 = ȧ~r �~v = ~u(= a~̇r)

Ḋ+

�!r · ~u
a

= 0

~̇u+H~u = �
�!r�P

a⇢0
�

�!r��

a } Exercises!

• Continuity equation

• Euler equation

• Poisson equation
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Growth equation

24

• Combining the divergence of the Euler equation with time derivative 
of the continuity and the Poisson equation yields in

• “Growth equation”, decaying mode negligible after some time, 
different solutions for different cosmologies

• In general solved by the growth function F(a):

• By definition mean of the density contrast vanishes:

hD(a)i =
⌧
⇢� ⇢0
⇢0

�
= 0

D(x, a) = D0(x)F (a)

D̈+ 2HḊ =

 
4�G⇥0D+

c2s
�!r2D

a2

!

where P = c2s⇢

• Density field grows self-similar with time r r

Do analytic 
calculations in 
exercises!



Fourier decomposition of the density field
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• Since the perturbation equation is linear in Fourier space, each 
Fourier mode satisfies the growth equation separately, i.e. each 
mode grows independently of all the others

• In the linear regime (and in a flat Universe), expand perturbation 
fields in some suitable mode functions, e.g. plane waves, and 
perturbation field can be represented by its Fourier transform D’

D(⇥x, t) =

Z
d3k

(2�)3
D⇥(⇥k, t)e�i�k·�x

• With the Fourier transform we get growth equation in Fourier 
space

D̈0 + 2HḊ0 = D0
✓
4⇡G⇢0 +

c
2
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Fourier decomposition of the density field
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• Since the perturbation equation is linear in Fourier space, each 
Fourier mode satisfies the growth equation separately, i.e. each 
mode grows independently of all the others

• In the linear regime (and in a flat Universe), expand perturbation 
fields in some suitable mode functions, e.g. plane waves, and 
perturbation field can be represented by their Fourier transform D’

D(⇥x, t) =

Z
d3k

(2�)3
D⇥(⇥k, t)e�i�k·�x

• With the Fourier transform we get growth equation in Fourier 
space

D̈0 + 2HḊ0 = D0
✓
4⇡G⇢0 +

c
2
sk

2

a2

◆

r r



Power spectrum
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P (k) = �|D0(�k)|2⇥

• A convenient way to specify the cosmic density field is given by the 
so called “power spectrum”, a probability distribution function for 
different modes, defined by the variance of 𝔇’, the density contrast 
in Fourier space

• Statistical properties of density perturbations at different spatial 
scales:  P(k) characterizes the amplitude of these fluctuations at 
different spatial scales, or equivalently, at different wavelengths or 
wave numbers



Power spectrum

28

44 Numerical Cosmology & Galaxy Formation 2 27.04.2016

Perturbation Theory real spacefourier space

•inflation	predicts	a	primordial	power	spectrum	P(k)	~	
kn	that	is	very	close	to	scale	free	(n=1)	and	Gaussian

•deviates	on	small	scales	from	today’s	Universe

small scaleslarge scales

large scalessmall scales



Power spectrum

• Power spectrum has a 
primordial component 

 with n~1
predicted by inflation 
theory

• and a “processed” one…

Pi(k) = Akn

Small k Large k



Power spectrum

How do we get the observed P(k)?

• Get P(k) from inflation with n~1

• Such a spectrum matches CMB constraints on large scales, but not on 
smaller

• Many complex processes change Pi(k) before and during 
recombination  (linear regime) due to coupling of radiation and 
matter

• Silk damping for baryons

• Free streaming damping for DM

• Different growth for DM and baryonic matter
➡ Can change the Power spectrum on smaller scales

Pi(k) = Akn

44 Numerical Cosmology & Galaxy Formation 2 27.04.2016

Perturbation Theory



Evolution of the Power spectrum

primordial

• Merely by including these 
effects of the transition 
between a radiation-
dominated and matter-
dominated universe, the 
CDM cosmology roughly 
explains the differing 
spectral indices of these 
two regimes as in 
observations.

Small k Large kSmall k



• Transfer functions are calculated based on cosmological parameters, the 
temperature of the CMB radiation and the mass of dark matter 
particles (different for cold/warm/hot DM) etc.

• Absolute normalisation is not (yet) predicted by theory, thus 
normalisation is taken from observed spectrum (CMB)

• Power spectrum and Transfer fct. can be computed using CAMB: http://
lambda.gsfc.nasa.gov/toolbox/tb_camb_form.cfm  

Power spectrum and transfer function

• To account for such processes before and during recombination, the 
initial power spectrum is transferred to post-recombination time by 
the Transfer function T(k) to compute a power spectrum at any later 
time after t0

P (k) = T 2(k)Pi(k)

http://lambda.gsfc.nasa.gov/toolbox/tb_camb_form.cfm
http://lambda.gsfc.nasa.gov/toolbox/tb_camb_form.cfm


Transfer function
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Processed power spectrum
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Black: CDM

Limits of Ly-alpha
forest



Beyond linear theory: Spherical collapse
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• Linear theory is strictly restricted to small density perturbations with 
𝔇<<1 before and around recombination time.

• For larger density perturbations, let’s first consider a simple analytical, 
non-linear model assuming spherical symmetry

• A spherical over-dense region 
can be treated as a separate 
universe and its radius as a 
function of time is given by 
solving the Friedmann’s 
equations.

• Should collapse under its own 
gravity forming a bound, 
virialised object

• For a given mass, the spherical 
overdensity can be related to 
the density of the unperturbed 
universe

The Spherical Collapse Model

A spherical overdense region can be treated as a separate universe and its
radius as a function of time solved by solving Friedmann’s equation. By mass
conservation its density can be related to that of the unperturbed universe by

⇥sph/⇥background = (rbackground/rsph)3

At turnaround

⇥sph/⇥background = (rbackground(tturn)/rsph(tturn))3

= (3�/4)2 � 5.56 for �m = 1

The Spherical Collapse Model

A spherical overdense region can be treated as a separate universe and its
radius as a function of time solved by solving Friedmann’s equation. By mass
conservation its density can be related to that of the unperturbed universe by

⇥sph/⇥background = (rbackground/rsph)3

At turnaround

⇥sph/⇥background = (rbackground(tturn)/rsph(tturn))3

= (3�/4)2 � 5.56 for �m = 1

• so that at turnaround:

turnaround virialize



The spherical collapse model
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• Assume system composed of DM: it cannot dissipate away its 
energy —> potential energy is being converted into kinetic energy

• Energy conservation at the turnaround point:

The Spherical Collapse Model

If upon collapse the overdense regions virializes rather than collapsing to a
point then application of energy conservation,

Tvir + Wvir = Wturnaround

the virial theorem,
2Tvir + Wvir = 0,

implies
Wvir = 2Wturnaround or rvir = rturnaround/2

as W ⇥ GM2/r .

Over the same time interval the background radius expands and density
contrast becomes

�vir = ⇥sph/⇥background = (rbackground(tvir)/rvir)
3

= 18�2 � 178 for ⇥m = 1

• Virial theorem:

The Spherical Collapse Model

If upon collapse the overdense regions virializes rather than collapsing to a
point then application of energy conservation,

Tvir + Wvir = Wturnaround

the virial theorem,
2Tvir + Wvir = 0,

implies
Wvir = 2Wturnaround or rvir = rturnaround/2

as W ⇥ GM2/r .

Over the same time interval the background radius expands and density
contrast becomes

�vir = ⇥sph/⇥background = (rbackground(tvir)/rvir)
3

= 18�2 � 178 for ⇥m = 1
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The Spherical Collapse Model

If upon collapse the overdense regions virializes rather than collapsing to a
point then application of energy conservation,

Tvir + Wvir = Wturnaround

the virial theorem,
2Tvir + Wvir = 0,

implies
Wvir = 2Wturnaround or rvir = rturnaround/2

as W ⇥ GM2/r .

Over the same time interval the background radius expands and density
contrast becomes

�vir = ⇥sph/⇥background = (rbackground(tvir)/rvir)
3

= 18�2 � 178 for ⇥m = 1

• The density contrast in virial equilibrium becomes:

Virial mass



The spherical collapse model

• This calculation can be easily repeated for any other cosmology, 
the virial overdensity is always 100-200 

The Spherical Collapse Model

This calculation can easily be repeated for a model with
any ⇥m or �. The virial overdensity is always 100� 200
⇤crit.

One can use linear theory, matched to the spherical
perturbation at early times, to predict the amplitude of the
density perturbation at virialization (e.g. Lacey & Cole
1993).

�crit = 3(12⇥)2/3/20 ⇥ 1.68 for ⇥m = 1

The Spherical Collapse Model

This calculation can easily be repeated for a model with
any ⇥m or �. The virial overdensity is always 100� 200
⇤crit.

One can use linear theory, matched to the spherical
perturbation at early times, to predict the amplitude of the
density perturbation at virialization (e.g. Lacey & Cole
1993).

�crit = 3(12⇥)2/3/20 ⇥ 1.68 for ⇥m = 1

• In reality, spherical overdensity doesn’t apply, and virialisation is 
never complete, but these are useful guides to keep in mind 
before turning to numerical simulations



Structure formation — summary

• Quantum fluctuations thought to have been inflated to larger-
scale density fluctuations shortly after BB


• Competition between pressure of expansion & attraction of 
gravity


• Over-densities become more overdense, under-densities 
become more underdense


• Early Universe: structure formation in the linear regime can be 
described by Newtonian perturbation theory


• Power spectrum: distribution of amplitude of density 
fluctuation as a function of scales (often in Fourier space)


• Transfer function:  describes how density fluctuations in the 
early universe evolve over time (e.g., Silk damping, Free 
streaming etc.)


• Beyond linearity: Eventually, in some places, gravity ‘wins’ and 
a ‘gravitationally bound’ object forms (“dark matter halo”) —> 
non-linear regime: simplest form: spherical collapse model;



Structure formation in the non-linear regime
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CMB

SDSS
???

• As the density perturbations become larger, the linear 
approximation breaks down, and non-linear effects become 
significant. 

• To study the later stages of structure formation and the 
detailed properties of galaxies and clusters, more 
sophisticated numerical simulations, such as N-body 
simulations (for dark matter), are required.

• For simplicity, consider only dark matter for now (as it 
dominates the matter content, and thus, structure formation)



Outline of this lecture
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•Cosmology in a nutshell

•Motivation

• The cosmological principle

• Robertson-Walker Metric and Friedmann equation

• The age of the Universe

• Cosmological parameters

• The inhomogeneous Universe

• Linear perturbation theory

• Density fluctuations, power spectrum & transfer function

• Non-linear growth: The spherical collapse model

• Generating initial conditions for cosmological simulations



Structure formation in the non-linear regime
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1. Generation of 
initial conditions?

2. Running the 
simulation

3. Creating 
mock catalogues

N-body	codes	
•represent	matter	by	particles

•represent	the	Universe	by	a	(usually)	periodic	‘box’

•expanding	space-time

•if	we	know	initial	conditions	(positions	&	velocities),	we	can	
solve	Newton’s	equations	for	each	particle	—>	density	field	



Cosmological Principle

• On large scales, the properties 

of the Universe are the same to 

all observers

• Homogeneity: Universe looks 

the same at every location

• Isotropy: Universe looks the 

same in every direction

• Discretize density field into 

particles
infinite  

(periodic boundary conditions)

7 Numerical Cosmology & Galaxy Formation 3 04.05.2016

Perturbations

• Universe shows small density 

fluctuations already at high z 
(see CMB)

• Convert CMB fluctuations to 

density perturbations

homogeneous & isotropic
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Generation of initial conditions
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• On large scales, 
density is isotropic 
and homogenous

• Discretise initial 
density field into 
uniformly distributed 
particle grid 
➡Assume periodic 

boundary 
conditions

Homogeneous & isotropic



Generation of initial conditions
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P(k)

The power spectrum

• Use power spectrum to describe density fluctuations

• Temporal evolution (in the linear regime):

• How do we obtain P(k)?

P(k)

P (k, t) = P0(k)D
2(t)

P (k) = �|�̂(k)|2⇥

9 Numerical Cosmology & Galaxy Formation 3 04.05.2016

Perturbed density field

• Universe shows small density fluctuations already at high z
• How to convert CMB into density fluctuations?
➡Use power spectrum to describe density fluctuations

How do we get P(k)? —> taking advantage of the 
Transfer function!

P (k) = �|D0(k)|2⇥



The Zel’dovich approximation 1
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• Given the power spectrum at some time around recombination, how to 
impose a spectrum of fluctuations after recombination on a particle 
grid, or i.a.w. how to get the displacements from an initial uniform 
particle distribution? —> Zel’dovich approximation for pressure less fluid

D̈+ 2HḊ =

 
4�G⇥0D+

c2s
�!r2D

a2

!

• Using perturbation theory we have derived (in co-moving units)

�!r2�� = 4⇥G⇤0a
2D

• Given that all fluctuations were small at early times, assume that at 
more recent epochs only the growing mode has a significant 
amplitude

• After some algebra (get expression for Phi(F), integrate Euler and 
Continuity and growth equations) get position displacements

Ḋ+

�!r · ~u
a

= 0

~̇u+H~u = �
�!r�P

a⇢0
�

�!r��

a

D(x, a) = Di(x)F (a)r r



The Zel’dovich approximation II
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• The Zel’dovich approximation 
(applicable to a pressureless fluid, like 
DM) can be used to extrapolate the 
evolution of structures into the regime 
where displacements are no longer 
small

⇤x� ⇤xi = �D
�!r�i

4�G⇥i
= �a

�!r�(a)

4�G⇥i
~r � ~ri

F~ = ~r � ~ri

• To displace particles on grid go to Fourier space using the power spectrum

• Displacement in k space: ~ 0
k =

i~k

k2
D0

k D0
k =

p
P (k) ·Rke

i�k =
p
P (k) · (R1 + iR2)

<latexit sha1_base64="3WJI23gSBwyLXROPa/a404oSKL4=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQi8cIxgSSJcxOZpMhszvDTK8QQj7CiwdFvPo93vwbJ8keNLGgoajqprsr0lJY9P1vr7Cyura+UdwsbW3v7O6V9w8ercoM4w2mpDKtiFouRcobKFDyljacJpHkzWh4O/WbT9xYodIHHGkeJrSfilgwik5qdrRRGlW3XPGr/gxkmQQ5qUCOerf81ekpliU8RSapte3A1xiOqUHBJJ+UOpnlmrIh7fO2oylNuA3Hs3Mn5MQpPRIr4ypFMlN/T4xpYu0oiVxnQnFgF72p+J/XzjC+Dsci1RnylM0XxZkkqMj0d9IThjOUI0coM8LdStiAGsrQJVRyIQSLLy+Tx7NqcFm9uD+v1G7yOIpwBMdwCgFcQQ3uoA4NYDCEZ3iFN097L9679zFvLXj5zCH8gff5A6Ybj8o=</latexit>/

• Get the position displacement from the unperturbed initial position 
xi (in comoving space):



Free parameters and limitations of ICs

• Free parameters (interwoven):

• Cosmology                𝛬CDM

• Box length                     B

• Number of particles       N

• Starting redshift              zini

• Initial redshift constraints: 

• not too early (integration of numerical noise) and 

• not too late (shell crossing may occur not taken into account)

• Wavenumber limitation: N/B3 has to be large enough to capture 
small scales

• N/B3 has to be chosen large enough to model interesting features

Wavenumber limitation

B

2B
3
p
N B = 100h�1Mpc N = 10243

20 Numerical Cosmology & Galaxy Formation 3 04.05.2016

B=100Mpc,
N=10243

• N/B3 has to be chosen large enough to model interesting features

Wavenumber limitation

B

2B
3
p
N B = 100h�1Mpc N = 323
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B=100Mpc,
N=323



Initial conditions for simulations — Summary
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•Large scales: Universe is homogenous and 
isotropic: place DM particles on a uniform grid in a 
box with periodic boundaries and in an expanding 
space-time

•Small-scale density fluctuations based on


•Power spectrum and transfer function 

•Zel’dovich approximation for a pressureless 
fluid such as dark matter

➡displacement of particles from a uniform 
distribution dependent on P(k) at redshifts 
~50-100


•Free parameters of cosmological simulations: Box 
size, particle number, initial redshift and  the 
cosmological model



Up next…
• Chapter 1: Introduction (galaxy definition, astronomical 

scales, observable quantities — repetition of Astro-I) 

• Chapter 2: Brief review on stars

• Chapter 3: Radiation processes in galaxies and telescopes; 

• Chapter 4: The Milky Way

• Chapter 5: The world of galaxies I

• Chapter 6: The world of galaxies II

• Chapter 7: Black holes and active galactic nuclei

• Chapter 8: Galaxies and their environment; 

• Chapter 9: High-redshift galaxies

• Chapter 10: 


• Cosmology in a nutshell; Linear structure formation in 
the early Universe


• Chapter 11: 

• Dark matter and the large-scale structure 

• Cosmological N-body simulations of dark matter


• Chapter 12: Populating dark matter halos with baryons: 
Semi-empirical & semi-analytical models 


• Chapter 13: Modelling the evolution of gas in galaxies: 
Hydrodynamics


• Chapter 14: Gas cooling/heating and star formation

• Chapter 15: Stellar feedback processes

• Chapter 16: Black hole growth & AGN feedback processes

• Chapter 17: Modern simulations & future prospects

Part I:

Observational 

basics & facts of 
galaxies


first 7 lectures

Part II:

Theory & models 

of

galaxy evolution 

processes

second 7 lectures}

}


