
2

Quantum Mechanics

As mentioned in the introduction, this book assumes some basic understanding of
quantum mechanics at the undergraduate level. This understanding is essential for
many reasons: not only to be able to write down realistic models, compute things,
and make predictions, but also because quantum physics is a world full of subtleties
and unexpected phenomena which may cause major confusion and headaches when
seen for the first time.

Consequently, here is a friendly warning: If you never took a course on quantum
physics and the formalism of quantum mechanics, take it, or grab some books that
can help you overcome this initial barrier. There are many good books to choose
from, such as the two volumes of Cohen-Tannoudji et al. (1977) or the wonderful
and complete book by Ballentine (1998). Simply take the one that resonates best
with you.

This said, I felt the need to write down a chapter where I could summarize many of
the concepts and tools from quantum mechanics that are repeatedly invoked in this
book. Some of these are pretty basic, such as the relation between the Schrödinger
equation and unitary operators, but others are a bit more subtle and extend beyond
a typical course on quantum mechanics, such as the notion of density matrices and
master equations. Please take this therefore as a “unifying” chapter that provides
a common language and definitions, and which you may freely skip if you have a
graduate or postgraduate level in the study of quantum physical systems.

2.1 Canonical Quantization

Quantum physics is an old field of research, whose birth we attribute to Planck’s
theory for the black-body radiation. A black body is an ideal object that can absorb
energy at any frequency of the spectrum, which incidentally implies that it is the
body that can emit energy most efficiently at any given frequency. In 1900, the
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8 Quantum Mechanics

physicist Max Planck showed that experiments measuring the radiation from black
bodies could be explained by assuming that these objects – which at the time were
just perfect cavities with a tiny hole – could only exchange energy in fixed amounts
or quanta, determined by the frequency ν of the light emitted or absorbed by the
black cavity.

In his treatment, Planck models the excitations of the black body as a collection of
harmonic oscillators with frequencies that cover the measured spectrum – i.e., ν(k),
labeled by wave vectors k. The energy of those oscillators is quantized, which means
that the oscillators equilibrate to the same temperature by exchanging discrete units
of energy or quanta with the environment. If we could measure the state of the
black body, its energy would be a sum of the quanta nk that are stored in each
electromagnetic mode k:

E =
∑

k

hν(k)× nk, nk ∈ {0,1,2, . . .}. (2.1)

In this model, each oscillator has associated a quantum of energy hν(k) determined
by the frequency1 ν(k) and Planck’s constant h � 6.62607004(81) × 10−34 J/Hz.
The collection of all integers |nk1,nk2, . . .〉 is a unique configuration of the black
body, which we call the quantum state, and the collection of all states is used to
develop a statistical model of the black body’s spectrum.

Despite his success, Planck was very wary of extending the idea of quanta to
the actual electromagnetic field. It was Einstein who made the connection between
Planck’s quanta and the existence of a particle of light, the photon. With this
particle, Einstein could explain in 1905 the photoelectric effect: Some materials
may convert light into an electrical current, but when the intensity of light is
lowered enough, this current becomes a series of discrete random bursts, which
Einstein associated with the absorption of photons. This successful explanation was
shortly followed by Bohr and Rutherford’s model of the atom, based on quantized
electronic orbits that explained the discrete spectra of light-emitting atoms. Barely
a decade later, Schrödinger (1926) and Heisenberg (1925) replaced all ad hoc
quantization ideas with two equivalent formulations of quantum mechanics based
on wave and matrix equations. In both theories, the discretization of energies is
a mathematical consequence of the discrete spectra of the operators that govern
the evolution of light and matter. Put to work, the newly born theory provided
quantitative explanations for the spectra of atoms, molecules, solids, and the
electromagnetic field itself, consolidating nonrelativistic quantum mechanics as

1 Ordinary frequencies are typically denoted by the letter ν and are measured in the S.I. unit of Hertz (Hz). Quite
often we will also use angular frequencies ω = 2πν, sometimes denoted in rad/s or s−1. In the first case, the
quantum of energy is given by hν, while in the second case it is given by Planck’s reduced constant h̄ω with
h̄ = h/2π .
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2.1 Canonical Quantization 9

the tool for understanding chemistry, solid-state physics, nano-electronics, and
photonic devices, to name a few examples.

Schödinger’s and Heisenberg’s formulations are powerful theories that explain
the microscopic behavior of Nature in a bottom-up fashion: starting from elemen-
tary components – the electron, the proton, and the neutron – and fundamental
interactions – for instance, the Coulomb attraction between protons and electrons
mediated by the electromagnetic field – one builds a many-body equation whose
solution accounts for all the physics we observe in the laboratory. Unfortunately, the
bottom-up approach does not always scale well as we move on to larger systems. In
this book, we are concerned with solid-state superconducting devices that include
more than 1024 atoms, all collectively exhibiting quantum mechanical phenomena.
It is unfathomable to even think of writing an equation for all those particles, and
we are forced to seek effective descriptions that are consistent with the principles
and rules of the underlying quantum mechanical theory.

Shortly after the publication of Schrödinger’s and Heisenberg’s work, Paul Dirac
developed an alternative derivation of quantum mechanics, known as canonical
quantization, that establishes a link between the quantum model for a given object
(particle, field, etc.) and the dynamics that we would expect from it in a classical
world. In Chapter 4, we will apply this procedure to the quantization of an electrical
circuit, developing a quantum theory of superconducting circuits. This theory will
be consistent with the microscopic description introduced in Chapter 3, and it will
provide the appropriate limit of the circuit when temperatures are high enough that
superconductivity is lost, or quantum phenomena are masked.

2.1.1 Hamiltonian Equations

For simplicity, we will describe how canonical quantization works for a simple
object: a point-like particle2 with position x and momentum p = mẋ, moving in
an external potential V (x). The particle’s trajectory is governed by a set ordinary
differential equations – Newton’s equations – which we write in terms of the parti-
cle’s acceleration ẍ and the force ∇V (x) experienced by the particle

ẍ = − 1

m
∇V (x). (2.2)

Newton’s equation can be derived from a stationary action principle, as the trajec-
tory that minimizes the action S = ∫ t2

t1
L(ẋ,x)dt . The functional S maps orbits x(t)

to real numbers according to the Lagrangian

2 As we will see in Chapter 4, this is not a futile exercise, because the harmonic potential V (x) = 1
2mω

2x2 is
formally analogous to the simplest electrical circuit, an LC resonator, and describes how this circuit is actually
quantized.
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10 Quantum Mechanics

L(ẋ,x) = 1

2
mẋ2 − V (x). (2.3)

According to the stationary principle, a small perturbation of the particle’s true tra-
jectory xε(t) = x(t)+ ε(t) should leave the action unperturbed up to second-order
corrections S[xε] = S[x] + O(ε2). This stationary principle produces Lagrange’s
equations

d

dt

∂L
∂ẋn

= ∂L
∂xn
, (2.4)

which are equivalent to the original Newtonian equations (2.2).
We now introduce a Hamiltonian formulation, where the functional that generates

the dynamical equations is a function of two canonically conjugate variables, x and
p, with the prescription

H (x,p) = pẋ− L(ẋ,x), with p = ∂L
∂ ẋ

. (2.5)

This Legendre transform establishes a link between the particle’s velocity ẋ and
its canonical momentum p, which now replaces the former in all equations. The
transform also produces an object, the Hamiltonian H (x,p), governing the orbits
of the particle. More precisely, any observable O(x,p,t) that we can construct as a
function of the canonical variables and time evolves according to the Hamiltonian
equation

d

dt
O = {O,H } + ∂O

∂t
, (2.6)

with the classical Poisson brackets

{A,B} =
∑
j

(
∂A

∂xi

∂B

∂pi
− ∂B
∂xi

∂A

∂pi

)
. (2.7)

In particular, since {xi,pj } = δij this prescription trivially recovers Newton’s equa-
tions, but now expressed as a set of first-order differential equations:

d

dt
x = ∂H

∂p
= 1

m
p,

d

dt
p = −∂H

∂x
= −∇V (x). (2.8)

2.1.2 Quantum Observables

Dirac’s canonical quantization describes the transition from a Hamiltonian theory
of a classical particle to a quantum mechanical theory that preserves the particle’s
dynamical equations (2.6). First of all, following the axioms of quantum mechanics,
it introduces a Hilbert space of vector states describing our system. Next, it replaces
any measurable quantity, including x, p, and any other function thereofO(x,p), with
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2.1 Canonical Quantization 11

linear Hermitian operators x̂, p̂, Ô acting on this Hilbert space. Each observable will
have a spectrum of eigenvalues and eigenstates determining all possible measure-
ment outcomes.

In our toy model, the quantum state of a particle that is at position r ∈ R
N

is associated a vector |r〉 in the Hilbert space, with the property x̂n |r〉 = rn |r〉.
Generic states are constructed as quantum superpositions of different measurement
outcomes, such as the wavefunction ψ(r):

|ψ〉 =
∫
ψ(r) |r〉 dNr. (2.9)

The weights of the wavefunction ψ(r) ∈ C are complex numbers whose modulus
gives the probability distribution P (r) = |ψ(r)|2 that the particle is found at the
position r, if the observable x̂ is ever measured. States are normalized, so that the
total probability adds up to one, 〈1〉ψ = 〈ψ |ψ〉 = ∫ |ψ(r)|2dr = 1, and we can
define the expectation values of measurements:

〈x̂〉ψ = 〈ψ |x̂|ψ〉 =
∫∫

ψ(r0)∗ψ(r1) 〈r0| x̂ |r1〉 dNr0dNr1 (2.10)

=
∫

r0|ψ(r0)|2dr0.

Note how, by using the orthogonality of position eigenstates 〈r0|x̂|r1〉 = r1 〈r0|r1〉 =
r1δ(r0 − r1), we recovered the formula for the average over the probability
distribution P (r).

Canonical quantization includes one final prescription that makes the algebra
of operators and states consistent with the classical limit of these equations. We
replace everywhere the Poisson brackets for classical variables with the commutator
between the respective observables {A,B} → −i[Â,B̂]/h̄, where [Â,B̂] = ÂB̂ −
B̂Â. For the isolated particle, this prescription transforms {xn,pm} = δnm into

[x̂n, p̂m] = ih̄δnmj . (2.11)

If our space of positions is continuous and contained in the region� ⊂ R
N , we can

build our Hilbert space using integrable functions ψ(r) ∈ L2(�), associating posi-
tion and momentum with operators x̂nψ(r) = rnψ(r) and p̂nψ(r) = −ih̄∂rnψ(r)
that satisfy the commutation relations (2.11).

Irrespective of the implementation of our Hilbert space, (2.11) implies that canon-
ically conjugate operators are incompatible: They cannot share a common basis
of eigenstates. Thus, a state with a well-defined position |x0〉 cannot have a well-
defined value of the momentum. This leads to the Heisenberg uncertainty principle:

�xn�pm ≥ 1

2
h̄δnm, (2.12)
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which relates the variances of pairs of observables,�xn =
√
〈x̂2
n〉 − 〈x̂n〉2 and�pm.

As we will see later, this uncertainty has also a physical manifestation in the world of
quantum circuits, where position and momenta are replaced by voltage and intensity,
quantities that cannot be measured simultaneously with absolute precision.

2.1.3 Unitary Evolution

We have introduced quantum states and observables as two mathematical objects
that together predict the statistics of measurement outcomes. This information is
bound to change in time, as observables and states evolve. In canonical quantiza-
tion, the identification of Poisson brackets with commutators translates the classical
equation (2.6) into the Heisenberg equation:

dÔ

dt
= − i

h̄
[Ô,Ĥ ]+ ∂Ô

∂t
. (2.13)

In this model, the dynamics is generated by a Hamiltonian operator that results from
replacing the canonical variables with the corresponding observables
Ĥ = 1

2m p̂2 + V (x̂). In the Heisenberg picture, observables change in time starting
from a well-known initial conditionO(t0) = O0. The states |ψ0〉 remain stationary,
and they are regarded as objects that map the changing observables to their
expectation values Ō(t) = 〈Ô(t)〉 = 〈ψ0|Ô(t)|ψ0〉 .

The Heisenberg equation is rather inconvenient: We have to work with big
and complex operators, and extracting the measurement statistics becomes a very
convoluted process. In many situations, we would rather work with an equation
that determines how states evolve from, say, an initially localized configura-
tion ψ0(x) = δ(x − x0), spreading to other meaurement outcomes. This infor-
mation is provided by the Schrödinger equation or Schrödinger picture, whereby
observables have an immutable representation, but wavefunctions change in time
Ō(t) = 〈Ô〉ψ(t) = 〈ψ(t)|Ô0|ψ(t)〉, with

ih̄∂t |ψ(t)〉 = Ĥ |ψ(t)〉 , with |ψ(t0)〉 = |ψ0〉 . (2.14)

For our isolated particle in an external potential V (x), using the position represen-
tation, where p̂ = −ih̄∇, this results into a simple wave equation for the complex
amplitude of probability ψ(x):

ih̄∂tψ(x) =
[

1

2m
(−ih̄∇)2 + V (x)

]
ψ(x). (2.15)

Even if they look very different, the Schrödinger and Heisenberg representa-
tions give the same predictions because they are both solved by a common unitary
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transformation called the evolution operator. This operator is the solution of an
enlarged Schrödinger equation:

ih̄
d

dt
Û (t,t0) = Ĥ Û (t,t0), with Û (t0,t0) = 1. (2.16)

In the case of constant Hamiltonians, the unitary operator U is a Lie rotation in the
Hilbert space, generated by the Hamiltonian:

Û (t,t0) = exp[−i(t − t0)H/h̄]. (2.17)

This operator is unitary UU † = U †U = 1. It can be inverted Û (t2,t1)−1 = Û (t1,t2)
and solves both the Schrödinger |ψ(t)〉 = Û (t,t0) |ψ0〉 and the Heisenberg equations
Ô(t) = Û (t0,t)Ô0Û (t,t0), as mentioned before.

2.2 Two-Level Systems

Not all physical systems have continuous degrees of freedom. We are going to
work with smaller systems that only have two or three configurations that are active
in a given experiment. These discrete systems have smaller Hilbert spaces, with
wavefunctions defined in complex vector spaces. For a quantum system with two
possible states |0〉 and |1〉, the wavefunctions in the two-dimensional Hilbert space
are described by two complex amplitudes:

|ψ〉 = ψ0 |0〉 + ψ1 |1〉 ↔ � =
(
ψ1

ψ0

)
∈ H = C

2, (2.18)

with the usual normalization |ψ0|2 + |ψ1|2 = 1.
Two-dimensional Hilbert spaces are very common. They are a natural represen-

tation of the spin s = 1/2 states of an electron, a proton, or a neutron: |0〉 and |1〉
correspond to spin down and up along a given direction; they are sometimes used
for describing the polarization states of a photon, horizontal versus vertical; and
they appear most frequently in quantum optics when modeling atomic transitions –
i.e., ground state |0〉 versus excited state |1〉 – and light–matter interaction. Nowa-
days, two-dimensional quantum systems are also called qubits, because, in analogy
to the classical bit, they represent the minimal quantum object where information
can be stored and processed. We show in Chapter 6 that it is possible to build
superconducting circuits that are accurately described as qubits, and discuss in later
chapters how these circuits are applied to quantum computing and simulation.

The algebra of two-level systems is analyzed using a complete set of observables,
called the Pauli matrices:

σx =
(

0 1
1 0

)
, σ y =

(
0 −i
i 0

)
, σ z =

(
1 0
0 −1

)
. (2.19)
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Note that in this representation, |0〉 and |1〉 are the two eigenstates of σz, and we write
σz = |1〉〈1| − |0〉〈0|. If we enlarge the set of Pauli matrices to include the identity,
σα|3α=0 = {1,σ x,σ y,σ z}, we have a basis where we can expand any observable in
this Hilbert space:

Ô = 1

4

3∑
α=0

tr
(
Ôσ̂ α

)
σ̂ α. (2.20)

In particular, a general qubit Hamiltonian has the form

Ĥ = E + B n · σ̂, (2.21)

where n is a direction in the three-dimensional space, σ̂ = (σ̂ x,σ̂ y,σ̂ z) and E and
B are constants. For spins, the Hamiltonian is interpreted as the coupling between
the qubit’s dipole moment∝ σ̂ and the magnetic field Bn along the given direction.

Interestingly, this form has two important properties. First, because n · σ̂ has
the properties of a Pauli matrix, the eigenvalues of this Hamiltonian are simply
λ± = E ± B. Second, and for the same reasons, we can use the Pauli expansion to
compute the evolution operator of the qubit:

Û (t,0) = exp

(
− itĤ
h̄

)
= e−iEt/h̄ [

cos(Bt)1− i sin(Bt) n · σ̂ ]
. (2.22)

We will use this formula when studying superconducting qubits and the implemen-
tation of single-qubit gates in Section 6.1.4.

2.3 Density Matrices

The formalism of unitary evolution for a quantum system assumes that the system
under study is perfectly isolated from other quantum or classical objects and subject
to error-free control. Even if systematic errors are greatly reduced, no physical sys-
tem can be perfectly isolated: At the very least, there will always be the omnipresent
electromagnetic field, carrying the cosmic background radiation and putting our
system in contact with the noisy classical world.

It is therefore safe to say that experiments never prepare pure states |ψ〉. Instead,
real quantum systems must be described using an ensemble operator, also known as
density matrix ρ̂: a nonnegative Hermitian operator ρ̂ = ρ̂† ≥ 0, with proper nor-
malization tr(ρ̂) = 1(∼ ∑

n 〈n|ρ̂|n〉), which gives expectation values of operators
as 〈Ô〉 = tr(Ôρ̂) ∼ ∑

n ρnn 〈n|O|n〉 .
Pure states |ψχ 〉 written as density matrices become projectors ρ̂χ = |ψχ 〉〈ψχ |.

General states, however, are mixed states, because they can be reconstructed as
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classical ensembles of pure states created with different classical probabilities p(χ )
(Ballentine, 1970):

ρ̂ =
∫
|ψχ 〉〈ψχ |p(χ )dχ . (2.23)

This equation (2.23) describes the output of an experiment where parameters have
some uncertainty. Mixed states can also arise when a system enters in contact with
another system, called the environment. In principle, we should consider the global
wavefunction of the system plus its environment, allowing both to be correlated
|�global〉 =

∑
s,E �s,E |s〉⊗|E〉 ∈ Hsystem⊗Henvironment. However, since we will not

have access to all degrees of freedom of the environment, we must trace out all the
information that we ignore, obtaining a much smaller ensemble that only describes
our system:

ρ̂sys = trenvironment |�global〉 〈�global| =
∑
E

∑
s,s′
�s,E�

∗
s′,E |s〉〈s ′| . (2.24)

Density matrices are particularly simple in the case of two-level systems, where
they can be expanded in the qubit basis ρij := 〈i|ρ̂|j 〉, or as a combination of Pauli
operators (2.20):

ρ̂ =
(
ρ00 ρ01

ρ10 ρ11

)
=

1∑
i,j=0

ρij |i〉〈j | = 1

2
1+ 1

2

∑
α=x,y,z

Sασ̂
α. (2.25)

The set of all physical states with S = (Sx,Sy,Sz) falls inside the Bloch sphere
|S| ≤ 1. The surface of this sphere is formed by pure state (|S| = 1), and its center
is the completely depolarized state S = 0 or ρ̂ = 1

21.
The completely depolarized state is an example of classical state, diagonal den-

sity matrices – ρ10 = ρ∗01 = 0 – which may be constructed as a convex combination
ρ̂ = ρ00 |0〉〈0| + ρ11 |1〉〈1| of preparing state |0〉 with probability P0 = ρ00 and
preparing state |1〉with probability P1 = 1− P0. Compare this now with the super-
position state, |+〉 = 1√

2
(|0〉 + |1〉). This state exists only in the quantum model for

a two-level system. This particular superposition maximizes the off-diagonal ele-
ments ρ01 and ρ10, also known as coherences, recognized as a true signature of
quantumness in states.

Sometimes a quantum system is sufficiently isolated and the timescales of study
are short enough that we can approximate its evolution with a Hamiltonian that
involves just that system. In that case, the unitary evolution of vectors in the Hilbert
space dictates a recipe for updating the density matrix ρ̂(t) = Û (t,t0)ρ̂0Û (t,t0)†.
More generally, a quantum system will get entangled with its environment, suffering
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an incoherent evolution. Under certain physically reasonable assumptions (cf.
Appendix B), the equation that describes this dynamics is the Lindblad master
equation:

∂t ρ̂ = − i
h̄

[Ĥ,ρ̂]+ Lt (ρ̂). (2.26)

The linear superoperator Lt (αρ̂1+βρ̂2) = αLt (ρ̂1)+βLt (ρ̂2), called the Lindblad
superoperator, contains the information about the noise or the environment-induced
decoherence. There are no general prescriptions to write down or even solve this
kind of equation, but in a few cases the coupling is so weak and the environment so
big that it instantaneously loses all memory about the system’s dynamics. This is
the so-called Markovian limit, in which L is independent of time and of the system’s
initial conditions. This limit provides a very simple and very accurate description
of the loss of energy and of quantum coherence for many of the superconducting
circuits that we will study – see, for instance, Section 5.5.2 or 6.1.5.

2.4 Measurements

The axioms of quantum mechanics prescribe the behavior of a quantum system
under a complete measurement of any observable O, also known as Von Neu-
mann or projective measurements. Each observable is associated to a different
Hermitian operator Ô. The eigenvalues that result from diagonalizing this operator
on correspond to the possible measurement outcomes of the measurement. Let
P̂n =

∑
m |on,m〉〈on,m| be the projector onto all quantum states for which the

observable Ô has the value on. This projector is built using eigenstates of the
observable Ô |on,m〉 = on |on,m〉, understanding that one measurement outcome
may be given by many different quantum states, which differ in other generic
quantum properties, here denoted asm. According to quantum mechanics, an ideal
projective measurement of the observable Ô onto a state ρ will produce the outcome
on with probability p(on) = tr(P̂nρ̂). If the measurement is also nondestructive, the
quantum state after the measurement will be projected onto a new density matrix:

ρ̂ → 1

p(on)
P̂nρ̂P̂n. (2.27)

We can highlight other properties and types of measurements. First, we may
realize that the ideal measurement from (2.27) is an instance of a quantum non-
demolition (QND) measurement, one which, if repeated twice on the same system,
always produces the same expected value 〈Ô〉. Ideal QND measurements are one
of the targets for quantum computing setups. In those experiments, we need to
determine the state of the superconducting qubit with certainty, through a projective
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measurement of the qubit’s polarization σ z, that leaves the qubit in a well-defined
state |0〉 or |1〉. This way, we can use the outcome of the measurement as input to
the following steps of quantum algorithms or to error-correction protocols.

Qubit measurements, such as used in those quantum computers, should ideally
be single shot. This means that every time we run the experiment, we obtain a real
value on associated to one measurement outcome, without errors. Note, however,
that even if we obtain a meaningful value every time we measure, the estimation
of 〈Ô〉 or the probabilities p(on) can still be quantum limited, and we may need
to repeat the experiments many times to obtain such estimates with high accuracy.
For instance, the unbiased estimator of the average usingM experimental measure-
ments Ōest = 1

M

∑M
i=1 oni is itself a random variable with a standard deviation that

approaches the quantum uncertainty:

�Ōest = �Ô√
M

. (2.28)

Computing a good estimate means bringing this deviation down to zero, which we
do by repeating the experiment again and again, until�Ōest lays below our desired
tolerance.

In experiments, we rarely find direct projective measurements. More generally,
experiments are designed so that we measure an auxiliary quantum object that
has interacted with and extracted the information from the system we want to
measure. The reason to operate this way is to reduce decoherence. If we connect an
oscilloscope directly to a microwave resonator, the big classical object will quickly
deteriorate the quantum state of the photons that are inside the cavity. It is therefore
more convenient to create a setup such as the one in Figure 2.1, in which we perform
a weak connection between the resonator and a superconducting waveguide that
extracts only a tiny fraction of the photons, which are amplified and fed into a
detector.

Figure 2.1 A resonator or cavity stores microwave photons whose state we wish to
measure. Instead of connecting the measurement apparatus to the cavity, we make
a weak connection between the cavity and an outgoing superconducting cable that,
after passing through an amplifier, brings the signal to the measurement apparatus.
The signal bout is proportional to the cavity signal acavity, but contains vacuum
noise. The measured signal,Gbout+ε, is amplified with a gainG > 1, but contains
additional noise ε from the amplifier.
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Figure 2.2 Quantum circuit for a generalized quantum measurement.

There are two consequences to using such a setup. First of all, we no longer have
a single-shot measurement. Amplification introduces noise in the signal, meaning
that our oscillator will retrieve a measurement on + ε that is affected by random
fluctuating photon noise ε. In absence of systematic errors, those errors average
out 〈ε〉 = 0, and we can still produce meaningful estimates Ō � 1

M

∑
m om, but

the presence of large noise prevents us from determining the quantum state of our
system after the measurement – i.e., the measurement is no longer quantum limited.

The second consequence of indirect measurements is that we need a broader
framework to understand both the measurement statistics and the state of the quan-
tum system after a given measurement outcome. This framework is provided by
generalized quantum measurements, depicted in Figure 2.2.

(1) The system ψ is put in contact with the auxiliary quantum object φ.
(2) Both systems interact through some unitary evolution, Û .
(3) We measure the auxiliary object using a projective measurement Ô.

The generalized measurement or positive operator valued measurement (POVM)
associates measurement outcomes om to operators M̂n that are no longer projectors,
but still satisfy some completeness relation:∑

n

M̂†
nM̂n = 1. (2.29)

The POVM operators determine the statistics of the measurement outcomes
p(om) = 〈M̂†

nM̂n〉, and, if the measurement is nondestructive, also the post-
measurement state of the quantum system:

|ψ〉 → M̂n |ψ〉〈ψ | M̂†
n

〈ψ |M̂†
nM̂n|ψ〉

. (2.30)
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