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Exercise 1 : Optimizing the measurement setup

1. The need of attenuation:

The blackbody radiation present in cables depends on the temperature of a resistor R con-
nected to them. To see this, let us consider a bath at temperature T . The temperature-
dependent mean thermal photon occupation number nBE of the bath at a given frequency
ω/2π is given by the Bose-Einstein distribution:

nBE =
1

exp
(

ℏω
kBT

)
− 1

. (1)

Placing an attenuator that reduces the power of the signal by a factor A, at a tempera-
ture stage T , one relates the input noise photon occupation ni to the output noise photon
occupation no at frequency ω by the following rule:

no(ω) =
ni(ω)

A
+

A− 1

A
nBE(T, ω). (2)

This is to be thought of as a beam-splitter letting 1/A of the signal go through, and adding
(A− 1)/A of the thermal emission from a bath at temperature T .

(a) What is the classical limit of Eq.1?
Hint: Consider ℏω ≪ kBT and apply a first-order Taylor approximation in the denomi-
nator.

(b) Estimate the amount of total attenuation (starting from room temperature) needed to
reach a noise level of nth = 10−3 at a frequency of 6 GHz at the input of the sample, which
has a temperature of 20 mK. Assume that the noise at room temperature is dominated
by thermal noise.

(c) What limits the amount of attenuation that can be used in practical experiments? We
typically distribute 60 dB of attenuation between the 4 K stage, the cold plate at 100
mK, and the base temperature stage at 20 mK. What is the noise photon number you
get for a 20/20/20 dB attenuator distribution at a frequency of 6 GHz?

(d) For each of the attenuators, plot the noise photon occupation number at a frequency
of 6 GHz at the input of the sample as a function of the attenuation if the other two
attenuators are fixed to 20 dB? Explain your observations.
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2. Noise in the amplification chain:

We consider the amplification chain sketched in Fig. 1, which is used to amplify signals on
their way from the superconducting chip towards the room temperature acquisition device.
The chain consists of 1) an effective attenuator with attenuation constant A taking into

Figure 1: Sketch of an amplification chain with 3 stages.

account cable losses, 2) a Josephson Parametric Amplifier (JPA), 3) a High-Electron Mobility
Transistor (HEMT) amplifier, and 4) a room temperature (RT) amplifier. Each amplifier has
a gain Gi, as well as an added noise Ni specifying the effective number of noise photons at
the input of the amplifier (the JPA’s added noise is often negligibly small). The noise is given
in terms of photons according to the table below.
Amplifier Gain(dB) Noise added

JPA G1 = 20 N1 ≪ 1
HEMT G2 = 40 N2 = 14

RT amp. G3 = 40 N3 = 174

The recorded signal is of the form S = a+ h†. Without any input signal, the noise measured
at the output of the chain is

〈
hh†〉 = 1 +Neff.

(a) Write an equivalent single amplifier model with the effective gain Geff and the effective
input noise Neff of the whole chain. Demonstrate that in the limit of large gain of the
first amplifier, the effective noise figure is dominated by the noise of the first amplifier.
Hint: Assume that the attenuator A adds one noise photon due to vacuum noise.

(b) Estimate the chain efficiency η = 1
1+Neff

for A = 1 dB. How close is it to being quantum
limited?

Solution 1 :

1. The need of attenuation:

(a) The classical limit corresponds to ℏω ≪ kBT , that is, the discrete photon energy is small
compared to the spread imposed by temperature. We Taylor-expand the exponential of
a small number x as exp(x) ≈ 1 + x to find the Maxwell-Boltzmann distribution

nBE =
1

exp
(

ℏω
kBT

)
− 1

≈ kBT

ℏω
= nMB. (3)
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(b) We estimate the required attenuation by evaluating Eq. 2. Since nBE(20 mK,2π ·6 GHz)
≈ 5.6 · 10−7, we can ignore the second term of Eq. 2. To reach nth = 10−3 at 6 GHz,
where the input from room temperature (ca. 300 K) corresponds to ni = nBE(300 K,
2π · 6 GHz) ≈ 1000 photons, we need

A ≈ 106 = 60 dB (4)

(c) The heat load due to signal dissipation, compared to the cooling power in the cold stages
of the dilution refrigerator, is the limiting factor. Placing a 60 dB attenuator at the 20
mK stage would, for example, introduce a heat load far larger than the cooling power
at that temperature stage. To reduce heat load at the low temperature stages due to
signal dissipation, one distributes the total attenuation across the different temperature
stages. A common choice is to put 20 dB attenuators at the 4 K, 100 mK and 20 mK
stage.
We first evaluate the Bose-Einstein distribution at each attenuation stage, expecting
n300 K = 103, n4 K = 101, n0.1 K = 6 · 10−2, n0.02 K = 6 · 10−7 noise photons for the
temperatures 300 K, 4 K, 0.1 K, 0.02 K. Using Eq. 2, we see that the number of noise
photons reaching the chip is equal to

((n300 K/100 + n4 K)/100 + n0.1 K)/100 + n0.02 K ≈ 3 · 10−3. (5)

(Here, we approximated (A− 1)/A = 99/100 ≈ 1.)

(d) The result is shown in Fig. 2 Note: One notices that adding attenuation improves the

Figure 2: Calculated thermal photon number at the input of the chip as a function of the attenuation
at the 4 K stage (blue), 100 mK stage (orange) and 20 mK stage (green) for a fixed attenuation of
20 dB at the respective other stages.

result only up to a threshold, which depends on the stage at which this attenuation
is added. Above the threshold the input noise is already lower than the Bose-Einstein
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occupation, and adding more attenuation does not decrease the noise level. A similar
plot is contained in Krinner et al., EPJ Quantum Technol. 6, (2019) as Fig. 2(a).

2. Noise in the amplification chain:

(a) The signal is reduced by the attenuator, and amplified in three stages as follows:

Sout = SinGeff , (6)

where Geff = A−1G1G2G3 is the effective gain of the whole chain.
The noise from each stage is amplified by the following stages, and they add up to the
output noise:

Nout = ((A− 1)/A) +N1)G1G2G3 +N2G2G3 +N3G3. (7)

Note that we accounted for the vacuum noise added by the attenuator. (At finite tem-
perature, an attenuator adds (A− 1)/A nBE(T, ω) of noise (see Problem 1.1). At 20 mK
and 6 GHz, nBE(T, ω) ≈ 10−7, but the attenuator still adds at least one photon from
vacuum fluctuations.)
We refer the noise to the input of the chain by dividing the output noise by Geff :

Neff = A− 1 +N1A+N2
A

G1

+N3
A

G1G2

. (8)

Importantly, aiming to keep the signal to noise ratio close to that of the input requires
to have the amplified noise of the earlier stages surpassing already the added input noise
of the following stage. Using a quantum-limited amplifier where N1 is close to zero, this
means that we require N2A

G1
≪ A − 1 and similarly N3A

G1G2
≪ A − 1. This is achieved in

the limit of large gain G1.

(b) The effective noise referred to the input of the chain is Neff = 101/10 · (1 + 14/102 +
174/106)− 1 = 0.43 photons. The efficiency is η = 70%, close to being quantum-limited
(limit of 1 given by the vacuum fluctuations).
Note: The efficiency determines the number of averaging that is required in an exper-
iment to reach a given statistical standard deviation. The scaling for an amplitude
measurement is that the standard deviation ∆ decreases linearly with the efficiency,
and with the square root of the number of times N a given measurement was repeated:
∆ ∝ 1

η
√
N
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Exercise 2 : Microwave pulse generation by frequency upconversion

As discussed in the lecture and some of the previous problem sets, single-qubit manipulation is
achieved by applying a voltage pulse Vp(t) to the qubit drive line which oscillates at a frequency
resonant with the qubit transition frequency ωge. A typical functional form for such pulses reads

Vp(t) = V0e
−(t/τ)2 cos(ωget+ ϕ), (9)

where ωge = 2π ·6 GHz and τ = 5 ns. Voltage pulses couple to the qubit via dipole-field interactions
where the phase ϕ of the driving field is used to control the axis about which the Bloch vector of
the qubit is rotated.

1. To generate voltage pulses with a controlled envelope, e.g. the Gaussian envelope Vp(t), we
use an arbitrary waveform generator (AWG) with a sampling rate of 1.2 GS/s. What is the
maximum bandwidth of a signal that can be generated by such an instrument?

2. To generate pulses in the GHz regime, one typically uses a frequency mixer, which can multi-
ply two signals. Usually, one multiplies the signal generated by the AWG at an intermediate
frequency (IF) with a continuous local oscillator (LO) field generated by a microwave gener-
ator running at GHz frequency, see schematic Fig. 3(a).

Derive the output signal when applying a continuous frequency of ωLO = ωge + ωIF = 2π · 6.2
GHz to the LO port and the pulse Vp(t) = V0e

−(t/τ)2 cos(ωIFt+ ϕ) with ωIF = 2π · 200 MHz
to the IF port. Calculate the Fourier transform, and plot its absolute value in the frequency
domain. What issue do you see when using the upconverted signal to drive the qubit?

Figure 3: Conventional double balanced mixer, for which the output signal at the RF port is the
product of the signals at the IF and LO port. (b) IQ-mixer, which is composed of two double
balanced mixers, a 90° hybrid splitter, and a microwave combiner. The hybrid splitter divides the
incoming LO signal equally and adds a 90° phase shift for the LO to the quadrature mixer, such
that the signal results in cos(ωLOt− π/2).
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3. To avoid the generation of two sidebands at frequencies ωLO±ωIF, we perform two upconver-
sion processes, according to the IQ-mixing scheme shown in Fig. 3(b). Show that one of the
two sidebands is effectively eliminated in the signal S(ω). What is the motivation for letting
the experimentalist provide the two IF signals I and Q independently instead of generating
the Q input internally in the IQ-mixer by phase-shifting the I input?

4. A drive pulse at the same frequency ωge can also be created with ωLO = 2π · 5.8 GHz. How
do the I and Q input signals need to be modified in this case?

5. We now consider the acquisition of the microwave pulses for the readout of the qubit state.
In the readout output line, the bandwidth of the signal acquisition is limited by the sampling
rate of the analog to digital converter (ADC). Describe briefly how the IQ-mixer from Fig.
3(b) can be used to convert the readout signal from the GHz band down to frequencies within
the bandwidth of the ADC?

Solution 2 :

1. The highest frequency one can generate in the baseband is realized by outputting a string of
{V,−V, V,−V, ...}. This corresponds to a frequency of half the sampling rate, which is called
the Nyquist frequency and is 600 MHz in this case.

2. We take a continuous wave voltage of the form VLO(t) = VLO cos((ωge + ωIF)t) at the LO
port and calculate its product with the IF signal Vp(t) using the trigonometric identity:
cos(x) · cos(y) = 1

2
(cos(x− y) + cos(x+ y)),

VRF = Vp(t) · VLO(t) =
V0VLO

2
e−(t/τ)2 (cos(ωget− ϕ) + cos((ωge + 2ωIF)t+ ϕ)) . (10)

The first cosine terms corresponds to the upconverted pulse at the targeted frequency ωge, the
second term is referred to as the opposite sideband. Let us call its frequency ωr = ωge +2ωIF

to simplify the notation later.

As the cosine function can be written as the sum of two complex exponentials, cos(x) =
eix+e−ix

2
, the Fourier transform of the cosines in Eq. 10 yields delta peaks at positive and

negative frequencies

F{cos(ω0t+ ϕ)} =
1

2
[eiϕδ(ω + ω0) + e−iϕδ(ω − ω0)] (11)

The Fourier transform of a product of two terms in the time domain is the convolution of the
individual Fourier transforms in the frequency domain,

F{S1(t) · S2(t)} = F{S1(t)} · F{S2(t)}. (12)

The Fourier transform of the Gaussian envelope remains a Gaussian up to rescaling

F{e−(t/τ)2} =
√
πτ 2e−(τω/2)2. (13)
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Using Eq. 12 with S1(t) being the Gaussian envelope from Eq. 13 and S2(t) the sum of both
cosines at frequencies ωge and ωr from Eq. 11, we find that the Fourier transform of Eq. 10
is

F{VRF} =
V0VRF

2

√
πτ 2

2

[
e−ϕ−τ2(ω−ωge)2/4 + eϕ−τ2(ω+ωge)2/4 + e−ϕ−τ2(ω−ωr)2/4 + eϕ−τ2(ω+ωr)2/4

]
.

(14)

We plot the absolute value of the spectrum F{VRF} in Fig. 4 for positive frequencies and
observe two Gaussian distributions centered around frequencies ±ωge and ±ωr. Since the
frequency of the opposite sideband is very close to the actual qubit transition frequency ωge,
its presence will introduce significant errors in the control of the qubit state. Removing it by
a filter is technically almost impossible.

Figure 4: Absolute value of the Fourier transform of VRF(t) vs frequency. The gridlines indicate
(from left to right) ωge, ωLO = ωge + ωIF and ωge + 2ωIF.

3. We calculate the output of the mixers at the I-port and the Q-port, VI(t) and VQ(t), respec-
tively, using the trigonometric identity from 2. and sin(x)·sin(y) = 1

2
(cos(x− y)− cos(x+ y)),

VI(t) = cos(ωLOt) · cos(ωIFt) =
1

2
[cos((ωLO − ωIF)t) + cos((ωLO + ωIF)t)] (15)

VQ(t) = sin(ωLOt) · sin(ωIFt) =
1

2
[cos((ωLO − ωIF)t)− cos((ωLO + ωIF)t)]. (16)

From Eq. 16, it is easy to see that by combining VI and VQ, the sideband at frequency
ωLO + ωIF will be eliminated and the output of the RF port has only the desired frequency
component

VRF(t) = VI + VQ = cos((ωLO − ωIF)t). (17)

In general, manufacturers let the user of the mixer provide the two quadratures independently,
as this allows to compensate for imperfections such as uncalibrated phase offsets in the two
signal paths of the IQ-mixer.

7



4. To generate the drive pulse with ωLO = 2π · 5.8 GHz, we need to eliminate the opposite
sideband as in 3. This can easily be achieved by inverting the sign of the IF modulation
signal at either the I or Q input, such that

VRF(t) = VI + VQ = cos((ωLO + ωIF)t). (18)

5. Downconversion is the inverse process to frequency upconversion, where we use the RF and
LO port of the mixer as inputs. We choose the frequency detuning of the LO to the readout
signal applied to the RF port such that the downconverted IF signals are within the bandwidth
of the ADC. The readout signal at GHz frequency gets converted down to the MHz band
where room temperature electronics can now digitize it and record the result of our quantum
measurement.
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