
2025

Solid state systems for quantum information, Correction 4
Assistants : franco.depalma@epfl.ch, filippo.ferrari@epfl.ch

Exercise 1 : The Cooper pair box (CPB) Hamiltonian and the transmon limit

From the second exercise sheet and from the lecture, you should have seen that the CPB
Hamiltonian reads as:

ĤCPB = 4EC

(
N̂ − ng

)2

− EJ cos
(
δ̂
)
,

where N̂ is the charge operator, δ̂ the phase operator, EC the charging energy, EJ the Josephson
energy and ng an offset charge. N̂ and δ̂ are conjugate operators, meaning that their commutator
is [δ̂, N̂ ] = i.

1. Show that [N̂ , eiδ̂] = eiδ̂.

2. Show that eiδ̂ |m⟩ = |m+ 1⟩, where |m⟩ is an eigenstate of the charge operator, i.e. N̂ |m⟩ = m |m⟩.

3. Use the identities from 1. and 2. to show that the CPB Hamiltonian in the charge basis reads

ĤCPB =
+∞∑

m=−∞

[
4EC(m− ng)

2 |m⟩ ⟨m| − 1

2
EJ(|m+ 1⟩ ⟨m|+ |m⟩ ⟨m+ 1|)

]
(1)

4. Numerically diagonalize the CPB Hamiltonian for various ratios of EJ/EC ∈ {1, 5, 10, 30} us-
ing qutip. For this purpose, truncate the Hilbert space at a suitable dimension corresponding
to a maximum charge |mmax|.

• Plot the eigenenergies Eg(ng), Ee(ng), Ef (ng), corresponding to the three lowest-lying
eigenstates |g⟩, |e⟩, |f⟩ of the CPB Hamiltonian as a function of ng.

• For ng = 0, plot the probability pm = | ⟨m|i⟩ |2 to be in charge state |m⟩ for the two
eigenstates |i⟩ ∈ |g⟩ , |e⟩. Convince yourself that you have chosen a sufficiently large
|mmax| in your simulations.

5. From your numerical result from 4., extract the charge dispersion ε = Ege(ng = 0)−Ege(ng =
1/2) of the |g⟩ ↔ |e⟩ transition, where Ege = Ee −Eg, for the four values of EJ/EC , and plot
them as function of EJ/EC .

6. Show that the charge operator has the following representation in the phase eigenbasis {< |δ⟩}:

⟨δ| N̂ |Ψ⟩ = i
∂

∂δ
Ψ(δ), (2)

where ⟨δ|Ψ⟩ = Ψ(δ) is the wave function in phase space. Make use of the charge basis
representation of the phase eigenstates, |δ⟩ =

∑+∞
m=−∞ eimδ |m⟩.
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Solution 1 :

1. We first expand the exponential in the commutator,

[N̂ , eiδ̂] =

[
N̂ ,

∞∑
n=0

1

n!
(iδ̂)n

]
=

∞∑
n=0

1

n!
in[N̂ , δ̂n] =

∞∑
n=1

1

n!
in[N̂ , δ̂n], (3)

with the sum starting at n = 1 since [N̂ , δ̂0] = 0. We next calculate the commutator

[N̂ , δ̂n] = δ̂n−1[N̂ , δ̂] + [N̂ , δ̂n−1]δ̂ (4)

= δ̂n−1 [N̂ , δ̂]︸ ︷︷ ︸
=−i

+δ̂n−2 [N̂ , δ̂]︸ ︷︷ ︸
=−i

δ̂ + [N̂ , δ̂n−2]δ̂2

= ...

= n(−i)δ̂n−1.

Inserting this expression into Eq.3 yields

[N̂ , eiδ̂] =
∞∑
n=1

1

n!
inn(−i)δ̂n−1 =

∞∑
n=1

1

(n− 1)!
in−1δ̂n−1 =

∞∑
n′=0

1

n′!
in

′
δ̂n

′
= eiδ̂, (5)

where we have substituted n = n′ + 1 at the second-to-last equality.

2. Using the commutator from 2., we write

eiδ̂ |m⟩ = [N̂ , eiδ̂] |m⟩ = N̂eiδ̂ |m⟩ − eiδ̂N̂ |m⟩ = N̂eiδ̂ |m⟩ −meiδ̂ |m⟩ (6)

⇒ N̂
(
eiδ̂ |m⟩

)
= (m+ 1)

(
eiδ̂ |m⟩

)
. (7)

From the last equation, we see that the state eiδ̂ |m⟩ is an eigenstate of the charge operator
N̂ with eigenvalue m+ 1, and therefore has to be identical to |m+ 1⟩.

3. We write ĤCPB in the charge basis by inserting twice the identity operator 1 =
∑∞

m=−∞ |m⟩ ⟨m|,

ĤCPB =
+∞∑

m′=−∞

|m′⟩ ⟨m′|
(
4EC(N̂ − ng)

2 − EJ cos
(
δ̂
)) +∞∑

m=−∞

|m⟩ ⟨m| (8)

=
+∞∑

m,m′=−∞

[
|m′⟩ ⟨m′| 4EC(N̂ − ng)

2 |m⟩ ⟨m| − |m′⟩ ⟨m′|EJ cos δ̂ |m⟩ ⟨m|
]
. (9)

We evaluate the matrix elements

⟨m′| 4EC(N̂ − ng) |m′⟩ = 4EC(m− ng)
2 ⟨m′|m⟩ = 4EC(m− ng)

2δm′,m (10)

⟨m′|EJ cos δ̂ |m⟩ = 1

2
EJ ⟨m′| (eiδ̂ + e−iδ̂) =

1

2
EJ

(
⟨m′| eiδ̂ |m⟩+ ⟨m| e−iδ̂ |m′⟩

)
(11)

2.
=

1

2
EJ(⟨m′|m+ 1⟩+ ⟨m′ + 1|m⟩) = 1

2
EJ(δm′,m+1 + δm′+1,m), (12)

2



Figure 1: The first three energy levels of the CPB Hamiltonian as a function of ng for four different
values of EJ/EC (left), and the probabilities pm to be in charge state |m⟩ for ng = 0 for the ground
and first excited state (right).

where δi,j is the Kronecker symbol (δi,j = 1 if i = j and 0 otherwise). Inserting the expressions
for both matrix elements into Eq.8 and evaluating the Kronecker symbols yields

ĤCPB =
+∞∑

m=−∞

[
|m⟩ 4EC(m− ng)

2 ⟨m| − |m+ 1⟩ 1
2
EJ ⟨m| − |m− 1⟩ 1

2
EJ ⟨m|

]
(13)

=
+∞∑

m=−∞

[
4EC(m− ng)

2 |m⟩ ⟨m| − 1

2
EJ (|m+ 1⟩ ⟨m|+ |m⟩ ⟨m+ 1|)

]
, (14)

where we have used
+∞∑

m=−∞

|m− 1⟩ 1
2
EJ ⟨m| =

+∞∑
m̃=−∞

1

2
EJ |m̃⟩ ⟨m̃+ 1| (15)

with m̃ = m− 1 in the last term (which is possible because the summation runs from −∞ to
+∞).

4. See solution jupyter notebook provided on Moodle. The calculated energy levels as a function
of ng are shown in the left plot of Fig.1. For ng = 0, the probabilities pm to be in charge state
|m⟩ are shown for the ground state and first excited state in the right plot of Fig.1.

5. See solution jupyter notebook provided on Moodle. Since the largest (smallest) |g⟩ ↔ |e⟩
transition frequency is obtained for ng = 0 (ng = 1/2), we calculate the charge dispersion as

ε = (Ee(ng = 0)− Eg(ng = 0))− (Ee(ng = 1/2)− Eg(ng = 1/2)). (16)

The result is plotted in Fig.2 as a function of EJ/EC . We observe that ε is efficiently sup-
pressed as EJ/EC increases (transmon regime). We evalutate ⟨δ| N̂ |ψ⟩ by expanding ⟨δ| in
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Figure 2: Charge dispersion ε normalized to the |g⟩ ↔ |e⟩ transition frequency at ng = 0 as a
function of EJ/EC .

the charge basis and applying the charge operator N̂ from the right,

⟨δ| N̂ |ψ⟩ =
+∞∑

m=−∞

e−imδ ⟨m| N̂ |ψ⟩ =
+∞∑

m=−∞

me−imδ ⟨m|ψ⟩ . (17)

On the other hand, we have

i
∂

∂δ
ψ(δ) = i

∂

∂δ
⟨δ|ψ⟩ =

+∞∑
m=−∞

i
∂

∂δ
e−imδ ⟨m|ψ⟩ =

+∞∑
m=−∞

i(−im)︸ ︷︷ ︸
=m

e−imδ ⟨m|ψ⟩ , (18)

which equals the right-hand side of Eq.17.
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