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Solid state systems for quantum information, Correction 4

Assistants : franco.depalma@epfl.ch, filippo.ferrari@epfl.ch

Exercise 1 : The Cooper pair box (CPB) Hamiltonian and the transmon limit

From the second exercise sheet and from the lecture, you should have seen that the CPB
Hamiltonian reads as:

~ ~ 2 ~
Hepp = 4B <N _ ng) — Ej; cos (5)

where N is the charge operator, § the phase operator, Ec the charging energy, E; the Josephson
energy and n, an offset charge. N and ¢ are conjugate operators, meaning that their commutator

~

is [0, N] = 1.
1. Show that [N, ei] = .

2. Show that e [m) = |m + 1), where |m) is an eigenstate of the charge operator, i.e. N |m) = m|m).

3. Use the identities from 1. and 2. to show that the CPB Hamiltonian in the charge basis reads

+o00
. 1
Hors = ) [4Ec<m —ny)* Im) (m| = SE(fm+ 1) | + |m) (m+1)| (1)
4. Numerically diagonalize the CPB Hamiltonian for various ratios of £;/FE¢ € {1,5,10,30} us-
ing qutip. For this purpose, truncate the Hilbert space at a suitable dimension corresponding

to a maximum charge |mqz|-

e Plot the eigenenergies E,(ny), E.(ny), Ef(n,), corresponding to the three lowest-lying
eigenstates |g), |e), | f) of the CPB Hamiltonian as a function of n,.

e For n, = 0, plot the probability p,, = | (m|i) |* to be in charge state |m) for the two
eigenstates |i) € |g),|e). Convince yourself that you have chosen a sufficiently large
|Mimaz| in your simulations.

5. From your numerical result from 4., extract the charge dispersion € = E,.(ng = 0) — Eze(ng =
1/2) of the |g) <> |e) transition, where E,. = E. — E,, for the four values of E,;/E¢, and plot
them as function of E;/E¢.

6. Show that the charge operator has the following representation in the phase eigenbasis {< |6) }:

. 0
O|N|U) =i—=U( 2
(51 |0 = i (5), )
where (§|U) = W(J) is the wave function in phase space. Make use of the charge basis
representation of the phase eigenstates, |0) = .7 ¢ |m).
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Solution 1 :

1. We first expand the exponential in the commutator,

T ib Aoo]‘-An oo]‘~nAAn ool-nAAn

[N’eé]:[N’Zoﬁ(ld)]:ZOEZ [N,(S]:ZEZ [N76]7 (3)

n= n= n=1
with the sum starting at n = 1 since []\7 ; 50] = 0. We next calculate the commutator
[N, 87 = 5[, 8] + [N, 6" (4)
= 0" V[N, 8] +0"2[N,6]6 + [N, 6" 2]b
—7 -

= n(—i)o"!

a2 — 1 n -\ Sn— S 1 n—1tn— — 1 N i6
[N,e5]:Z—'z n(—i)o 1:Z(n_1)!z ) lzzm@ 0" = e, (5)

n=1 n=1 n'=0
where we have substituted n = n’ 4+ 1 at the second-to-last equality.
2. Using the commutator from 2., we write
e |m) = [N, €] |m) = Ne®® |m) — e N |m) = Ne® |m) — me® |m) (6)
= N <ei‘§ |m>) = (m+1) (eis |m>) . (7)

From the last equation, we see that the state eid |m) is an eigenstate of the charge operator
N with eigenvalue m + 1, and therefore has to be identical to |m + 1).

3. We write Hepp in the charge basis by inserting twice the identity operator 1 = Yoo Im) (m],

. +oo R R +o00o

fers = |m') | (4B(N = g = Eycos(8)) > [m) m] ®)
- A A
= 3 [ (0 ABC(N = )2 m) (m] — (') | By cosdm) ml] . (9)
We evaluate the matrix elements
(m'|4Ec(N — ny) |m') = 4Ec(m —ng)? (m/|m) = 4Ec(m — ng)*0n m (10)
o 1 S & 1 s e
(| By cosd [m) = 5 By (m'| (¢ + ™) = 2 £ ((m’| e |m) + (m| e |m'>) (11)
1 1

= SE((m/lm+ 1) + (m' + 1m) = S Bt + 6wsrm), (12)



E/Ec=1 EfEc=5 E/Ec=1 EfEc=5

=) 1.0 A .
= 2 - . = - o) = g)
< /\/\ = le) le)
3 S
w1 A d o~~~ 5 051 i
S e
w j
- N\ - o
LE 0 T T T T T T 0 0
E//Ec=10 Ej/Ec =30 Ej/Ec =10 E)/Ec =30
g 2 s 107 ) ] )
G~ 7= =
3 2
W1 1 S 0.5 1 .
©
3 :
o O
L 0 - T T T I T T 0.0 |
-1 0 1 -1 0 1 -5 0 5 -5 0 5
Offset charge ngy (2e) Offset charge ng (2e) Charge eigenvalue (2e) Charge eigenvalue (2e)

Figure 1: The first three energy levels of the CPB Hamiltonian as a function of n, for four different
values of E;/E¢ (left), and the probabilities p,, to be in charge state |m) for n, = 0 for the ground
and first excited state (right).

where ¢; ; is the Kronecker symbol (6; ; = 1if i = j and 0 otherwise). Inserting the expressions
for both matrix elements into Eq.8 and evaluating the Kronecker symbols yields

Hopp = 3 [|m> ABe(m — ) (]~ |m 4+ 1) S By (] — |m — 1) 2 <m|] (13)
= 3 [4Belm g ) ] = 3 (1) ol o) 1) (1)

where we have used
> I =1y 3By ] = > S o i) (41 (15)

with 7 = m — 1 in the last term (which is possible because the summation runs from —oo to
+00).

4. See solution jupyter notebook provided on Moodle. The calculated energy levels as a function
of ny are shown in the left plot of Fig.1. For n, = 0, the probabilities p,, to be in charge state
|m) are shown for the ground state and first excited state in the right plot of Fig.1.

5. See solution jupyter notebook provided on Moodle. Since the largest (smallest) |g) <> |e)
transition frequency is obtained for n, = 0 (n, = 1/2), we calculate the charge dispersion as

e = (Ee(ng =0) — Ey(ng = 0)) — (Ee(ng = 1/2) — E4(ny = 1/2)). (16)

The result is plotted in Fig.2 as a function of E;/Ec. We observe that ¢ is efficiently sup-
pressed as F;/E¢ increases (transmon regime). We evalutate (6| N [¢) by expanding (J] in
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Figure 2: Charge dispersion ¢ normalized to the |g) <> |e) transition frequency at n, = 0 as a
function of E;/FE¢.

the charge basis and applying the charge operator N from the right,

(6| N [¢) = Z e (m| N ) = Z me™" (mly) . (17)

m=—00 m=—00

On the other hand, we have

0 5_65 _+Oo 0 —imd _+Oo : : —imé 18
i) =g 0 = 3 iz i = 3 i) ), (19

which equals the right-hand side of Eq.17.



