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1 Exercises

Exercise 1 : Capacitance of a coplanar plate capacitor

Superconducting circuits are based on inductive and capacitive elements patterned into a super-
conducting thin film, which resides on a dielectric substrate. Here, we estimate the capacitance and
the dipole moment of a coplanar, parallel plate capacitor made of two rectangular pads, see Fig. 1.
By combining such capacitors with inductive elements, one can e.g. build on-chip LC resonators.

1. Estimate the order of magnitude of the capacitance between the two pads of this element.
Apply this to typical values a = 300 um, b = 400 pm, [ = 100 pm, film thickness ¢ = 150 nm,
and relative dielectric constant e, o 10. Assume for simplicity that the electric field lines
extend mainly into the substrate and that the substrate thickness is large compared to the
one of the capacitor.

2. Estimate the inductance required to obtain a lumped element resonator with a resonance
frequency of f ~ 6 GHz?

3. Estimate the dipole moment of this capacitor for a single Cooper pair located on one of the
islands. The dipole operator in this example is given by d = [() with [ in this case being the
separation between the two pads and @) is the charge.

4. Calculate the charge zero point fluctuation, defined as Qzpr = @/%, where Z = \/g . How
does it compare to a single Cooper pair?

Figure 1: Sketch of a capacitor formed by two pads of a superconductor (red) on an insulating
substrate (grey).



Figure 2: Cross section through the coplanar plate capacitor with the new variables a’ and " being
introduced for the process of conformal mapping, see https://arxiv.org/pdf/1712.05079.pdf. The
green field lines indicate a simplified distribution of the electric field E.

Solution 1 :

1. Since the thickness of the superconductor is about three orders of magnitude smaller than all
other dimensions, we can neglect the effect of the thickness for the following calculations and
also assume that all electric field lines below the two plates are located within the dielectric
substrate. We sketch the electric field distribution in Fig. 2 assuming a static electric potential
with opposing sign +¢g on both plates. All electric field lines start and end perpendicularly
at the conducting plates of the capacitor and are distributed equally in both the vacuum and
the substrate independently from the value of the dielectric constant e,.

Since the total energy stored in volume V' in the electric field U = [, ege,|E[*dV = LCA¢]
is proportional to the dielectric constant €., the contribution of the electric field lines through
the vacuum to the total energy can be neglected.

We can map the situation of the electric field onto two parallel plates with a separation of
d = [ and an area of A = ab and estimate the capacitance to be:

A F 300 10~%m - 400 - 10~
O~ epe, > = 881071210 — - m m

- ~ 100 - 10~1F = 100 fF. 1
d m 100 - 10-%m 00-10 00 (1)

By assuming a separation of d = [, we actually overestimate the total capacitance since the
majority of the electric field lines in the coplanar structure do not directly connect to the
plates at a separation of [.

Additional Information: A more precise estimation of the capacitance can be obtained
from the theory of conformal mapping, see https://arxiv.org/pdf/1712.05079.pdf. Based on
the dimensions o’ and ¥’ in Fig. 1, we can introduce a geometric ratio k = a’/b’ and calculate
the capacitance C(k) according to the theory of conformal mapping. In Fig. 3, we compare
the obtained capacitance C' to our original estimate based on parallel plates with d = [ and
also to the case of taking d as the distance of the center of both plates, d =1+ b. We realize
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Figure 3: Total capacitance C' as a function of the geometric ratio k for the different estimations
methods. The dashed line indicates the geometric ratio resulting from the dimensions considered
in this exercise.

that the initial approximation using d = [(d = [+ b) overestimates (underestimates) the total
capacitance C' for k < 0.4. For larger geometric ratios k > 0.4, the assumption of having two
equivalent parallel plates breaks down, since the size of the plates is small compared to their
separation.

2. The resonance frequency of an LC-resonator is given by w = 1/v/LC. Thus we would need
an inductance of

1 1

L g =
w?C (2m-6-1091) . 101342

~ 107°H = 10 nH (2)

3. The dipole is oriented from one pad to the next. We can estimate its magnitude as being
roughly the separation distance, [, multiplied by the charge, which we take as 2e for a Cooper
pair. We get d =~ (2¢)l =2-1.6-107"-100-10°C m ~ 3 - 10723C m.

0
27

with Z = /L/C. One finds an impedance of about 300 Q and Qzpr =~ 4 - 107*°C, which is
close to 2e.

4. We can calculate the zero point fluctuations of the charge for our oscillator with Qzpr =



Exercise 2 : Input-output theory

We consider an LC-resonator which is capacitively coupled with a rate of key; through capacitor

C. to a semi-infinite transmission line with a characteristic impedance of Z; = 50€2. The LC-
resonator hqs an internal loss rate of ki, and is depicted in Fig.4. We consider a classical cqherent
input field (b (t)) = Bine ™! traveling towards the LC-resonator, as well as an output field (o, ())
being reflected from it. The equation of motion, as a function of time, for the system operator
a = a(t) reads

ad 7/ ~ N K; t —|— K, t A A~

a = ]t”L |: sys;a] - %CL + V Hextbin (3)
with I:.fsys = hwpa'a being the system Hamiltonian of the LC-resonator. The boundary condition
which relates the output to the input field is

Bin(t) + l;out (t> = \/@d(t) (4)

1. Calculate the commutator [I:Isys, d] and use the Ansatz (a(t)) = ae™™! for the time depen-

dence of the expectation value of the system operator and simplify the equation of motion.
Express the amplitude « of the expectation value of the system operator as a function of the
angular frequency w and the amplitude of the input field (;,.

2. Solve for the frequency dependent reflection coefficient Si;(w) = %’—““;

3. Plot the squared absolute value, and the real and imaginary parts of the reflection coefficient
S11(w) for a resonator with parameters wy/2m = 6 GHz and Key/2m = 5 MHz. Use three
different internal loss rates rates of ki/27m € {0,5,100} MHz. What changes when the

internal loss rate is increased? Discuss all three cases.
We now consider an LC-resonator which is capacitively coupled to two semi-infinite trans-

mission lines, as shown Fig. 5.

<i72,out

4. Calculate the transmission coefficient Sg; (w) = 0 >>. Show that the transmission coefficient
1,in

So1(w = wp) — 1 for a lossless LC-resonator.

b —, KC
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out € Z C
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Figure 4: Electrical circuit of an LC-resonator capacitively coupled to a semi-infinite transmission
line for a measurement of the reflection coefficient Si;.
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Figure 5: Electrical circuit of an LC-resonator capacitively coupled to two semi-infinite transmission
lines for a measurement of the transmission coefficient Ss;.

5. Plot the squared absolute value, and the real and imaginary parts of the transmission coef-
ficient Sy (w) for the same parameter values as in 3. In what way do the results differ from
those for the reflection coefficient in 3.

Solution 2 :

1. We calculate the commutator by using [a,a'a] = a:
[a, Hyys) = hwola, ala] = hwy (al[a, a] + [a, a']a) = hwga. (5)

We take the expectation value of equation 3 on both sides and obtain
Kext 1 Kint

(a(t)) = —iwo (a(t)) — ———— (alt)) + Vkex (bin(t)) (6)

Using the Ansatz (a(t)) = a-e ™" and its time derivative (a(t)) = —iw (a(t)), we can rewrite
the equation above as,

) s . i K+ i .
—jwa - e = —jwpa - et — T’ya-e Wt KB - e (7)

We can eliminate the harmonic time dependence e=** and simplify the equation of motion to

o = \/E Bin- (8)

“2ﬂ —i(w — wp)

2. We start by taking the expectation value of the boundary condition and obtain 3;, + Bout =
Vka. Based on equation 8 we now write the output field as a function of the input field,

Bout:\/ga_ﬁin:(ﬁ_ﬂ " )_1>6in:(7+i(u}_wo>)ﬁin- (9)

—i(w — wp Y — i(w — wo)

Now we can directly calculate the reflection coefficient Si; as a ratio of the output and input

field,
k= ; _ 1
511<W) _ <bout> _ Bout _ H_?_,y +Z<w wo) _ K . L . (10)
<bin> ﬁin 5 —’L(w —wo) /i—l—’y 3 +ZI€OT’V

5



1.00 A 1.0 1.0 1

0.75 4 0.5 - 0.5 4
o ~ U?

= 0.50 2 0.0 5> 0.0
n i I
- — y=0MHz b E

0.25 4 — y=5MHz =0.5 A = =0.5 A

— =100 MHz
0.00 4 —-1.01 —1.0 A
T T T T T T T T T T T T T T T
5.8 5.9 6.0 6.1 6.2 5.8 5.9 6.0 6.1 6.2 5.8 5.9 6.0 6.1 6.2
Frequency, w/2m (GHz) Frequency, w/2m (GHz) Frequency, w/2rm (GHz)

Figure 6: The squared absolute value, real part, and imaginary part of Si; for a resonator with
wo/2m = 6 GHz, Kexi/2m = 5 MHz, and the three loss rates ki, /27 € {0,5,100} MHz (black, blue,
red).

3. The squared absolute value, real part and imaginary part of the reflection coefficient Sy, are
shown in Fig. 6. With a small internal loss rate v < x, we have an overcoupled resonator,
where the decay is dominated by the coupling to the transmission line, and the squared
absolute value of the reflection coefficient |S1;|? is independent of w (see v = 0). For similar
rates v &~ k, we obtain a critical coupling for which the load impedance is matched to the
source and we observe a reflection close to zero at wy. When the decay is dominated by the
internal loss rate v > &, the absolute value of the reflection coefficient at wy is between the
overcoupled and the critically coupled case.

4. We begin formulating the equation of motion for the case of two coupled ports with x; =
Ko = /2 and loss rate 7,

d e —%[a, Hsys] - %ax + \/K/_lbl,in - %a’ + \/Kl_le’in - %af (11>
) { K+ K
Q= _ﬁ[a, Heys] = —5 ot \/;(bl,in + bain).- (12)

We take the expectation value of equation 12 on both sides and obtain

(a() = — ey (alt)) — "2 Gal) + \/§<<bl,m<t>> + {bain(®))). (13)

Using the Ansatz, (a(t)) = a - e ™" and following the same procedure as in question 1., we

obtain
K

— 2 ) )
o = "{Zﬂ _ z(w — (,L)(]) (/817111 + /82,1n)- (14)

Now, we take the expectation value of the boundary condition for the second port yielding

52,out - \/ga - ﬁQ,in' (15>

Finally, we solve for the transmission coefficient Sy;(w) under the constraint that £y, = 0

<b2,out> _ B2,out _ /{/2
(b1in) Brin T —i(w —wp)

Sgl(CL)) = (16)
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Figure 7: The squared absolute value, real part, and imaginary part of Sy for a resonator with
wo/2m = 6 GHz, Kext/2m = 5 MHz, and the three loss rates ki, /27 € {0,5,100} MHz (black, blue,
red).

We can see that the transmission coefficient S5, approaches one for v = 0 and w = wy

H/Q w—rwo K?/2 ~v—0
So1 = + : = — = L (17)
T

5. The squared absolute value, real part and imaginary part of the transmission coefficient S,
are shown in Fig. 7. Compared to the measurement of the resonator in reflection, the squared
absolute value of the transmission coefficient |Sy;|? is always minimal unless the resonator is
driven close to wy.



Exercise 3 : Coupled-cavity Arrays

Figure 8: Coupled cavity array made of a chain of coupled L.C resonators. The figure is taken from
https://arxiv.org/abs/2403.18150.

In this exercise we study the transmission coefficients of coupled cavity arrays. We consider the
system described in Fig. 8, which is chain of coupled L LC resonators.

1. Quantize the circuit and write down the equivalent Hamiltonian in terms of bosonic creation
and annihilation operators a, and d}.

2. Assume periodic boundary conditions and diagonalize the Hamiltonian by passing in Fourier
space by means of the momentun representation of the creation and annihilation operators

X 1 o ik p ot ik
y = —= ape’"**, a, = —— a,e ", 18

3. Suppose that now all the resonators have an intrinsic decay rate equal to ki, and that the
first and the last resonators, due to the coupling with external feedlines, have an additional
external decay rate equal to key. Write down the input-output equations for the intracavity

field (ay).
4. Re-write the input-output relations in the compact form
(@) = M (19)
5 (@) = iM(a),

where M is a L x L non-Hermitian matrix. Show that it is possible to diagonalize M with
a matrix transformation, obtaining eigenmodes and eigenfrequencies of the system. Numer-
ically diagonalize M for chains with L = 10 and L = 100 resonators. Discuss the physical
interpretation of the system’s eigenfrequencies, in light of what you found in point 2.
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5. We now want to explore the response of the system to the injection of external photons,
that we model with an external classical drive on the first cavity, (b (t)) = Bne™!. Modify
the input-output equations to account for the presence of the external drive. Derive the
transmission coefficient S) ;(w) in terms of the eigenvectors and eigenvalues of M. Plot
S1..(w) as a function of the drive frequency w for chains of L = 10 and L = 50 resonators.
Use the following parameters: wo/2m = 6 GHz, kiy/27 = 100 kHz, Key/2m = 10 MHz,
g/2m = 200 MHz.

Solution 3 :

1. The Hamiltonian of the coupled-cavity array reads (h = 1)

L-1
o= Zwoaeae g Z (%Haf + aéal“rl) (20)
=1 =1

which coincides with a tight-binding chain.

2. We now diagonalize the above Hamiltonian assuming periodic boundary conditions. Since
H (once periodic boundary conditions have been assumed) is space-translational invariant, a
Fourier transformation diagonalizes it. More specifically, we consider the Fourier transform
of the creation and annihilation operators as

A 1 o ik N ot ik
a:—gae“’”, a:—gae””. 21

By plugging the above identities in the Hamiltonian we write down

i _ W ZZ%G  —ize(kh—k') _% Z [a e —izg(k—k') —zk_l_a a ezwg(k—k’)eik’]
(=1 kK —1 kK (22)

=3 woifar - g j(a,take*““ + a,take““) =Y e,
k k k

where £, = wp—2g cos(k) is the tight-binding dispersion relation. To pass from the first to the
second line we used the indentity % Zle ewe(k=k) — §(k — k'). Notice that, in Fourier space,
the frequencies of the coupled-cavity array are contained in the interval [wy — 2g, wy + 2¢].

Mh

N

3. The input-output equations for the bare coupled-cavity array read

ad oA ~ /io N
oy = il ag = =, (23)

where Kiot = Kint + Fext if £ = 1, L and Koy = Kine Otherwise. If we compute the commutator
we obtain the following equation for the field’s coherence (ay)

Oag)
ot

Rtot

T2 G + g ) + ()] (24)

<w0+

9



4. We now introduce the vector of the field coherences (@) = [(dy), ..., (az)]T. The above input-
output equation straightforwardly becomes

o . R
O (@ = M@, (25)
where
Wo — %(ﬁint + Kvext) g 0 e 0
9 Wo — 5Kint g e 0
M = 0 g wo — 3Kint 0 (26)
0 0 0 S W — %(Hint + Kext)-

Notice that M is non-Hermitian. Now we introduce the transformation ¢/ which diagonalizes
M, UMU™ = D (since M is non-Hermitian, U is not necessarily unitary), being D the
diagonal matrix containing the (complex) dressed frequencies (wy, ...,y ). Then we have that

u gt (@) = iUM(d) = i(UMUU(G) = iDU(a). (27)

We can then formally write the solution of the input-output equations as

(ag) () = € {ag)(0). (28)

The eigenfrequencies w, are complex numbers with a real part which is the true frequency
of the /-th mode, and a purely imaginary part which represents a linewidth. In particular,
Wy # wy because of modes’ hibridization, and you can check that wy € [wo — 2g, wo + 2g], while
the imaginary part coincides with /2.

5. Now we derive the transmission coefficient S ;(w) (which is a quantity that can be easily
measured in the lab) for the coupled cavity array. The formal definition reads

S10(w) = <f§’f“t>>. (29)

Let’s compute <5L70ut> using input-output theory. The input-output equations reads

da ~ ot
% = l[H, (Alg] /{t L Ay + +/ Hextblnél L (3())

In matrix form, once expectation values of operators are taken, they read

0 2, oy A
5 (@ = IM(@) + v/Fext (bin) - (31)

We now propose the coherent ansatz for the expectation values of the bosonic fields, namely
<Ei) = '@, where w is the drive frequency of the bin mode. By injecting the ansatz in the

above equation we obtain
(]lw - )& = \/ Hextﬁm (32)

10
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Figure 9: Transmission spectrum of the coupled cavity array S 1, as a function of the drive frequency
and for the parameters wy/2m = 6 GHz, Ky /27 = 100 kHz, Koy /27 = 10 MHz, g/27 = 200 MHz.

To find @, we need to invert the matrix (1w — M). This can be done by expanding M in its
eigenmodes and eigenfrequencies. We have that

~ 1Rtot

M= "Ep )],  with By =& - o (33)
k
and |1y) are the eigenmodes of the system. At this point
(o= M) = 3 [0 = @)+ 752 (34
k
and since the eigenmodes span a L-dimensional orthonormal basis we can write
(lw—M)" = zk: = gi ’“)Xf’im 7 (35)

And finally we have

Z \/ Rext ‘wk <wk| B‘m. (36)
k

— wk + Z’itot/Q

To find the transmission coefficient, we project @& on the computational states |1) and |L),
which are just |1> (1,0,0,...,0)T, and | L) = (0, ...,0,0,1)T. We finally use the input-output

relation /8 Lout = /BL in — Fext@ (Where ngin = 0) and the transmission coefficient reads
Z-"’{'ext<1 |wk> <wk |L> Z‘/iext]\41 L
Siplw) = g — : = g — - . 37
11(w) p (W — Wk) + iKgot/2 (W — W) + 1Kot /2 (37)

If we take |S1 1| we get a sum of peaks centered at the frequencies of the eigenmodes wy, with
a linewidth given by k., and an amplitude controlled by the external dissipation rate reyt
and the matrix elements of the eigenmodes M 1.
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Exercise 4 : Superconducting loops

In the superconducting state of a metal, the electrons close to the Fermi energy pair up with
opposite spin and momentum to form Cooper pairs. All the Cooper pairs will have the same
energy and they realize a macroscopic quantum state across the entire piece of the superconductor.
Because this superconducting condensate is a coherent quantum state, it can be described by a
wavefunction, which takes the form of

Y(r) = /nse? (38)

where r is the position inside the superconductor, ng is the density of the superconducting Cooper
pairs and ¢(r) is the phase of the wavefunction. While inside the superconductor the amplitude
of the wavefunction ,/n, is constant, the phase ¢(7) can change as a function of position. In this
problem, we investigate how the phase behaves in a cylindrical superconductor in magnetic field.

1. In class, we saw that the change in phase with a current flowing in a superconductor from a
point X to Y was defined as:

Oxy = %/X p(r) - dr (39)

where p = 2mwv + 2e A in a magnetic field B, with A being the vector potential respecting
the relation V X A = B. We consider a thin cylindrical superconductor with radius R
and long axis oriented along the z direction (see Fig. 10). The external magnetic field also
points along the z axis, and has a magnitude of By such that B = (0,0, By) in the Cartesian
x —y — z coordinate system. Importantly, the choice of the vector potential A is not unique;
as long as it satisfies that B = V X A, the vector potential describes correctly the system.
Consequently, the phase of the superconductor is also not unique, which is not surprising
because the phase of a wavefunction is not an observable quantity. In general, the vector
potential can be changed by a gauge transformation such that

A = A+ Vy, (40)

Figure 10: Top view of the cylindrical superconductor.
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where y is a scalar function. Here, we consider the Coulomb gauge, i.e. Vy = 0, so that
A= (—yB()/2, (L’Bo/2, O)

Knowing that the current density J is given by J = 2en v, write the phase difference as a
function of J and A. Then show that the magnetic flux through the loop is quantized, by
integrating over a closed loop and using the fact that the superconducting phase is periodic.

. Now, let us consider a superconducting loop that contains two Josephson junctions (JJs), as
depicted in Fig. 11, which is called a superconducting quantum interference device (SQUID).
The current through a JJ can be described by the first Josephson equation:

1(8) = Iysin(6), (41)

where [ is the critical current of the junction, which depends on its geometry, and ¢ is the
phase difference between the superconductors before and after the junction.

D

I1 >

in 101

superconductor super-
conductor
Iy o

) ext

junclior

—_—

D,

Figure 11: SQUID loop.

(a) Assuming that both JJs have the same critical current, what is the total current through
the SQUID as a function of the phase differences §; and &5 across JJs 1 and 2, respec-
tively?

(b) Now we want to investigate the phase across the loop. In question 1., the gauge choice
for A did not matter, since the contribution of y vanishes when integrating over a
closed loop. Since we now have two JJs in the loop, we cannot take a closed loop
integral through the superconductor anymore. Therefore, we have to redefine the phase
difference ¢ such that it becomes gauge invariant:

o Y
5= v —px — o / Ar)dr, (42)
0JX

where px and ¢y are the superconducting phases before and after the JJ, respectively.

Calculate the phase change across the SQUID by splitting the integral into four parts,
two parts through the superconductor and one part across each JJ.
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(c) Using the result from a) and b), write the current total current through the SQUID as
a function of the magnetic flux through the loop. Discuss how this result can be used to
tune SQUIDs in a real device.

Solution 4 :

1

2.

. We can solve J = 2en,v for J and insert it in p = 2mwv 4 2e A to get

Y 27T Y
Apyy — / Jrydr + = [ Apr)dr,

X Qy Jx

heng
where we used the magnetic flux quantum &y = h/2e.

The first integral vanishes, because the current in the superconductor is zero, assuming it is
thicker than the London penetration depth. This can be explained by using Ampére’s law
J = 1oV x B and the Meissner effect, which states that external magnetic fields are repelled
from a superconductor. This is achieved by circular currents induced in the surface of the
superconductor, screening the magnetic field, which leads to an external decay until magnetic
field vanishes completely. Thus, the first integral vanishes only, when we choose a contour
inside the superconductor.

The second integral can most easily be solved by changing to polar coordinates with
wy = (—sin(f), cos(0),0), x = Rcos(f) and y = Rsin(6):

o [T o1 [*" B, d
A = — A-u Rd@z—% — R%*df = 2r— = 2mn,
T8 ’ Do Jo 2 P,

where we have used ® = BymR? for the magnetic flux through the loop and the fact that the
superconducting phase is 2m-periodic. From this we can see that the magnetic flux through
a superconducting loop is always equal to a multiple of the magnetic flux quantum ®,. This
is ensured by superconducting currents in the surface of the superconductor.

(a) We can just add up Eq.41 for two junctions with a critical current of I;/2 and get

Fue = I+ o = 3 in(6) +sin(02) = o (eos (252 ) sn (252 ).

using trigonometric identities.

(b) To get the phase change through a SQUID, we use the same strategy as in question 1,
but this time we have to split the loop integral into four parts:

ﬁVqu%—%%u%—%mww—%ww%—w>

For the phase difference across the superconductor, we get

2 m ¢
e — Op = — Ad Jd
14 b <I>0/b T hens/b "

2 [¢ m @
Y — . Ad Jdr.
14 ¥d q)o/d T hens/d "
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For the phase difference across the JJs, we use the definition of the gauge invariant phase
difference given in Eq.42

oy~ pu =01+ — | Adr

gOd—QOC—(SQ—i‘—/ Ad’l"

Summing up all the segments, we get

2
%chdr—an—52—51+—W]{Adr+ o Jq{Jdr,
c Dy Jo heng Jo

where C’ is the incomplete contour excluding the path through the JJs.

Strictly speaking, this time the current density is not always zero along C’, but if we
assume that the JJs are sufficiently small (much smaller than the London penetration
depth of the superconductor), the external magnetic field is sufficiently suppressed by
the two sides of the superconductor enclosing the JJs, so current density is indeed zero
and the integral vanishes again.

Thus, we now have

)
52—51:2750+2Wn

Inserting the result from b) into the result from a) for the total current results in

Td\ | T
Lo = I (cos <<}To) sin (61 + E))

Using theagieﬁn‘i/tion of the inductance V' (t) = Lgl Lgé gf and the second Josephson

equation g7 = g~ we can derive the inductance of the SQUID:

Dy
271, cos (gq)) cos (51 +Z >

L =

From this, we can see that the inductance of a SQUID can be tuned by applying a
magnetic flux. This can be very handy when used in a resonator, because it means that
we can tune the resonance frequency.

Note that this inductance is not a magnetic inductance, but rather a kinetic inductance
due to the properties of the Josephson junctions. The loop would also have a geometric
inductance, which is not considered here as it is not interesting for tuning the SQUID.
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