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1 Exercises

Exercise 1 : Capacitance of a coplanar plate capacitor

Superconducting circuits are based on inductive and capacitive elements patterned into a super-
conducting thin film, which resides on a dielectric substrate. Here, we estimate the capacitance and
the dipole moment of a coplanar, parallel plate capacitor made of two rectangular pads, see Fig. 1.
By combining such capacitors with inductive elements, one can e.g. build on-chip LC resonators.

1. Estimate the order of magnitude of the capacitance between the two pads of this element.
Apply this to typical values a = 300 µm, b = 400 µm, l = 100 µm, film thickness t = 150 nm,
and relative dielectric constant εr ∝ 10. Assume for simplicity that the electric field lines
extend mainly into the substrate and that the substrate thickness is large compared to the
one of the capacitor.

2. Estimate the inductance required to obtain a lumped element resonator with a resonance
frequency of f ≃ 6 GHz?

3. Estimate the dipole moment of this capacitor for a single Cooper pair located on one of the
islands. The dipole operator in this example is given by d = lQ with l in this case being the
separation between the two pads and Q is the charge.

4. Calculate the charge zero point fluctuation, defined as QZPF =
√

ℏ
2Z

, where Z =
√

L
C
. How

does it compare to a single Cooper pair?

Figure 1: Sketch of a capacitor formed by two pads of a superconductor (red) on an insulating
substrate (grey).
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Figure 2: Cross section through the coplanar plate capacitor with the new variables a′ and b′ being
introduced for the process of conformal mapping, see https://arxiv.org/pdf/1712.05079.pdf. The
green field lines indicate a simplified distribution of the electric field E⃗.

Solution 1 :

1. Since the thickness of the superconductor is about three orders of magnitude smaller than all
other dimensions, we can neglect the effect of the thickness for the following calculations and
also assume that all electric field lines below the two plates are located within the dielectric
substrate. We sketch the electric field distribution in Fig. 2 assuming a static electric potential
with opposing sign ±ϕ0 on both plates. All electric field lines start and end perpendicularly
at the conducting plates of the capacitor and are distributed equally in both the vacuum and
the substrate independently from the value of the dielectric constant ϵr.
Since the total energy stored in volume V in the electric field U =

∫
V
ϵ0ϵr|E|2dV = 1

2
C∆ϕ2

0

is proportional to the dielectric constant ϵr, the contribution of the electric field lines through
the vacuum to the total energy can be neglected.
We can map the situation of the electric field onto two parallel plates with a separation of
d = l and an area of A = ab and estimate the capacitance to be:

C ≈ ϵ0ϵr
A

d
= 8.8 · 10−12 · 10 F

m
· 300 · 10

−6m · 400 · 10−6m
100 · 10−6m

≃ 100 · 10−15F = 100 fF. (1)

By assuming a separation of d = l, we actually overestimate the total capacitance since the
majority of the electric field lines in the coplanar structure do not directly connect to the
plates at a separation of l.
Additional Information: A more precise estimation of the capacitance can be obtained

from the theory of conformal mapping, see https://arxiv.org/pdf/1712.05079.pdf. Based on
the dimensions a′ and b′ in Fig. 1, we can introduce a geometric ratio k = a′/b′ and calculate
the capacitance C(k) according to the theory of conformal mapping. In Fig. 3, we compare
the obtained capacitance C to our original estimate based on parallel plates with d = l and
also to the case of taking d as the distance of the center of both plates, d = l+ b. We realize
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Figure 3: Total capacitance C as a function of the geometric ratio k for the different estimations
methods. The dashed line indicates the geometric ratio resulting from the dimensions considered
in this exercise.

that the initial approximation using d = l(d = l+ b) overestimates (underestimates) the total
capacitance C for k < 0.4. For larger geometric ratios k > 0.4, the assumption of having two
equivalent parallel plates breaks down, since the size of the plates is small compared to their
separation.

2. The resonance frequency of an LC-resonator is given by ω = 1/
√
LC. Thus we would need

an inductance of

L =
1

ω2C
=

1

(2π · 6 · 109 1s ) · 10−13As
V

≈ 10−8H = 10 nH (2)

3. The dipole is oriented from one pad to the next. We can estimate its magnitude as being
roughly the separation distance, l, multiplied by the charge, which we take as 2e for a Cooper
pair. We get d ≈ (2e)l = 2 · 1.6 · 10−19 · 100 · 10−6C m ≃ 3 · 10−23C m.

4. We can calculate the zero point fluctuations of the charge for our oscillator with QZPF =
√

ℏ
2Z

with Z =
√
L/C. One finds an impedance of about 300 Ω and QZPF ≃ 4 · 10−19C, which is

close to 2e.
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Exercise 2 : Input-output theory

We consider an LC-resonator which is capacitively coupled with a rate of κext through capacitor
Cc to a semi-infinite transmission line with a characteristic impedance of Z0 = 50Ω. The LC-
resonator has an internal loss rate of κint and is depicted in Fig.4. We consider a classical coherent
input field ⟨b̂int(t)⟩ = βine

−iωt traveling towards the LC-resonator, as well as an output field ⟨b̂out(t)⟩
being reflected from it. The equation of motion, as a function of time, for the system operator
â = â(t) reads

∂â

∂t
=
i

ℏ

[
Ĥsys, â

]
− κint + κext

2
â+

√
κextb̂in (3)

with Ĥsys = ℏω0â
†â being the system Hamiltonian of the LC-resonator. The boundary condition

which relates the output to the input field is

b̂in(t) + b̂out(t) =
√
κextâ(t) (4)

1. Calculate the commutator
[
Ĥsys, â

]
and use the Ansatz ⟨â(t)⟩ = αe−iωt for the time depen-

dence of the expectation value of the system operator and simplify the equation of motion.
Express the amplitude α of the expectation value of the system operator as a function of the
angular frequency ω and the amplitude of the input field βin.

2. Solve for the frequency dependent reflection coefficient S11(ω) =
⟨b̂out⟩
⟨b̂in⟩

.

3. Plot the squared absolute value, and the real and imaginary parts of the reflection coefficient
S11(ω) for a resonator with parameters ω0/2π = 6 GHz and κext/2π = 5 MHz. Use three
different internal loss rates rates of κint/2π ∈ {0, 5, 100} MHz. What changes when the
internal loss rate is increased? Discuss all three cases.

We now consider an LC-resonator which is capacitively coupled to two semi-infinite trans-
mission lines, as shown Fig. 5.

4. Calculate the transmission coefficient S21(ω) =
⟨b̂2,out⟩
⟨b̂1,in⟩

. Show that the transmission coefficient
S21(ω = ω0) → 1 for a lossless LC-resonator.

Figure 4: Electrical circuit of an LC-resonator capacitively coupled to a semi-infinite transmission
line for a measurement of the reflection coefficient S11.
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Figure 5: Electrical circuit of an LC-resonator capacitively coupled to two semi-infinite transmission
lines for a measurement of the transmission coefficient S21.

5. Plot the squared absolute value, and the real and imaginary parts of the transmission coef-
ficient S21(ω) for the same parameter values as in 3. In what way do the results differ from
those for the reflection coefficient in 3.

Solution 2 :

1. We calculate the commutator by using [a, a†a] = a:

[a,Hsys] = ℏω0[a, a
†a] = ℏω0

(
a†[a, a] + [a, a†]a

)
= ℏω0a. (5)

We take the expectation value of equation 3 on both sides and obtain

⟨ȧ(t)⟩ = −iω0 ⟨a(t)⟩ −
κext + κint

2
⟨a(t)⟩+

√
κext ⟨bin(t)⟩ (6)

Using the Ansatz ⟨a(t)⟩ = α · e−iωt and its time derivative ⟨ȧ(t)⟩ = −iω ⟨a(t)⟩, we can rewrite
the equation above as,

−iωα · e−iωt = −iω0α · e−iωt − κ+ γ

2
α · e−iωt +

√
κβin · e−iωt. (7)

We can eliminate the harmonic time dependence e−iωt and simplify the equation of motion to

α =

√
κ

κ+γ
2

− i(ω − ω0)
βin. (8)

2. We start by taking the expectation value of the boundary condition and obtain βin + βout =√
κα. Based on equation 8 we now write the output field as a function of the input field,

βout =
√
κα− βin =

(
κ

κ+γ
2

− i(ω − ω0)
− 1

)
βin =

( κ−γ
2

+ i(ω − ω0)
κ+γ
2

− i(ω − ω0)

)
βin. (9)

Now we can directly calculate the reflection coefficient S11 as a ratio of the output and input
field,

S11(ω) =
⟨bout⟩
⟨bin⟩

=
βout

βin
=

κ−γ
2

+ i(ω − ω0)
κ+γ
2

− i(ω − ω0)
=

κ

κ+ γ
· 1

1
2
+ iω0−ω

κ+γ

− 1 (10)
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Figure 6: The squared absolute value, real part, and imaginary part of S11 for a resonator with
ω0/2π = 6 GHz, κext/2π = 5 MHz, and the three loss rates κint/2π ∈ {0, 5, 100} MHz (black, blue,
red).

3. The squared absolute value, real part and imaginary part of the reflection coefficient S11 are
shown in Fig. 6. With a small internal loss rate γ ≪ κ, we have an overcoupled resonator,
where the decay is dominated by the coupling to the transmission line, and the squared
absolute value of the reflection coefficient |S11|2 is independent of ω (see γ = 0). For similar
rates γ ≈ κ, we obtain a critical coupling for which the load impedance is matched to the
source and we observe a reflection close to zero at ω0. When the decay is dominated by the
internal loss rate γ ≫ κ, the absolute value of the reflection coefficient at ω0 is between the
overcoupled and the critically coupled case.

4. We begin formulating the equation of motion for the case of two coupled ports with κ1 =
κ2 = κ/2 and loss rate γ,

ȧ = − i

ℏ
[a,Hsys]−

κ1
2
a+

√
κ1b1,in −

κ2
2
a+

√
κ1b2,in −

γ

2
a (11)

ȧ = − i

ℏ
[a,Hsys]−

κ+ γ

2
a+

√
κ

2
(b1,in + b2,in). (12)

We take the expectation value of equation 12 on both sides and obtain

⟨ȧ(t)⟩ = − i

ℏ
ℏω0 ⟨a(t)⟩ −

κ+ γ

2
⟨a(t)⟩+

√
κ

2
(⟨b1,in(t)⟩+ ⟨b2,in(t)⟩). (13)

Using the Ansatz, ⟨a(t)⟩ = α · e−iωt and following the same procedure as in question 1., we
obtain

α =

√
κ
2

κ+γ
2

− i(ω − ω0)
(β1,in + β2,in). (14)

Now, we take the expectation value of the boundary condition for the second port yielding

β2,out =

√
κ

2
α− β2,in. (15)

Finally, we solve for the transmission coefficient S21(ω) under the constraint that β2,in = 0

S21(ω) =
⟨b2,out⟩
⟨b1,in⟩

=
β2,out

β1,in
=

κ/2
κ+γ
2

− i(ω − ω0)
. (16)
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Figure 7: The squared absolute value, real part, and imaginary part of S21 for a resonator with
ω0/2π = 6 GHz, κext/2π = 5 MHz, and the three loss rates κint/2π ∈ {0, 5, 100} MHz (black, blue,
red).

We can see that the transmission coefficient S21 approaches one for γ = 0 and ω = ω0

S21 =
κ/2

κ+γ
2

− i(ω − ω0)

ω→ω0=
κ/2
κ+γ
2

γ→0
= 1. (17)

5. The squared absolute value, real part and imaginary part of the transmission coefficient S21

are shown in Fig. 7. Compared to the measurement of the resonator in reflection, the squared
absolute value of the transmission coefficient |S21|2 is always minimal unless the resonator is
driven close to ω0.
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Exercise 3 : Coupled-cavity Arrays

Figure 8: Coupled cavity array made of a chain of coupled LC resonators. The figure is taken from
https://arxiv.org/abs/2403.18150.

In this exercise we study the transmission coefficients of coupled cavity arrays. We consider the
system described in Fig. 8, which is chain of coupled L LC resonators.

1. Quantize the circuit and write down the equivalent Hamiltonian in terms of bosonic creation
and annihilation operators âℓ and â†ℓ.

2. Assume periodic boundary conditions and diagonalize the Hamiltonian by passing in Fourier
space by means of the momentun representation of the creation and annihilation operators

âℓ =
1√
L

∑
k

âke
ikxℓ , â†ℓ =

1√
L

∑
k

â†ke
−ikxℓ . (18)

3. Suppose that now all the resonators have an intrinsic decay rate equal to κint, and that the
first and the last resonators, due to the coupling with external feedlines, have an additional
external decay rate equal to κext. Write down the input-output equations for the intracavity
field ⟨âℓ⟩.

4. Re-write the input-output relations in the compact form

∂

∂t
⟨ˆ⃗a⟩ = iM⟨ˆ⃗a⟩, (19)

where M is a L × L non-Hermitian matrix. Show that it is possible to diagonalize M with
a matrix transformation, obtaining eigenmodes and eigenfrequencies of the system. Numer-
ically diagonalize M for chains with L = 10 and L = 100 resonators. Discuss the physical
interpretation of the system’s eigenfrequencies, in light of what you found in point 2.
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5. We now want to explore the response of the system to the injection of external photons,
that we model with an external classical drive on the first cavity, ⟨b̂in(t)⟩ = βine

iωt. Modify
the input-output equations to account for the presence of the external drive. Derive the
transmission coefficient S1,L(ω) in terms of the eigenvectors and eigenvalues of M. Plot
S1,L(ω) as a function of the drive frequency ω for chains of L = 10 and L = 50 resonators.
Use the following parameters: ω0/2π = 6 GHz, κint/2π = 100 kHz, κext/2π = 10 MHz,
g/2π = 200 MHz.

Solution 3 :

1. The Hamiltonian of the coupled-cavity array reads (ℏ = 1)

Ĥ =
L∑

ℓ=1

ω0â
†
ℓâℓ − g

L−1∑
ℓ=1

(
â†ℓ+1âℓ + â†ℓâℓ+1

)
, (20)

which coincides with a tight-binding chain.

2. We now diagonalize the above Hamiltonian assuming periodic boundary conditions. Since
Ĥ (once periodic boundary conditions have been assumed) is space-translational invariant, a
Fourier transformation diagonalizes it. More specifically, we consider the Fourier transform
of the creation and annihilation operators as

âℓ =
1√
L

∑
k

âke
ikxℓ , â†ℓ =

1√
L

∑
k

â†ke
−ikxℓ . (21)

By plugging the above identities in the Hamiltonian we write down

Ĥ =
ω0

L

L∑
ℓ=1

∑
k,k′

â†kâk′e
−ixℓ(k−k′) − g

L

L−1∑
ℓ=1

∑
k,k′

[
â†kâk′e

−ixℓ(k−k′)e−ik + â†k′ âke
ixℓ(k−k′)eik

′
]

=
∑
k

ω0â
†
kâk − g

∑
k

(
â†kâke

−ik + â†kâke
ik
)
=

∑
k

εkâ
†
kâk,

(22)

where εk = ω0−2g cos(k) is the tight-binding dispersion relation. To pass from the first to the
second line we used the indentity 1

L

∑L
ℓ=1 e

ixℓ(k−k′) = δ(k− k′). Notice that, in Fourier space,
the frequencies of the coupled-cavity array are contained in the interval [ω0 − 2g, ω0 + 2g].

3. The input-output equations for the bare coupled-cavity array read

∂âℓ
∂t

= i[Ĥ, âℓ]−
κtot
2
âℓ, (23)

where κtot = κint + κext if ℓ = 1, L and κtot = κint otherwise. If we compute the commutator
we obtain the following equation for the field’s coherence ⟨âℓ⟩

∂⟨âℓ⟩
∂t

= −
(
iω0 +

κtot
2

)
⟨âℓ⟩+ ig [⟨âℓ+1⟩+ ⟨âℓ−1⟩] . (24)
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4. We now introduce the vector of the field coherences ⟨ˆ⃗a⟩ = [⟨â1⟩, ..., ⟨âL⟩]T. The above input-
output equation straightforwardly becomes

∂

∂t
⟨ˆ⃗a⟩ = iM⟨ˆ⃗a⟩, (25)

where

M =


ω0 − i

2
(κint + κext) g 0 · · · 0
g ω0 − i

2
κint g · · · 0

0 g ω0 − i
2
κint · · · 0

...
...

... . . . ...
0 0 0 · · · ω0 − i

2
(κint + κext).

 (26)

Notice that M is non-Hermitian. Now we introduce the transformation U which diagonalizes
M, UMU−1 = D (since M is non-Hermitian, U is not necessarily unitary), being D the
diagonal matrix containing the (complex) dressed frequencies (ω̃1, ..., ω̃L). Then we have that

U ∂

∂t
⟨ˆ⃗a⟩ = iUM⟨ˆ⃗a⟩ = i(UMU−1)U⟨ˆ⃗a⟩ = iDU⟨ˆ⃗a⟩. (27)

We can then formally write the solution of the input-output equations as

⟨̃âℓ⟩(t) = eiω̃ℓt⟨̃âℓ⟩(0). (28)

The eigenfrequencies ω̃ℓ are complex numbers with a real part which is the true frequency
of the ℓ-th mode, and a purely imaginary part which represents a linewidth. In particular,
ω̃ℓ ̸= ω0 because of modes’ hibridization, and you can check that ω̃ℓ ∈ [ω0−2g, ω0+2g], while
the imaginary part coincides with κtot/2.

5. Now we derive the transmission coefficient S1,L(ω) (which is a quantity that can be easily
measured in the lab) for the coupled cavity array. The formal definition reads

S1,L(ω) =
⟨b̂L,out⟩
⟨b̂1,in⟩

. (29)

Let’s compute ⟨b̂L,out⟩ using input-output theory. The input-output equations reads

∂âℓ
∂t

= i[Ĥ, âℓ]−
κtot
2
âℓ +

√
κextb̂inδ1,ℓ. (30)

In matrix form, once expectation values of operators are taken, they read

∂

∂t
⟨ˆ⃗a⟩ = iM⟨ˆ⃗a⟩+

√
κext⟨

ˆ⃗
bin⟩. (31)

We now propose the coherent ansatz for the expectation values of the bosonic fields, namely
⟨ˆ⃗a⟩ = eiωtα⃗, where ω is the drive frequency of the b̂in mode. By injecting the ansatz in the
above equation we obtain

(1ω −M)α⃗ = −i
√
κextβ⃗in. (32)
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Figure 9: Transmission spectrum of the coupled cavity array S1,L as a function of the drive frequency
and for the parameters ω0/2π = 6 GHz, κint/2π = 100 kHz, κext/2π = 10 MHz, g/2π = 200 MHz.

To find α⃗, we need to invert the matrix (1ω−M). This can be done by expanding M in its
eigenmodes and eigenfrequencies. We have that

M =
∑
k

Ek |ψk⟩⟨ψk| , with Ek = ω̃k −
iκtot

2
, (33)

and |ψk⟩ are the eigenmodes of the system. At this point

(1ω −M) =
∑
k

[
(ω − ω̃k) +

iκtot

2

]
|ψk⟩⟨ψk| , (34)

and since the eigenmodes span a L-dimensional orthonormal basis we can write

(1ω −M)−1 =
∑
k

|ψk⟩⟨ψk|
(ω − ω̃k) + iκtot/2

(35)

And finally we have

α⃗ =
∑
k

−i√κext |ψk⟩⟨ψk|
(ω − ω̃k) + iκtot/2

β⃗in. (36)

To find the transmission coefficient, we project α⃗ on the computational states |1⟩ and |L⟩,
which are just |1⟩ = (1, 0, 0, ..., 0)T, and |L⟩ = (0, ..., 0, 0, 1)T. We finally use the input-output
relation β⃗L,out = β⃗L,in −

√
κextα⃗ (where β⃗L,in = 0) and the transmission coefficient reads

S1,L(ω) =
∑
k

iκext⟨1 |ψk⟩ ⟨ψk |L⟩
(ω − ω̃k) + iκtot/2

=
∑
k

iκextM1,L

(ω − ω̃k) + iκtot/2
. (37)

If we take |S1,L| we get a sum of peaks centered at the frequencies of the eigenmodes ω̃k with
a linewidth given by κtot, and an amplitude controlled by the external dissipation rate κext
and the matrix elements of the eigenmodes M1,L.
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Exercise 4 : Superconducting loops

In the superconducting state of a metal, the electrons close to the Fermi energy pair up with
opposite spin and momentum to form Cooper pairs. All the Cooper pairs will have the same
energy and they realize a macroscopic quantum state across the entire piece of the superconductor.
Because this superconducting condensate is a coherent quantum state, it can be described by a
wavefunction, which takes the form of

ψ(r) =
√
nse

iφ(r) (38)

where r is the position inside the superconductor, ns is the density of the superconducting Cooper
pairs and φ(r) is the phase of the wavefunction. While inside the superconductor the amplitude
of the wavefunction

√
ns is constant, the phase φ(r) can change as a function of position. In this

problem, we investigate how the phase behaves in a cylindrical superconductor in magnetic field.

1. In class, we saw that the change in phase with a current flowing in a superconductor from a
point X to Y was defined as:

φXY =
1

ℏ

∫ Y

X

p(r) · dr (39)

where p = 2mv + 2eA in a magnetic field B, with A being the vector potential respecting
the relation ∇ × A = B. We consider a thin cylindrical superconductor with radius R
and long axis oriented along the z direction (see Fig. 10). The external magnetic field also
points along the z axis, and has a magnitude of B0 such that B = (0, 0, B0) in the Cartesian
x− y− z coordinate system. Importantly, the choice of the vector potential A is not unique;
as long as it satisfies that B = ∇×A, the vector potential describes correctly the system.
Consequently, the phase of the superconductor is also not unique, which is not surprising
because the phase of a wavefunction is not an observable quantity. In general, the vector
potential can be changed by a gauge transformation such that

A′ = A+∇χ, (40)

Figure 10: Top view of the cylindrical superconductor.
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where χ is a scalar function. Here, we consider the Coulomb gauge, i.e. ∇χ = 0, so that
A = (−yB0/2, xB0/2, 0).

Knowing that the current density J is given by J = 2ensv, write the phase difference as a
function of J and A. Then show that the magnetic flux through the loop is quantized, by
integrating over a closed loop and using the fact that the superconducting phase is periodic.

2. Now, let us consider a superconducting loop that contains two Josephson junctions (JJs), as
depicted in Fig. 11, which is called a superconducting quantum interference device (SQUID).
The current through a JJ can be described by the first Josephson equation:

I(δ) = I0 sin(δ), (41)

where I0 is the critical current of the junction, which depends on its geometry, and δ is the
phase difference between the superconductors before and after the junction.

Figure 11: SQUID loop.

(a) Assuming that both JJs have the same critical current, what is the total current through
the SQUID as a function of the phase differences δ1 and δ2 across JJs 1 and 2, respec-
tively?

(b) Now we want to investigate the phase across the loop. In question 1., the gauge choice
for A did not matter, since the contribution of χ vanishes when integrating over a
closed loop. Since we now have two JJs in the loop, we cannot take a closed loop
integral through the superconductor anymore. Therefore, we have to redefine the phase
difference δ such that it becomes gauge invariant:

δ = φY − φX − 2π

Φ0

∫ Y

X

A(r)dr, (42)

where φX and φY are the superconducting phases before and after the JJ, respectively.
Calculate the phase change across the SQUID by splitting the integral into four parts,
two parts through the superconductor and one part across each JJ.
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(c) Using the result from a) and b), write the current total current through the SQUID as
a function of the magnetic flux through the loop. Discuss how this result can be used to
tune SQUIDs in a real device.

Solution 4 :

1. We can solve J = 2ensv for J and insert it in p = 2mv + 2eA to get

∆φXY =
m

ℏens

∫ Y

X

J(r)dr +
2π

Φ0

∫ Y

X

A(r)dr,

where we used the magnetic flux quantum Φ0 = h/2e.
The first integral vanishes, because the current in the superconductor is zero, assuming it is
thicker than the London penetration depth. This can be explained by using Ampère’s law
J = µ0∇×B and the Meissner effect, which states that external magnetic fields are repelled
from a superconductor. This is achieved by circular currents induced in the surface of the
superconductor, screening the magnetic field, which leads to an external decay until magnetic
field vanishes completely. Thus, the first integral vanishes only, when we choose a contour
inside the superconductor.
The second integral can most easily be solved by changing to polar coordinates with
û0 = (− sin(θ), cos(θ), 0), x = R cos(θ) and y = R sin(θ):

∆φXY =
2π

Φ0

∮ 2π

0

A · û0Rdθ =
2π

Φ0

∮ 2π

0

B0

2
R2dθ = 2π

Φ

Φ0

= 2πn,

where we have used Φ = B0πR
2 for the magnetic flux through the loop and the fact that the

superconducting phase is 2π-periodic. From this we can see that the magnetic flux through
a superconducting loop is always equal to a multiple of the magnetic flux quantum Φ0. This
is ensured by superconducting currents in the surface of the superconductor.

2. (a) We can just add up Eq.41 for two junctions with a critical current of I0/2 and get

Itot = I1 + I2 =
I0
2
(sin(δ1) + sin(δ2)) = I0

(
cos

(
δ1 − δ2

2

)
sin

(
δ1 + δ2

2

))
,

using trigonometric identities.
(b) To get the phase change through a SQUID, we use the same strategy as in question 1,

but this time we have to split the loop integral into four parts:∮
C

∇φdr = (φb − φa) + (φc − φb) + (φd − φc) + (φa − φd)

For the phase difference across the superconductor, we get

φc − φb =
2π

Φ0

∫ c

b

Adr +
m

ℏens

∫ c

b

Jdr

φa − φd =
2π

Φ0

∫ a

d

Adr +
m

ℏens

∫ a

d

Jdr.
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For the phase difference across the JJs, we use the definition of the gauge invariant phase
difference given in Eq.42

φb − φa = −δ1 +
2π

Φ0

∫ b

a

Adr

φd − φc = δ2 +
2π

Φ0

∫ d

c

Adr.

Summing up all the segments, we get∮
C

∇φdr = 2πn = δ2 − δ1 +
2π

Φ0

∮
C

Adr +
m

ℏens

∮
C′
Jdr,

where C ′ is the incomplete contour excluding the path through the JJs.
Strictly speaking, this time the current density is not always zero along C ′, but if we
assume that the JJs are sufficiently small (much smaller than the London penetration
depth of the superconductor), the external magnetic field is sufficiently suppressed by
the two sides of the superconductor enclosing the JJs, so current density is indeed zero
and the integral vanishes again.
Thus, we now have

δ2 − δ1 = 2π
Φ

Φ0

+ 2πn

(c) Inserting the result from b) into the result from a) for the total current results in

Itot = I0

(
cos

(
πΦ

Φ0

)
sin

(
δ1 +

πΦ

Φ0

))
.

Using the definition of the inductance V (t) = L∂I
∂t

= L∂I
∂δ

∂δ
∂t

and the second Josephson
equation ∂δ

∂t
= V

Φ0
we can derive the inductance of the SQUID:

L =
Φ0

2πI0 cos
(

πΦ
Φ0

)
cos

(
δ1 +

πΦ
Φ0

)
From this, we can see that the inductance of a SQUID can be tuned by applying a
magnetic flux. This can be very handy when used in a resonator, because it means that
we can tune the resonance frequency.
Note that this inductance is not a magnetic inductance, but rather a kinetic inductance
due to the properties of the Josephson junctions. The loop would also have a geometric
inductance, which is not considered here as it is not interesting for tuning the SQUID.
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