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1 Exercises

Exercise 1 : Coupled LC resonators

Consider two LC' resonators, see Fig. 1, with respective inductance, capacitance values L, C
and Lo, Cs. These resonators are capacitively coupled through a capacitance Cjy. The flux variable
at the i-th independent node corresponds to ¢;.

1. Write down the Lagrangian L£(¢, qb) of the system as a quadratic function of the node flux
variables ¢; and their derivatives ¢;. Introduce the capacitance matrix C and the inverse
of the inductance matrix L= and use the flux variables and their derivatives in the vector

representation,
>_(+ 7 ¢1
=(5) ()

2. Perform the Legendre transformation analytically and extract the Hamiltonian H, as a func-
tion of the charge Q; = 0L(¢, ¢)/J¢; and the flux variables ¢;. Rewrite this Hamiltonian as
a quadratic form, using C~! and L~*.

Hint: A square 2 x 2 matrix is inverted by

-1
Al — ail a2 _ 1 Q2 —a12
as) Q9 det(A) \—a21 an
3. To perform quantization, first rewrite the Hamiltonian ’H in terms of both inductances Ly, Lo
and the bare (uncoupled) angular frequencies w; with w? = L;;'(C™1);;. Summarize the capac-

itive coupling in a single constant 8 = Cy/+/(C1 + C[))(CQ + C’o) Perform the quantization
by introducing the corresponding quantum operators Ql and @ which satisfy the canonical

commutation relation [QZ, (b]] = —ihd;j. Subsequently, use the following definition of the
charge and flux operator to write the Hamiltonian H in terms of annihilation and creation
operators, a; and &;r,
A h - hL;w;
_ oo _ NS
Qi=—1 2L (@; — a;), and ¢; = 22 ~(a; + a;)

4. Apply the rotating wave approximation (RWA) on the coupling term and diagonalize the
resulting quadratic Hamiltonian with a Bogoliubov transformation. Discuss the physical
interpretation of the obtained eigenenergies and eigenmodes.
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Figure 1: Circuit diagram of two capacitively coupled LC resonators.

Hint: To apply the rotating wave approximation, suppose that the Hamiltonian is driven
at a frequency wy. Perform a unitary transformation in the frame rotating at the pump
frequency and understand which terms are fastly oscillating in time. To diagonalize the RWA
Hamiltonian, consider a Bogoliubov transformation, which consists in the following ansatz

a = Udl + U&Q, (1)

where u and v are generally complex amplitudes. To find v and v impose [FI ,G] = —Fé& and
solve the corresponding 2 x 2 system, and remember that [&,a'] = 1.

5. Consider now the following values for the capacitances of the two LC oscillators: € = Cy =
70fF, and the following value for the inductance L; = 10nH. Compute

e The bare mode frequencies w; and w» as a function of Ls.

e The coupled mode frequencies of the RWA Hamiltonian according to the formula you
have obtained in the previous point, supposing Cy = 10 {F.

Discuss your findings from a physical point of view.

Solution 1 :

1. The Lagrangian is of the form
£(¢7 (b) = Ekin - Epot
. . . . 2 2
= % <00(¢1 — ¢2)* + C1¢ + Capy — =+ — —1)
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with matrices

o C() + C]_ _OQ -1 1/L]_ O
C—( ~Cy Co+02) and - —( 0 1/Ly)

. The Legendre transformation is performed by first solving for the charge (); at each node,
OL( cb ) -
Qi Z C’L]¢] - ij¢ja

where the expression after the last equal sign using Einstein’s summation convention is a
shorthand notation for the explicit summation before the last equal sign. In terms of the
inverse capacitance matrix and the vector of charges Q = (Q1, Q2)?, we obtain

¢=Cc'q.
The Hamiltonian H is then obtained by using the Legendre transformation,
2 1 1
_ zz_£ ] :__'Tc—l_’ __'TL—I_’
H ;}w (6,0) = 5Q"C' A +50'L7'9

with the inverse of both capacitance and inductance matrices,

_ 1 Co+Cy  C ~ 1/L, 0
c ! = 0 2 0 d L= .
q&+%&mmm( Co Co+C ) M 0 1/L,

. We write out the bare angular mode frequencies wj,

" _\/i Cy + C) and " _\/i Cy + Cy
YUV L OOy £ GOy + CoCy 2T N Ly Oy + GOy + CyCy

and rewrite the inverse capacitance matrix in terms of inductances L;, bare angular frequencies
w; and the coupling constant (3,

c! = Llw% BV L Lawiws
5\/ Ly Lowywy L20J§ '

Now we are able to formulate the Hamiltonian H as follows,
1 1
H= L1W1Q1 ¢1 2%@2 5L — 5 + BV L1 LowiwsQ1Qs
2

We perform quantization by replacing the flux and charge variables with their corresponding
quantum operators gb and Q. Subsequently, we replace those operators with their definition in
terms of annihilation and creation operators as seen in the class. After simplifying the result-
ing expression and obeying the commutation relation [a, a'] = 1, we obtain the Hamiltonian
in second quantization (h = 1)

H = hon (a{al + 1/2) + Py (&1&1 + 1/2) -~ ﬁgm (&1 - 6&) (dz - dé)
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we note that in the limit of small coupling capacitance Cj

1
w; for Co < 4,0y
L; (C; 4+ Cy)

and the coupling strength approximates to

__5 v 1 G

. The quadratic bosonic Hamiltonian reads (we take h = 1 and we neglect the constant terms
in the Hamiltonian, which do not have any influence on the dynamics)

H= wldidl + w2d£&2 —g (dl — di) <d2 - a;) (3)
The rotating wave approximation can be carried out by neglecting the counter-rotating terms
which oscillate faster than the system’s frequency. If we imagine to drive the system at a
certain frequency wy, we can then suppose the following unitary

U _ eiwdt(a1&1+a£d2> ) (4)

To find the rotated Hamiltonian it is sufficient to rotate single bosonic operators. We consider
for example a;. By applying the Baker-Campbell-Haussdorff formula we obtain

Ua Ut = eatiiing e=iwatiian — oy oyitlalay, 1] + = (iwat)?[alar, [alar, @] + ...

)"&1 = &167iwdt. (5)

(7%
g
|
N
3
-~
S
U
~

. T .
= a1 — (iwgt)ay + §(det)2a1 + .=
k=0

Similarly, we find UdnUt = ase~™at. We then notice that terms containing an equal number

of creation and annihilation operators do not oscillate in the frame rotating at the pump
frequency, while terms like aqa, and &J{&g oscillates at 2w,. Those are the fastly oscillating
terms that can be neglected within the RWA and we arrive at the RWA Hamiltonian

~

H = wialay + waihis + g (a{az + a;al) . (6)

The above Hamiltonian is again quadratic, but can be diagonalized in a much simpler way
with respect to the previous Hamiltonian containing counter-rotating terms. The method
we adopt to diagonalize the Hamiltonian is a Bogoliubov transformation, which consists in
writing a linear combination of the two bosonic operators

614 ua1 + ’UCLQ (7>

If the Hamiltonian were diagonal in the & operators, then we would have that [ﬁ .4l = —FEa&
with E the eigenenergies of the system. If we compute the commutator explicitly we get

[H, 6] = —uwy @y — vwaiy — ugis — vgay = —Eudy — Eviy = —Fé. (8)
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Figure 2: Bare (black-dashed line) and dressed (purple continuous line) eigenfrequencies of the
coupled LC circuit system as a function of the inductance of the second LC resonator.

The above equation can be recast in the following 2 x 2 system
W1l v=FEu
s = Ga0-=C) o
qu + wov = Bv g w2) \V v
The eigenvalues can be obtained from the characteristic equation

<w1;E w2€E> — (W — B)(ws— B) — g? =0, (10)

2
Ei:wl—gWQi\/(W12WQ> + g2 (11)

Notice that if g = 0 the two solutions are simply E = w; o, since the Hamiltonian is already
diagonal. To find the eigenvectors we use the fact that & is a bosonic operator and

whose solutions reads

[6, &) = [udy + vag, ua] + val] = u® + 0% = 1. (12)
From the 2 x 2 system for the Bogoliubov amplitudes we get
o E— w1
g

U, (13)

v

and from the condition u? + v? = 1 we finally obtain
+g Ey —w
u = , v = .
V9P + (Bx —w)? Vg + (s —w)?
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The Hamiltonian can finally be written in the diagonal form
H=E.d a,+E & a_, (15)

where E are the Bogoliubov quasi-energies obtained above. From a physical point of view
the diagonal Hamiltonian in terms of modes which are linear combinations of a; and a»
indicates that the coupling hybridizes the modes. Notably, the Bogoliubov quasi-energies F
exhibit now an avoided level crossing (or level repulsion), a typical signature of many-body
interactions. We study in detail the avoided level crossing in the next point.

5. We consider the values for Cj; 2 and Ly 5 given in the text. Since Cy < (2 we fix the bare

frequencies to w; >~ 1/4/L;(Cy + C;) and the coupling to g ~ —(y/wiw3/2) x Cy/+/C1Cy. We
plot the results in Fig. 2. The bare frequencies cross at a certain value of Lo, while the dressed
frequencies exhibit an avoided level crossing, as predicted by the Bogoliubov diagonalization.



Exercise 2 : Circuit Quantization

1. The goal of this exercise is to find the Lagrangian and quantized Hamiltonian of a LC resonator
capacitively coupled to a time variable voltage source (see Fig. 3a).

PN —|C|L > §‘2 c,
T Ty
1 C ; | Cy V —-IT-—

Figure 3: a) Equivalent circuit for an LC resonator consisting on an inductor in parallel with a
capacitor, subject to an external potential V(t). b) Equivalent circuit for a non-linear inductor (a
Josephson junction) in parallel with a capacitor, subject to an external potential V(t).

(a) First, decompose the circuit to identify the branch and node fluxes. Find the relation
between them. You should end up with only one flux variable.

(b) Find the Lagrangian of the system.

(c) With the Legendre transformation, find the associated quantized Hamiltonian.

2. The circuit in Fig. 3b models a Cooper Pair Box or equivalently, as you will see in future
sessions, a transmon qubit. It mirrors the LC resonator of the previous point, but now the
inductor has been replaced by a Josephson junction, effectively behaving as a non-linear
inductor.

(a) Find the Lagrangian of the CPB.

(b) Find the associated quantized Hamiltonian.

Solution 2 :

1. (a) We see that the branch flux associated with the inductor ¢, is the same than the one
associated with ¢4 as the two components are in parallel. The flux ¢, is associated to
the ground plane so that we can take ¢y = 0 as our reference. In the end:

Ga = Gq = 1 — o = P1
Op = P2 — 91
Ge = P2 — G = — P2
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Figure 4: Nodes, node fluxes, and branch fluxes for the circuit description and quantization.

(b)

B 1 .2 1 ) 1 5
L= §C¢a + §Cg¢b ﬁqba
1 .92 1 . 1
L= §C¢1 + §Cg(¢2 - ¢1)2 - iﬂﬁ

We can use Kirchhoft’s law for the voltages to write:
Gat Gp+ G = b1+ (b2 — d1) =V =0
and to deduce that:
o=V
Which allows us to finally write the Lagrangian of the system in only one variable:

L

1 .2 1 .
E — §C¢1 + §Cg(V — ¢1)2 - Ed)l

The %CgV2 term is a constant term that does not contribute in the dynamics of the

system so it can be neglected. Finally:

1 -2 . 1
L= §C’z¢1 —CyVor — Zéﬁ- (16)

where Cy, = C' + (|,

By finding the generalised charge ¢; = 2& = Cyoy — C,V and writing the Legendre

. 7
transformation:
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We find the quantized (we already know that charge and flux are conjugate variables)
Hamiltonian:

-1
H=——
2C,

where ¢, = —C,V is the charge offset due to the generator.

. 1 -2
(G —q9)” + ﬁ(bl : (18)

Following what was done in the previous exercise, the action of the capacitors does not
change when compared to the LC resonator. The inductance contribution becomes non
linear, dictated by the phase change across the junction:

1 . 1 )

£ = §CJ¢% + ECg(V — ¢1)2 —+ EJ COS<¢1/®0)
1 . .

L= §C§)¢% - ngblV + EJ COS(qbl/(I)o).

Once again, we compute the charge of the system ¢ = 8% = Oy — C,V to finally
find the Hamiltonian of the CPB in quantized form using Legendre transformation H =

qp — L:

1

H = E((j — qg)2 — EJ COS<¢1/(I)0>
H =4Eq(h —ny)? — By Cos(3>.
where Fo = % is the charging energy, e the electron charge, F; the Josephson en-

ergy, ¢ the phase operator, i = 2% the (normalized) charge operator and n, = % the
(normalized) charge offset.



Exercise 3 : Lossless transmission line

We now look into a very interesting example: a lossless transmission line (TL). A TL allows RF
signals to be transmitted without significant amount of losses thanks to its property of confining
electromagnetic fields between a central conductor and grounded outer shell (this is the case of
the well known coaxial cable, for example). A TL can be modeled with an infinite series of funda-
mental cells constituted by an inductor within the inner conductor and a capacitor from the inner
conductor to ground (see Fig. 5).

The inductors model the inertia against changes in the electric current while the capacitors
account for the electrostatic energy stored in the waveguide. The circuit is a discretized version of
the guide where each capacitor and inductor accounts for a small segment Az that is much smaller
than the guided wavelengths. The properties of these elements depend on the capacitance and
inductance per unit length:

C; = c¢Ax, L; = l;Ax. (19)

The goal is again to find the Lagrangian and quantized Hamiltonian for such an equivalent circuit
describing a TL.

1. Find the Lagrangian of the system. Consider the branch fluxes along the inductors leftward
oriented, meaning ¢;11_; = ¢;11 — ¢;-

2. With the Legendre transformation, find the associated quantized Hamiltonian. Now, express
it also in terms of ¢; and ;.

bi-1 ¢ Li ¢in

Az

Figure 5: Circuit for a lossless transmission line.

Solution 3 :

1. We have seen from the text that the TL is constituted by identical unitary cells (an inductor
L; within the inner conductor and a capacitor C; to ground), meaning that to solve the
problem we can focus on a single cell only. If we consider the ¢—th cell, the kinetic term
of the Lagrangian comes from the capacitor, where the time derivative of the flux to be
considered is the 1—th one éi, since C; lies between the i—th node and the ground, whereas
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the potential one is accounted by the inductor L; with its corresponding branch flux ¢;,; -

Gi:

L; = %qéﬁ — (i1 — ).

2L,

To get the full Lagrangian of the system, we just need to sum over the total number of cells
N:

=

-1

iy 1 )
Zé Qi — 2L‘(¢i+1_¢i)~

=1 v

. The generalized charges follow ¢; = 9L;/ d¢;, allowing us to write the full Hamiltonian using
the usual Legendre transformation:

N Ny Mg 2
H:Z%@—C:ZQ—Q% +22_Li(¢i+1_¢i) : (20)
=1 =1 =1

We can finally quantize H since, as we have already seen many times, charge and flux are
conjugate variables, i.e. [@, gi] = 1ho;;. We can express H as a function of c; and ;:

N YAz i 2 = AI ng‘+1—€5z‘ ’
H= Z 2¢i(zi) (_> i Z ( Az ' (21)

i=1

In conclusion, we can introduce the charge density operator p(z;) = ¢;/Az and replace sums
with integral:

i das( L)+ 5 [am<z3<x>12). (22)

2¢(x)
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