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1 Exercises

Exercise 1 : Coupled LC resonators

Consider two LC resonators, see Fig. 1, with respective inductance, capacitance values L1, C1

and L2, C2. These resonators are capacitively coupled through a capacitance C0. The flux variable
at the i-th independent node corresponds to ϕi.

1. Write down the Lagrangian L(ϕ, ϕ̇) of the system as a quadratic function of the node flux
variables ϕi and their derivatives ϕ̇i. Introduce the capacitance matrix C and the inverse
of the inductance matrix L−1 and use the flux variables and their derivatives in the vector
representation,

ϕ⃗ =

(
ϕ1

ϕ2

)
, and ˙⃗

ϕ =

(
ϕ̇1

ϕ̇2

)
.

2. Perform the Legendre transformation analytically and extract the Hamiltonian H, as a func-
tion of the charge Qi = ∂L(ϕ, ϕ̇)/∂ϕ̇i and the flux variables ϕi. Rewrite this Hamiltonian as
a quadratic form, using C−1 and L−1.

Hint: A square 2 × 2 matrix is inverted by

A−1 =

(
a11 a12
a21 a22

)−1

=
1

det(A)

(
a22 −a12
−a21 a11

)
3. To perform quantization, first rewrite the Hamiltonian H in terms of both inductances L1, L2

and the bare (uncoupled) angular frequencies ωi with ω2
i = L−1

ii (C
−1)ii. Summarize the capac-

itive coupling in a single constant β = C0/
√

(C1 + C0)(C2 + C0). Perform the quantization
by introducing the corresponding quantum operators Q̂i and ϕ̂i which satisfy the canonical
commutation relation [Q̂i, ϕ̂j] = −iℏδij. Subsequently, use the following definition of the
charge and flux operator to write the Hamiltonian H in terms of annihilation and creation
operators, âi and â†i ,

Q̂i = −i

√
ℏ

2Liωi

(âi − â†i ), and ϕ̂i =

√
ℏLiωi

2
(âi + â†i )

4. Apply the rotating wave approximation (RWA) on the coupling term and diagonalize the
resulting quadratic Hamiltonian with a Bogoliubov transformation. Discuss the physical
interpretation of the obtained eigenenergies and eigenmodes.
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Figure 1: Circuit diagram of two capacitively coupled LC resonators.

Hint: To apply the rotating wave approximation, suppose that the Hamiltonian is driven
at a frequency ωd. Perform a unitary transformation in the frame rotating at the pump
frequency and understand which terms are fastly oscillating in time. To diagonalize the RWA
Hamiltonian, consider a Bogoliubov transformation, which consists in the following ansatz

α̂ = uâ1 + vâ2, (1)

where u and v are generally complex amplitudes. To find u and v impose [Ĥ, α̂] = −Eα̂ and
solve the corresponding 2× 2 system, and remember that [α̂, α̂†] = 1.

5. Consider now the following values for the capacitances of the two LC oscillators: C1 = C2 =
70 fF, and the following value for the inductance L1 = 10 nH. Compute

• The bare mode frequencies ω1 and ω2 as a function of L2.
• The coupled mode frequencies of the RWA Hamiltonian according to the formula you

have obtained in the previous point, supposing C0 = 10 fF.

Discuss your findings from a physical point of view.

Solution 1 :

1. The Lagrangian is of the form

L(ϕ, ϕ̇) = Ekin − Epot

=
1

2

(
C0(ϕ̇1 − ϕ̇2)

2 + C1ϕ̇
2
1 + C2ϕ̇2 −

ϕ2
1

L1

− ϕ2
1

L2

)
=

1

2

(
ϕ̇1 ϕ̇2

)
C

(
ϕ̇1

ϕ̇2

)
− 1

2

(
ϕ1 ϕ2

)
L−1

(
ϕ1

ϕ2

)
=

1

2
⃗̇ϕTC⃗̇ϕ− 1

2
ϕ⃗TL−1ϕ⃗,
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with matrices

C =

(
C0 + C1 −C0

−C0 C0 + C2

)
and L−1 =

(
1/L1 0
0 1/L2

)
.

2. The Legendre transformation is performed by first solving for the charge Qi at each node,

Qi =
∂L(ϕ, ϕ̇)

∂ϕ̇i

=
2∑

j=1

Cijϕ̇j = Cijϕ̇j,

where the expression after the last equal sign using Einstein’s summation convention is a
shorthand notation for the explicit summation before the last equal sign. In terms of the
inverse capacitance matrix and the vector of charges Q⃗ = (Q1, Q2)

T , we obtain

⃗̇ϕ = C−1Q⃗.

The Hamiltonian H is then obtained by using the Legendre transformation,

H =
2∑

i=1

Qiϕ̇i − L(ϕ, ϕ̇) = 1

2
Q⃗TC−1Q⃗+

1

2
ϕ⃗TL−1ϕ⃗

with the inverse of both capacitance and inductance matrices,

C−1 =
1

C1C2 + C0 (C1 + C2)

(
C0 + C2 C0

C0 C0 + C1

)
and L−1 =

(
1/L1 0
0 1/L2

)
.

3. We write out the bare angular mode frequencies ωi,

ω1 =

√
1

L1

C2 + C0

C1C2 + C0C1 + C0C2

and ω2 =

√
1

L2

C1 + C0

C1C2 + C0C1 + C0C2

,

and rewrite the inverse capacitance matrix in terms of inductances Li, bare angular frequencies
ωi and the coupling constant β,

C−1 =

(
L1ω

2
1 β

√
L1L2ω1ω2

β
√
L1L2ω1ω2 L2ω

2
2

)
.

Now we are able to formulate the Hamiltonian H as follows,

H =
1

2
L1ω

2
1Q

2
1 +

1

2L1

ϕ2
1 +

1

2
L2ω

2
2Q

2
2 +

1

2L2

ϕ2
2 + β

√
L1L2ω1ω2Q1Q2

We perform quantization by replacing the flux and charge variables with their corresponding
quantum operators ϕ̂ and Q̂. Subsequently, we replace those operators with their definition in
terms of annihilation and creation operators as seen in the class. After simplifying the result-
ing expression and obeying the commutation relation [â, â†] = 1, we obtain the Hamiltonian
in second quantization (ℏ = 1)

Ĥ = ℏω1

(
â†1â1 + 1/2

)
+ ℏω2

(
â†1â1 + 1/2

)
− ℏ

β

2

√
ω1ω2

(
â1 − â†1

)(
â2 − â†2

)
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we note that in the limit of small coupling capacitance C0

ωi ≃
1√

Li (Ci + C0)
for C0 ≪ C1, C2

and the coupling strength approximates to

g = −β

2

√
ω1ω2 ≃ −1

2

C0√
C1C2

√
ω1ω2 for C0 ≪ C1, C2. (2)

4. The quadratic bosonic Hamiltonian reads (we take ℏ = 1 and we neglect the constant terms
in the Hamiltonian, which do not have any influence on the dynamics)

Ĥ = ω1â
†
1â1 + ω2â

†
2â2 − g

(
â1 − â†1

)(
â2 − â†2

)
. (3)

The rotating wave approximation can be carried out by neglecting the counter-rotating terms
which oscillate faster than the system’s frequency. If we imagine to drive the system at a
certain frequency ωd, we can then suppose the following unitary

Û = eiωdt(a†1â1+a†2â2). (4)

To find the rotated Hamiltonian it is sufficient to rotate single bosonic operators. We consider
for example â1. By applying the Baker-Campbell-Haussdorff formula we obtain

Û â1Û
† = eiωdtâ

†
1â1 â1e

−iωdtâ
†
1â1 = â1 + iωdt[â

†
1â1, â1] +

1

2
(iωdt)

2[â†1â1, [â
†
1â1, â1]] + ...

= â1 − (iωdt)â1 +
1

2
(iωdt)

2â1 + ... =
+∞∑
k=0

(−1)n

n!
(iωdt)

nâ1 = â1e
−iωdt. (5)

Similarly, we find Û â2Û
† = â2e

−iωdt. We then notice that terms containing an equal number
of creation and annihilation operators do not oscillate in the frame rotating at the pump
frequency, while terms like â1â2 and â†1â

†
2 oscillates at 2ωd. Those are the fastly oscillating

terms that can be neglected within the RWA and we arrive at the RWA Hamiltonian

Ĥ = ω1â
†
1â1 + ω2â

†
2â2 + g

(
â†1â2 + â†2â1

)
. (6)

The above Hamiltonian is again quadratic, but can be diagonalized in a much simpler way
with respect to the previous Hamiltonian containing counter-rotating terms. The method
we adopt to diagonalize the Hamiltonian is a Bogoliubov transformation, which consists in
writing a linear combination of the two bosonic operators

α̂ = uâ1 + vâ2. (7)

If the Hamiltonian were diagonal in the α̂ operators, then we would have that [Ĥ, α̂] = −Eα̂
with E the eigenenergies of the system. If we compute the commutator explicitly we get

[Ĥ, α̂] = −uω1â1 − vω2â2 − ugâ2 − vgâ1 = −Euâ1 − Evâ2 = −Eα̂. (8)
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Figure 2: Bare (black-dashed line) and dressed (purple continuous line) eigenfrequencies of the
coupled LC circuit system as a function of the inductance of the second LC resonator.

The above equation can be recast in the following 2× 2 system{
ω1u+ gv = Eu

gu+ ω2v = Ev
=⇒

(
ω1 g
g ω2

)(
u
v

)
= E

(
v
v

)
. (9)

The eigenvalues can be obtained from the characteristic equation(
ω1 − E g

g ω2 − E

)
= (ω1 − E)(ω2 − E)− g2 = 0, (10)

whose solutions reads

E± =
ω1 + ω2

2
±

√(
ω1 − ω2

2

)2

+ g2. (11)

Notice that if g = 0 the two solutions are simply E± = ω1,2, since the Hamiltonian is already
diagonal. To find the eigenvectors we use the fact that α̂ is a bosonic operator and

[α̂, α̂†] = [uâ1 + vâ2, uâ
†
1 + vâ†2] = u2 + v2 = 1. (12)

From the 2× 2 system for the Bogoliubov amplitudes we get

v =
E − ω1

g
u, (13)

and from the condition u2 + v2 = 1 we finally obtain

u =
±g√

g2 + (E± − ω1)2
, v =

E± − ω1√
g2 + (E± − ω1)2

. (14)
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The Hamiltonian can finally be written in the diagonal form

Ĥ = E+α̂
†
+α̂+ + E−α̂

†
−α̂−, (15)

where E± are the Bogoliubov quasi-energies obtained above. From a physical point of view
the diagonal Hamiltonian in terms of modes which are linear combinations of â1 and â2
indicates that the coupling hybridizes the modes. Notably, the Bogoliubov quasi-energies E±
exhibit now an avoided level crossing (or level repulsion), a typical signature of many-body
interactions. We study in detail the avoided level crossing in the next point.

5. We consider the values for C0,1,2 and L1,2 given in the text. Since C0 ≪ C1,2 we fix the bare
frequencies to ωj ≃ 1/

√
Lj(C0 + Cj) and the coupling to g ≃ −(

√
ω1ω2/2)×C0/

√
C1C2. We

plot the results in Fig. 2. The bare frequencies cross at a certain value of L2, while the dressed
frequencies exhibit an avoided level crossing, as predicted by the Bogoliubov diagonalization.
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Exercise 2 : Circuit Quantization

1. The goal of this exercise is to find the Lagrangian and quantized Hamiltonian of a LC resonator
capacitively coupled to a time variable voltage source (see Fig. 3a).

Figure 3: a) Equivalent circuit for an LC resonator consisting on an inductor in parallel with a
capacitor, subject to an external potential V(t). b) Equivalent circuit for a non-linear inductor (a
Josephson junction) in parallel with a capacitor, subject to an external potential V(t).

(a) First, decompose the circuit to identify the branch and node fluxes. Find the relation
between them. You should end up with only one flux variable.

(b) Find the Lagrangian of the system.

(c) With the Legendre transformation, find the associated quantized Hamiltonian.

2. The circuit in Fig. 3b models a Cooper Pair Box or equivalently, as you will see in future
sessions, a transmon qubit. It mirrors the LC resonator of the previous point, but now the
inductor has been replaced by a Josephson junction, effectively behaving as a non-linear
inductor.

(a) Find the Lagrangian of the CPB.

(b) Find the associated quantized Hamiltonian.

Solution 2 :

1. (a) We see that the branch flux associated with the inductor ϕa is the same than the one
associated with ϕd as the two components are in parallel. The flux ϕ0 is associated to
the ground plane so that we can take ϕ0 = 0 as our reference. In the end:

ϕa = ϕd = ϕ1 − ϕ0 = ϕ1

ϕb = ϕ2 − ϕ1

ϕc = ϕ2 − ϕ0 = −ϕ2
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Figure 4: Nodes, node fluxes, and branch fluxes for the circuit description and quantization.

(b)

L =
1

2
Cϕ̇a

2
+

1

2
Cgϕ̇b

2 − 1

2L
ϕ2
a

L =
1

2
Cϕ̇1

2
+

1

2
Cg(ϕ2 − ϕ̇1)

2 − 1

2L
ϕ2
1

We can use Kirchhoff’s law for the voltages to write:

ϕ̇a + ϕ̇b + ϕ̇c = ϕ̇1 + (ϕ̇2 − ϕ̇1)− V = 0

and to deduce that:

ϕ̇2 = V

Which allows us to finally write the Lagrangian of the system in only one variable:

L =
1

2
Cϕ̇1

2
+

1

2
Cg(V − ϕ̇1)

2 − 1

2L
ϕ2
1

The 1
2
CgV

2 term is a constant term that does not contribute in the dynamics of the
system so it can be neglected. Finally:

L =
1

2
CΣϕ̇1

2 − CgV ϕ̇1 −
1

2L
ϕ2
1. (16)

where CΣ = C + Cg

(c) By finding the generalised charge q1 = ∂L
∂ϕ̇1

= CΣϕ̇1 − CgV and writing the Legendre
transformation:

H = q1ϕ̇1 − L. (17)
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We find the quantized (we already know that charge and flux are conjugate variables)
Hamiltonian:

Ĥ =
1

2CΣ

(q̂1 − qg)
2 +

1

2L
ϕ̂1

2
. (18)

where qg = −CgV is the charge offset due to the generator.

2. (a) Following what was done in the previous exercise, the action of the capacitors does not
change when compared to the LC resonator. The inductance contribution becomes non
linear, dictated by the phase change across the junction:

L =
1

2
CJ ϕ̇

2
1 +

1

2
Cg(V − ϕ̇1)

2 + EJ cos(ϕ1/Φ0)

L =
1

2
CΣϕ̇

2
1 − Cgϕ̇1V + EJ cos(ϕ1/Φ0).

(b) Once again, we compute the charge of the system q = ∂L
∂ϕ̇1

= CΣϕ̇1 − CgV to finally
find the Hamiltonian of the CPB in quantized form using Legendre transformation H =
qϕ̇1 − L:

Ĥ =
1

2CΣ

(q̂ − qg)
2 − EJ cos

(
ϕ̂1/Φ0

)
Ĥ = 4EC(n̂− ng)

2 − EJ cos
(
δ̂
)
.

where EC = e2

2CΣ
is the charging energy, e the electron charge, EJ the Josephson en-

ergy, δ̂ the phase operator, n̂ = q̂
2e

the (normalized) charge operator and ng = q̂g
2e

the
(normalized) charge offset.
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Exercise 3 : Lossless transmission line

We now look into a very interesting example: a lossless transmission line (TL). A TL allows RF
signals to be transmitted without significant amount of losses thanks to its property of confining
electromagnetic fields between a central conductor and grounded outer shell (this is the case of
the well known coaxial cable, for example). A TL can be modeled with an infinite series of funda-
mental cells constituted by an inductor within the inner conductor and a capacitor from the inner
conductor to ground (see Fig. 5).

The inductors model the inertia against changes in the electric current while the capacitors
account for the electrostatic energy stored in the waveguide. The circuit is a discretized version of
the guide where each capacitor and inductor accounts for a small segment ∆x that is much smaller
than the guided wavelengths. The properties of these elements depend on the capacitance and
inductance per unit length:

Ci = ci∆x, Li = li∆x. (19)

The goal is again to find the Lagrangian and quantized Hamiltonian for such an equivalent circuit
describing a TL.

1. Find the Lagrangian of the system. Consider the branch fluxes along the inductors leftward
oriented, meaning ϕi+1→i = ϕi+1 − ϕi.

2. With the Legendre transformation, find the associated quantized Hamiltonian. Now, express
it also in terms of ci and li.

Figure 5: Circuit for a lossless transmission line.

Solution 3 :

1. We have seen from the text that the TL is constituted by identical unitary cells (an inductor
Li within the inner conductor and a capacitor Ci to ground), meaning that to solve the
problem we can focus on a single cell only. If we consider the i−th cell, the kinetic term
of the Lagrangian comes from the capacitor, where the time derivative of the flux to be
considered is the i−th one ϕ̇i, since Ci lies between the i−th node and the ground, whereas
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the potential one is accounted by the inductor Li with its corresponding branch flux ϕi+1 -
ϕi:

Li =
1

2
Ciϕ̇i

2 − 1

2Li

(ϕi+1 − ϕi)
2.

To get the full Lagrangian of the system, we just need to sum over the total number of cells
N:

L =
N∑
i=1

1

2
Ciϕ̇i

2 −
N−1∑
i=1

1

2Li

(ϕi+1 − ϕi)
2.

2. The generalized charges follow qi = ∂Li/∂ϕ̇i, allowing us to write the full Hamiltonian using
the usual Legendre transformation:

H =
N∑
i=1

qiϕ̇i − L =
N∑
i=1

1

2Ci

q2i +
N−1∑
i=1

1

2Li

(ϕi+1 − ϕi)
2. (20)

We can finally quantize H since, as we have already seen many times, charge and flux are
conjugate variables, i.e. [ϕ̂i, q̂i] = iℏδij. We can express Ĥ as a function of ci and li:

Ĥ =
N∑
i=1

∆x

2ci(xi)

(
q̂i
∆x

)2

+
N−1∑
i=1

∆x

2li(xi)

(
ϕ̂i+1 − ϕ̂i

∆x

)2

. (21)

In conclusion, we can introduce the charge density operator ρ̂(xi) = q̂i/∆x and replace sums
with integral:

Ĥ =

∫
dx

(
1

2c(x)
ρ̂(x)2 +

1

2l(x)
[∂xϕ̂(x)]

2

)
. (22)
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