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1 Exercises

Exercise 1 : Pauli algebra and the Bloch sphere representation

In this exercise we deal with the fundamental properties of quantum mechanical two-level sys-
tems. We study the algebra obeyed by two-level system operators (the Pauli algebra) and we
understand how to represent two-level systems on the Bloch sphere, considering both pure and
mixed states.

A single qubit state can be represented by its Bloch vector r = ((5,),(6,), (5.))", which is
defined on three-dimensional unit sphere (i.e. |r| < 1). Where 6,, 6, and &, are the Pauli operators

defined as:
. (01 . (0 —i . (1 0
9= \1 0)" b= \i 0 ) 7==\o -1/

1. Show that these matrices are Hermitian and unitary.

2. Show that the Pauli matrices satisfy the following commutation relation: [6,,d,] = 2i6,, and
find similar expressions for [6,, .| and [6, 7,].

3. Show that an arbitrary pure state, parametrized as [¢)) = cos(6/2)|0) + sinf/2¢¥|1) is
represented by a Bloch vector of unit length. Graphically visualize the Bloch vector on the
Bloch sphere for § = /4 and ¢ = /2.

4. Calculate the length of the Bloch vector for a mixed state with density matrix p = (1 —
) 1) (] + 51.

Solution 1 :

1. A matrix, A, is Hermitian if A = AT where the dagger symbol, 1, is the transpose conjugate.
It is unitary if AAT = 1. We detail the calculation only for 6,. To verify that 6, is Hermitian

it is sufficient to compute
0 i\ [0 —i
-(% o) =C %) g

To verify that &, is unitary it is sufficient to compute
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In the same way we can verify Hermiticity and unitarity of ¢, and &.,.

. To show that [6,, 6,] = 2i6, we can simply bruteforce calculate it:

T T (A WA A WA W G DA N
O Oyl = 720y =% = {1 o) \i 0 i 0o)\10) " \o —i 0o i)
(3)

We proceed with the same calculations for the two others commutation relations and we find
[6y,0.] = 2i6, and [0, 0,] = 2i0,,.

. Given a pure state, the expectation value of an operator O is (O) = (¢| O |1b). Here |ip) =
(cos (0/2), sin(6/2)e®)T. We have

(62) = Wloa o) = (eos 072) smio2e) (3 3) (o)

= sin (6/2) cos (6/2) (e + €'®) = sin (0) cos (), (5)

where we have used e + ¢ = 2Re (¢'?) = 2cos (¢) and sin (20) = 2sin (a) cos ().
Similarly, (6,) = sin () sin (¢), and (6,) = cos (¢). The magnitude of the vector is given by

rl = /(02" + (3" + () = 1.

The state with § = 7/4 and ¢ = 7/2, lies in the yz-plane, 45 degrees towards the "south"
pole of the Bloch sphere. This can also be seen by calculating (5,) = 0, (5,) = 1/v/2 and

(=) =1/v2.

. Given a mixed state, the expectation value of an operator O on a density matrix p is given
by (O) = Tr(pO). The we consider is

p=(1=2) ) (0] + 31 ()

which is a mixture of the pure state [¢)) of the previous point, for which we have

[y |* = 1= Ta (6. [¥) (1) + Ta (6, [¥) ()° + Ta (6. [9) (@), (7)

and of the identity matrix. For the latter, it is useful to note that the Pauli matrices have all
a null trace Tr(6,1) = Tr(6,1) = Tr(6.1) = 0. From the linearity of the trace, we conclude
that Tr(d;p) = (1—¢) Tr(6; [¢) (¥|)+5 Tr(6;1) = (1—¢) Tr(6; [¢) (¢|) for any Pauli operator
6; (j =m,y,z). It follows that the length of the Bloch vector of that state is given by

ol = /(L= €2 (] 60 1) + (1 — £)2 (6] 6, [0 + (1 — £)2 (] 5. [o)? (®)
— (1= ) (W6 [0) + (W] 6, 1) + (0] [0)? = (1= &) Ir| = (1 — ) € [0,1].




Exercise 2 : Dynamics of a two-level system in a magnetic field

In this exercise we consider the dynamics of a two-level system in the presence of an external
magnetic field. The Hamiltonian reads

A h . h . . .
H=-"B.¢= —77(31% + B,&, + B.6.), 9)
where 7 is the gyromagnetic ratio. The system’s dynamics is governed by the Schrodinger equation

d N
i h— =H 10
i) = H 1), (10)
whose general solution is given by

[(t)) = e # 1 1h(0)) . (11)

1. Consider now the case where we have a constant magnetic field in the z-direction:

0
B=|0 (12)
B

z

(a) If at time ¢ = 0 the state is given by [¢(0)) = cos (0/2)]0) + sin (6/2)e |1), calculate
the state |¢(t)) after a given time t = ;.
Hint: Use the following identity e's(edstmovtn:cs) — cos(0/2)1 + isin (6/2)(n.6, +
nyGy + n.05).

2. Let’s assume we have a constant magnetic field in the x-direction:

B,
B=10
0

(a) Calculate the state after a time t assuming that at ¢ = 0 the state was in [¢(0)) = |0).
What happens at times ¢t = 7/w and t = 7/2w (where w = vB,) ?

(b) Calculate the state after a time t assuming that at ¢ = 0 the state was in |¢(0)) =
|1).What happens at times ¢t = 7/w and t = 7/2w ?

Solution 2 :

1. In order to find |¢(t)) at a time ¢;, we apply the identity given in the hint.

N wt S wt
e~ il = ¢i'29: = cos (w—t)]l + isin (w—t>€f = (COS (%) —BZSIH () . 0 )
2 2 ? =

cos (—) —7sin (%t)

T 0 ot (10
= ( 0 ezé") =€ (0 eiwt) ) (13>



and thus

iwt (1
o) =% (5, ) ). (14)
where w = B,7. Using the state at time ¢ = 0, |1/(0)) = cos6/2]0) + sin 6/2¢' |1), we have

iwt 1

ez (o e_%) [cos (6/2) |0) + sin (6/2)e" [1)]
= ¢'% [cos (6/2) |0) + sin (8/2)e’ | 1)] .

|4 (2))

e's" can be neglected as it is a global phase factor, having no influence on expectation values.
Hence we find

[9(t)) = cos (0/2) |0) + sin (0/2)e "™ 1) .

Applying a B-field along the z-axis, makes the spin precess along the z axis at the angular
frequency w.

. For the case with B along the x direction we can apply the same process.

; "y t (Wt 5) isin (%
et _ i 6n _ og (%)]l + ¢sin (%) Op = (f;i((gﬁ)) ZCS;:((%%))> : (15)
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and thus ( ) ( )
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Let’s now derive [1)(t)) for the two cases.

(a) |¢(0)) = |0); the time-evolved state reads

o) = (o8 ) Y10y = eos (5 ) 10+ s (5 ) 0.

2

For t = w/w we have
[t =m/w))) = i|1),

so the time evolution leads to a population transfer from |0) to |1). For t = 7/2w we
have

1 :
E(MHM)’

so the time evolution brings |0) to a quantum superposition of states.

[t =7/2w))) =

(b) [1(0)) = |1); the time-evolved state reads

v = (@) ) )= () 0+ ()



For t = w/w we have

[Y(t = m/w))) =i]|0),
so the time evolution leads to a population transfer from |1) to |0). For t = m/2w we
have

(= 7/2w))) = % (i]0) + 1))

so the time evolution brings |1) to a quantum superposition of states.



Exercise 3 : Driven two-level system

In this exercise we study the dynamics of a driven two-level system. The time-dependent
Hamiltonian describing a single two-level system subject to a continuous drive at frequency wy is
(assuming h = 1)

H= %@ + Q6 cos (wqt). (17)

1. Write the Hamiltonian in the frame rotating at the drive frequency w,; and apply the rotating-
wave approximation to eliminate the remaining time-dependence.

2. Diagonalize the time-independent Hamiltonian obtaining the eigenvalues and the eigenvectors.
Hint: express the eigenvectors in terms of the rotation angle 6, where

Q Q A
tanf = sinf = ————— cosf =

where A = wy — wy is the qubit-to-pump detuning.

3. Calculate the probability of being in the excited state |1) under the assumption that at time
zero t = 0 the system is in the state [¢/(0)) = |0)

Pi(t) = | (1[v (1)) (18)

4. Calculate the time average of the probability of being in the excited state

_ 1 [T
P, = lim —/ Py(t)dt (19)
T Jo

t—o0

5. Plot the Rabi frequency |[detuning of the oscillation of P;(t)| as a function of time ¢.

Solution 3 :

1. We consider the Hamiltonian of the driven two-level system given in the text
2 Wo . .
H= - 0 + Q6, cos (wqt). (20)

We move to a frame rotating at the drive frequency (w,) using the unitary transformation
iwdt%

(as explained in class) U(t) = e
given by the formula

. The transformed Hamiltonian in the rotating frame is

N oU -
H— UHU' + iEUT. (21)
We first compute the second term in the above equation, which is
oU - w
U = -2 22
i U 5 0 (22)



Now we use the formula from the previous exercise to transform &,

U6,U' = 6, cos(wgt) — 6, sin(wqt).

(23)
Notice that the same result can be obtained by using the Baker-Campbell-Haussdorff formula.
Finally, we notice that U commutes with &, and the transformed Hamiltonian reads
N A R o
H = 50 + Q [0, cos(wgt) — 7, sin(wqt)] cos(wqt),

(24)
where A = wy — wy is the qubit-to-pump detuning. To simplify the above equation, we can
use the following trigonometric identities

cos(A) cos(B) = %[COS(A — B) + cos(A + B)],

(25)
sin(A) cos(B) — %[Sin(A _ B)+sin(A + B)],
and we finally obtain

. A Q
Hp = 562 + ) [6,(cos 2wyt + 1) — 7, sin 2wt .

(26)
We now apply the rotating wave approximation (RWA). The terms oscillating at 2w, are
rapidly varying and average to zero over time. Keeping only the time-independent terms, we
obtain the effective Hamiltonian:

~ A Q
H=—06,+ —0, 2
50: 1+ 50 (27)
This describes the effective dynamics of the system within the RWA.

2. We first express the RWA Hamiltonian in matrix form as

1A Q
welfs o). o
To find the eigenvalues, it is sufficient to solve the secular equation
A, o
det (H—¢el)=12 g 2 =0, (29)
2 T2 ¢
which yields the equation
AN O
2
= =) 30
R (30)
whose solutions read
VA2 4 Q2
E4 = ZET
Now we find the eigenvectors.
E+ _ VA240?

(31)
We detail the procedure for the eigenvector associated to
5 We need to solve the 2 x 2 system

A

_ VAP Q ] a

2 2 2 [ } = 0.
Q _A _ VA2 | |p
2 2 2

(32)



If we set the first row to zero we can write down the equation

A VAZ Q2 Q
P E R Ll

which gives
Q

b.
VAZ+ Q2 — A

This leads to the eigenvector

0= (7553 ) = (750 = [/ —con () 10+ (§) 0.

where we used the relations given in the main text

A 0 Q
Sint = ——,
VA2 + Q2

tan = g, cosf =

A VA2 02’

Similarly, one gets for the second eigenvector

=) = —sin (g) 10) + cos (g) .

(35)

(37)

. We first invert the relation between the {|4),|—)} eigenstates and the {|1),]0)} states and

we get the following expression for |0):

o) = cos (5 ) 1) s (5 ) 1)

At this point is easy to compute the time evolution generated by H:
—iHt —ie gt 4 iept 0
[p(t)) =e |0) = e "+ cos 5 |+) — e+’ sin 5 |—).
The overlap with |1) is then given by
—ie4t 0 et ; 0
(1)) = e+ cos ( 5 ) (1) — e=sin (£ ) (1))
= e+l cos Q sin Q — e +tgin Q cos Q
B 2 2 2 2
= isin(0) sin(et).

The probability of the system to be in the state |1) reads
QQ
(U0 = sin® (B) sin®(e.t) = 5 sin® (VP &%)

This is the famous Rabi’s formula.

(38)

(39)



Rabi's formula for Q=1

08
06
&
0.4
02
0.0
t
. We finally compute the time average of the probability as
T 1 Q2
b= lim 7. / Pidt =35 3o (44)

since the time average of the function sin?(wt) is 1/2.

. We can use Julia to plot the Rabi frequency as a function of time ¢ and detuning A for a

specific value of the drive amplitude €2. We provide the code here below:

using CairoMakie

Omega = 1
t = range(0, 10, 1000)
Delta = range(-2, 2, 1000)

P_rabi = (Omega~2 ./(Delta'."2 .+ Omega~2)) .* sin.(sqrt.(Omega~2 .+
Delta'."~2) .* t)."2

fig = Figure(size = (600, 500))

axl = Axis(figl[1l, 1], title="Rabi's, formula, for Omega=1", xlabel="t",
ylabel="Delta")

hm = heatmap!(axl, t, Delta, P_rabi, colormap=:viridis)

cb Colorbar (figl[1, 2], hm, label="P(t)")

fig




