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1 Exercises

Exercise 1 : Pauli algebra and the Bloch sphere representation

In this exercise we deal with the fundamental properties of quantum mechanical two-level sys-
tems. We study the algebra obeyed by two-level system operators (the Pauli algebra) and we
understand how to represent two-level systems on the Bloch sphere, considering both pure and
mixed states.

A single qubit state can be represented by its Bloch vector r = (⟨σ̂x⟩ , ⟨σ̂y⟩ , ⟨σ̂z⟩)T , which is
defined on three-dimensional unit sphere (i.e. |r| ≤ 1). Where σ̂x, σ̂y and σ̂z are the Pauli operators
defined as:

σ̂x =

(
0 1
1 0

)
, σ̂y =

(
0 −i
i 0

)
, σ̂z =

(
1 0
0 −1

)
.

1. Show that these matrices are Hermitian and unitary.

2. Show that the Pauli matrices satisfy the following commutation relation: [σ̂x, σ̂y] = 2iσ̂z, and
find similar expressions for [σ̂y, σ̂z] and [σ̂z, σ̂x].

3. Show that an arbitrary pure state, parametrized as |ψ⟩ = cos (θ/2) |0⟩ + sin θ/2eiϕ |1⟩ is
represented by a Bloch vector of unit length. Graphically visualize the Bloch vector on the
Bloch sphere for θ = π/4 and ϕ = π/2.

4. Calculate the length of the Bloch vector for a mixed state with density matrix ρ̂ = (1 −
ε) |ψ⟩ ⟨ψ|+ ε

2
1.

Solution 1 :

1. A matrix, A, is Hermitian if A = A† where the dagger symbol, †, is the transpose conjugate.
It is unitary if AA† = 1. We detail the calculation only for σ̂y. To verify that σ̂y is Hermitian
it is sufficient to compute

σ̂†
y =

(
0 i
−i 0

)⋆
=

(
0 −i
i 0

)
, (1)

To verify that σ̂y is unitary it is sufficient to compute

σ̂yσ̂
†
y =

(
0 −i
i 0

)
·
(
0 −i
i 0

)
= σ̂2

y = 1. (2)
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In the same way we can verify Hermiticity and unitarity of σ̂x and σ̂z.

2. To show that [σ̂x, σ̂y] = 2iσ̂z we can simply bruteforce calculate it:

[σ̂x, σ̂y] = σ̂xσ̂y− σ̂yσ̂x =
(
0 1
1 0

)(
0 −i
i 0

)
−
(
0 −i
i 0

)(
0 1
1 0

)
=

(
i 0
0 −i

)
−
(
−i 0
0 i

)
= 2iσ̂z

(3)
We proceed with the same calculations for the two others commutation relations and we find
[σ̂y, σ̂z] = 2iσ̂x and [σ̂z, σ̂x] = 2iσ̂y.

3. Given a pure state, the expectation value of an operator Ô is ⟨Ô⟩ = ⟨ψ| Ô |ψ⟩. Here |ψ⟩ =
(cos (θ/2), sin (θ/2)eiϕ)T. We have

⟨σ̂x⟩ = ⟨ψ| σ̂x |ψ⟩ =
(
cos (θ/2) sin (θ/2)e−iϕ

)(0 1
1 0

)(
cos (θ/2)

sin (θ/2)eiϕ

)
(4)

= sin (θ/2) cos (θ/2)
(
e−iϕ + eiϕ

)
= sin (θ) cos (ϕ), (5)

where we have used e−iϕ + eiϕ = 2Re
(
eiϕ
)
= 2 cos (ϕ) and sin (2α) = 2 sin (α) cos (α).

Similarly, ⟨σ̂y⟩ = sin (θ) sin (ϕ), and ⟨σ̂z⟩ = cos (θ). The magnitude of the vector is given by

|r| =
√
⟨σ̂x⟩2 + ⟨σ̂y⟩2 + ⟨σ̂z⟩2 = 1.

The state with θ = π/4 and ϕ = π/2, lies in the yz-plane, 45 degrees towards the "south"
pole of the Bloch sphere. This can also be seen by calculating ⟨σ̂x⟩ = 0, ⟨σ̂y⟩ = 1/

√
2 and

⟨σ̂z⟩ = 1/
√
2.

4. Given a mixed state, the expectation value of an operator Ô on a density matrix ρ̂ is given
by ⟨Ô⟩ = Tr(ρ̂Ô). The we consider is

ρ̂ = (1− ε) |ψ⟩ ⟨ψ|+ ε

2
1 (6)

which is a mixture of the pure state |ψ⟩ of the previous point, for which we have

|rψ|2 = 1 = Tr(σ̂x |ψ⟩ ⟨ψ|)2 + Tr(σ̂y |ψ⟩ ⟨ψ|)2 + Tr(σ̂z |ψ⟩ ⟨ψ|)2, (7)

and of the identity matrix. For the latter, it is useful to note that the Pauli matrices have all
a null trace Tr(σ̂x1) = Tr(σ̂y1) = Tr(σ̂z1) = 0. From the linearity of the trace, we conclude
that Tr(σ̂jρ) = (1−ε) Tr(σ̂j |ψ⟩ ⟨ψ|)+ ε

2
Tr(σ̂j1) = (1−ε) Tr(σ̂j |ψ⟩ ⟨ψ|) for any Pauli operator

σ̂j (j = x, y, z). It follows that the length of the Bloch vector of that state is given by

|rρ| =
√

(1− ε)2 ⟨ψ| σ̂x |ψ⟩2 + (1− ε)2 ⟨ψ| σ̂y |ψ⟩2 + (1− ε)2 ⟨ψ| σ̂z |ψ⟩2 (8)

= (1− ε)

√
⟨ψ| σ̂x |ψ⟩2 + ⟨ψ| σ̂y |ψ⟩2 + ⟨ψ| σ̂z |ψ⟩2 = (1− ε) |r| = (1− ε) ∈ [0, 1].

2



Exercise 2 : Dynamics of a two-level system in a magnetic field

In this exercise we consider the dynamics of a two-level system in the presence of an external
magnetic field. The Hamiltonian reads

Ĥ = −ℏγ
2
B · σ̂ = −ℏγ

2
(Bxσ̂x +Byσ̂y +Bzσ̂z), (9)

where γ is the gyromagnetic ratio. The system’s dynamics is governed by the Schrödinger equation

iℏ
d

dt
|ψ⟩ = Ĥ |ψ⟩ , (10)

whose general solution is given by

|ψ(t)⟩ = e−
i
ℏ Ĥt |ψ(0)⟩ . (11)

1. Consider now the case where we have a constant magnetic field in the z-direction:

B =

 0
0
Bz

 (12)

(a) If at time t = 0 the state is given by |ψ(0)⟩ = cos (θ/2) |0⟩ + sin (θ/2)eiϕ |1⟩, calculate
the state |ψ(t)⟩ after a given time t = t1.
Hint: Use the following identity ei

θ
2
(nxσ̂x+nyσ̂y+nz σ̂z) = cos (θ/2)1 + i sin (θ/2)(nxσ̂x +

nyσ̂y + nzσ̂z).

2. Let’s assume we have a constant magnetic field in the x-direction:

B =

Bx

0
0


(a) Calculate the state after a time t assuming that at t = 0 the state was in |ψ(0)⟩ = |0⟩.

What happens at times t = π/ω and t = π/2ω (where ω = γBx) ?

(b) Calculate the state after a time t assuming that at t = 0 the state was in |ψ(0)⟩ =
|1⟩.What happens at times t = π/ω and t = π/2ω ?

Solution 2 :

1. In order to find |ψ(t)⟩ at a time t1, we apply the identity given in the hint.

e−
i
ℏ Ĥt = ei

ωt
2
σ̂z = cos

(
ωt

2

)
1+ i sin

(
ωt

2

)
σ̂z =

(
cos
(
ωt
2

)
+ i sin

(
ωt
2

)
0

0 cos
(
ωt
2

)
− i sin

(
ωt
2

))
=

(
ei

ωt
2 0

0 e−i
ωt
2

)
= ei

ωt
2

(
1 0
0 e−iωt

)
, (13)
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and thus
|ψ(t)⟩ = e

iωt
2

(
1 0
0 e−iωt

)
|ψ(0)⟩ . (14)

where ω = Bzγ. Using the state at time t = 0, |ψ(0)⟩ = cos θ/2 |0⟩+ sin θ/2eiϕ |1⟩, we have

|ψ(t)⟩ = e
iωt
2

(
1 0
0 e−iωt

)[
cos (θ/2) |0⟩+ sin (θ/2)eiϕ |1⟩

]
= e

iωt
2

[
cos (θ/2) |0⟩+ sin (θ/2)eiϕ−iωt |1⟩

]
.

e
iωt
2 can be neglected as it is a global phase factor, having no influence on expectation values.

Hence we find
|ψ(t)⟩ = cos (θ/2) |0⟩+ sin (θ/2)eiϕ−iωt |1⟩ .

Applying a B-field along the z-axis, makes the spin precess along the z axis at the angular
frequency ω.

2. For the case with B along the x direction we can apply the same process.

e−
i
ℏ Ĥt = ei

ωt
2
σ̂x = cos

(
ωt

2

)
1+ i sin

(
ωt

2

)
σ̂x =

(
cos
(
ωt
2

)
i sin

(
ωt
2

)
i sin

(
ωt
2

)
cos
(
ωt
2

) ) , (15)

and thus
|ψ(t)⟩ =

(
cos
(
ωt
2

)
i sin

(
ωt
2

)
i sin

(
ωt
2

)
cos
(
ωt
2

) ) |ψ(0)⟩ . (16)

Let’s now derive |ψ(t)⟩ for the two cases.

(a) |ψ(0)⟩ = |0⟩; the time-evolved state reads

|ψ(t)⟩ =
(
cos
(
ωt
2

)
i sin

(
ωt
2

)
i sin

(
ωt
2

)
cos
(
ωt
2

) ) |0⟩ = cos

(
ωt

2

)
|0⟩+ i sin

(
ωt

2

)
|1⟩ ,

For t = π/ω we have
|ψ(t = π/ω)⟩) = i |1⟩ ,

so the time evolution leads to a population transfer from |0⟩ to |1⟩. For t = π/2ω we
have

|ψ(t = π/2ω)⟩) = 1√
2
(|0⟩+ i |1⟩) ,

so the time evolution brings |0⟩ to a quantum superposition of states.

(b) |ψ(0)⟩ = |1⟩; the time-evolved state reads

|ψ(t)⟩ =
(
cos
(
ωt
2

)
i sin

(
ωt
2

)
i sin

(
ωt
2

)
cos
(
ωt
2

) ) |1⟩ = i sin

(
ωt

2

)
|0⟩+ cos

(
ωt

2

)
|1⟩ .
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For t = π/ω we have
|ψ(t = π/ω)⟩) = i |0⟩ ,

so the time evolution leads to a population transfer from |1⟩ to |0⟩. For t = π/2ω we
have

|ψ(t = π/2ω)⟩) = 1√
2
(i |0⟩+ |1⟩) ,

so the time evolution brings |1⟩ to a quantum superposition of states.
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Exercise 3 : Driven two-level system

In this exercise we study the dynamics of a driven two-level system. The time-dependent
Hamiltonian describing a single two-level system subject to a continuous drive at frequency ωd is
(assuming ℏ = 1)

Ĥ =
ω0

2
σ̂z + Ωσ̂x cos (ωdt). (17)

1. Write the Hamiltonian in the frame rotating at the drive frequency ωd and apply the rotating-
wave approximation to eliminate the remaining time-dependence.

2. Diagonalize the time-independent Hamiltonian obtaining the eigenvalues and the eigenvectors.
Hint: express the eigenvectors in terms of the rotation angle θ, where

tan θ =
Ω

∆
, sin θ =

Ω√
∆2 + Ω2

, cos θ =
∆√

∆2 + Ω2
,

where ∆ = ω0 − ωd is the qubit-to-pump detuning.

3. Calculate the probability of being in the excited state |1⟩ under the assumption that at time
zero t = 0 the system is in the state |ψ(0)⟩ = |0⟩

P1(t) = | ⟨1|ψ(t)⟩ |2 (18)

4. Calculate the time average of the probability of being in the excited state

P̄1 = lim
t→∞

1

T

∫ T

0

P1(t)dt (19)

5. Plot the Rabi frequency [detuning of the oscillation of P1(t)] as a function of time t.

Solution 3 :

1. We consider the Hamiltonian of the driven two-level system given in the text

Ĥ =
ω0

2
σ̂z + Ωσ̂x cos (ωdt). (20)

We move to a frame rotating at the drive frequency (ωd) using the unitary transformation
(as explained in class) Û(t) = eiωdt

σ̂z
2 . The transformed Hamiltonian in the rotating frame is

given by the formula

Ĥ → ÛĤÛ † + i
∂Û

∂t
Û †. (21)

We first compute the second term in the above equation, which is

i
∂Û

∂t
Û † = −ωd

2
σ̂z. (22)
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Now we use the formula from the previous exercise to transform σ̂x

Û σ̂xÛ
† = σ̂x cos(ωdt)− σ̂y sin(ωdt). (23)

Notice that the same result can be obtained by using the Baker-Campbell-Haussdorff formula.
Finally, we notice that Û commutes with σ̂z, and the transformed Hamiltonian reads

Ĥ =
∆

2
σ̂z + Ω [σ̂x cos(ωdt)− σ̂y sin(ωdt)] cos(ωdt), (24)

where ∆ = ω0 − ωd is the qubit-to-pump detuning. To simplify the above equation, we can
use the following trigonometric identities

cos(A) cos(B) =
1

2
[cos(A−B) + cos(A+B)], (25)

sin(A) cos(B) =
1

2
[sin(A−B) + sin(A+B)],

and we finally obtain

ĤR =
∆

2
σ̂z +

Ω

2
[σ̂x(cos 2ωdt+ 1)− σ̂y sin 2ωdt] . (26)

We now apply the rotating wave approximation (RWA). The terms oscillating at 2ωd are
rapidly varying and average to zero over time. Keeping only the time-independent terms, we
obtain the effective Hamiltonian:

Ĥ =
∆

2
σ̂z +

Ω

2
σ̂x. (27)

This describes the effective dynamics of the system within the RWA.

2. We first express the RWA Hamiltonian in matrix form as

H =
1

2

[
∆ Ω
Ω −∆

]
. (28)

To find the eigenvalues, it is sufficient to solve the secular equation

det (H− εI) =

∣∣∣∣∆2 − ε Ω
2

Ω
2

−∆
2
− ε

∣∣∣∣ = 0, (29)

which yields the equation

ε2 − ∆2

4
− Ω2

4
= 0, (30)

whose solutions read

ε± = ±
√
∆2 + Ω2

2
. (31)

Now we find the eigenvectors. We detail the procedure for the eigenvector associated to
E+ =

√
∆2+Ω2

2
. We need to solve the 2× 2 system[

∆
2
−

√
∆2+Ω2

2
Ω
2

Ω
2

−∆
2
−

√
∆2+Ω2

2

] [
a
b

]
= 0. (32)
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If we set the first row to zero we can write down the equation(
∆

2
−

√
∆2 + Ω2

2

)
a+

Ω

2
b = 0, (33)

which gives

a =
Ω√

∆2 + Ω2 −∆
b. (34)

This leads to the eigenvector

|+⟩ =
(

Ω√
∆2+Ω2−∆

1

)
=

(
sin θ

1−cos θ

1

)
=

[
cos(θ/2)
sin(θ/2)

]
= cos

(
θ

2

)
|0⟩+ sin

(
θ

2

)
|1⟩ , (35)

where we used the relations given in the main text

tan θ =
Ω

∆
, cos θ =

∆√
∆2 + Ω2

, sin θ =
Ω√

∆2 + Ω2
, (36)

Similarly, one gets for the second eigenvector

|−⟩ = − sin

(
θ

2

)
|0⟩+ cos

(
θ

2

)
|1⟩ . (37)

3. We first invert the relation between the {|+⟩ , |−⟩} eigenstates and the {|1⟩ , |0⟩} states and
we get the following expression for |0⟩:

|0⟩ = cos

(
θ

2

)
|+⟩ − sin

(
θ

2

)
|−⟩ . (38)

At this point is easy to compute the time evolution generated by Ĥ:

|ψ(t)⟩ = e−iĤt |0⟩ = e−iε+t cos

(
θ

2

)
|+⟩ − eiε+t sin

(
θ

2

)
|−⟩ . (39)

The overlap with |1⟩ is then given by

⟨1|ψ(t)⟩ = e−iε+t cos

(
θ

2

)
⟨1|+⟩ − eiε+t sin

(
θ

2

)
⟨1|−⟩ (40)

= e−iε+t cos

(
θ

2

)
sin

(
θ

2

)
− eiε+t sin

(
θ

2

)
cos

(
θ

2

)
(41)

= i sin(θ) sin(ε+t). (42)

The probability of the system to be in the state |1⟩ reads

|⟨1|ψ(t)⟩|2 = sin2(θ) sin2(ε+t) =
Ω2

∆2 + Ω2
sin2

(√
Ω2 +∆2t

)
. (43)

This is the famous Rabi’s formula.
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4. We finally compute the time average of the probability as

P̄1 = lim
t→∞

1

T

∫ T

0

P1(t)dt =
1

2

Ω2

∆2 + Ω2
, (44)

since the time average of the function sin2(ωt) is 1/2.

5. We can use Julia to plot the Rabi frequency as a function of time t and detuning ∆ for a
specific value of the drive amplitude Ω. We provide the code here below:

1 using CairoMakie
2

3 Omega = 1
4 t = range(0, 10, 1000)
5 Delta = range(-2, 2, 1000)
6

7 P_rabi = (Omega^2 ./(Delta '.^2 .+ Omega ^2)) .* sin.(sqrt.(Omega^2 .+
Delta '.^2) .* t).^2

8

9 fig = Figure(size = (600, 500))
10 ax1 = Axis(fig[1, 1], title="Rabi 's␣formula␣for␣Omega=1", xlabel="t",

ylabel="Delta")
11 hm = heatmap !(ax1 , t, Delta , P_rabi , colormap =: viridis)
12 cb = Colorbar(fig[1, 2], hm, label="P(t)")
13

14 fig
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