
Solid state systems for quantum information, Correction 1

Assistants : franco.depalma@epfl.ch, filippo.ferrari@epfl.ch

1 Exercises

Exercise 1 : Pauli algebra and the Bloch sphere representation

In this exercise we deal with the fundamental properties of quantum mechanical two-level systems. We study the algebra obeyed by two-level system operators (the Pauli algebra) and we understand how to represent two-level systems on the Bloch sphere, considering both pure and mixed states.

A single qubit state can be represented by its Bloch vector $\mathbf{r} = (\langle \hat{\sigma}_x \rangle, \langle \hat{\sigma}_y \rangle, \langle \hat{\sigma}_z \rangle)^T$, which is defined on three-dimensional unit sphere (i.e. $|\mathbf{r}| \leq 1$). Where $\hat{\sigma}_x$, $\hat{\sigma}_y$ and $\hat{\sigma}_z$ are the Pauli operators defined as:

$$\hat{\sigma}_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \hat{\sigma}_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \hat{\sigma}_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

1. Show that these matrices are Hermitian and unitary.
2. Show that the Pauli matrices satisfy the following commutation relation: $[\hat{\sigma}_x, \hat{\sigma}_y] = 2i\hat{\sigma}_z$, and find similar expressions for $[\hat{\sigma}_y, \hat{\sigma}_z]$ and $[\hat{\sigma}_z, \hat{\sigma}_x]$.
3. Show that an arbitrary pure state, parametrized as $|\psi\rangle = \cos(\theta/2)|0\rangle + \sin\theta/2e^{i\phi}|1\rangle$ is represented by a Bloch vector of unit length. Graphically visualize the Bloch vector on the Bloch sphere for $\theta = \pi/4$ and $\phi = \pi/2$.
4. Calculate the length of the Bloch vector for a mixed state with density matrix $\hat{\rho} = (1 - \varepsilon)|\psi\rangle\langle\psi| + \frac{\varepsilon}{2}\mathbb{1}$.

Solution 1 :

1. A matrix, A , is *Hermitian* if $A = A^\dagger$ where the dagger symbol, \dagger , is the transpose conjugate. It is *unitary* if $AA^\dagger = \mathbb{1}$. We detail the calculation only for $\hat{\sigma}_y$. To verify that $\hat{\sigma}_y$ is Hermitian it is sufficient to compute

$$\hat{\sigma}_y^\dagger = \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix}^* = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad (1)$$

To verify that $\hat{\sigma}_y$ is unitary it is sufficient to compute

$$\hat{\sigma}_y \hat{\sigma}_y^\dagger = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} = \hat{\sigma}_y^2 = \mathbb{1}. \quad (2)$$

In the same way we can verify Hermiticity and unitarity of $\hat{\sigma}_x$ and $\hat{\sigma}_z$.

2. To show that $[\hat{\sigma}_x, \hat{\sigma}_y] = 2i\hat{\sigma}_z$ we can simply bruteforce calculate it:

$$[\hat{\sigma}_x, \hat{\sigma}_y] = \hat{\sigma}_x \hat{\sigma}_y - \hat{\sigma}_y \hat{\sigma}_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} - \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} - \begin{pmatrix} -i & 0 \\ 0 & i \end{pmatrix} = 2i\hat{\sigma}_z \quad (3)$$

We proceed with the same calculations for the two others commutation relations and we find $[\hat{\sigma}_y, \hat{\sigma}_z] = 2i\hat{\sigma}_x$ and $[\hat{\sigma}_z, \hat{\sigma}_x] = 2i\hat{\sigma}_y$.

3. Given a pure state, the expectation value of an operator \hat{O} is $\langle \hat{O} \rangle = \langle \psi | \hat{O} | \psi \rangle$. Here $|\psi\rangle = (\cos(\theta/2), \sin(\theta/2)e^{i\phi})^T$. We have

$$\langle \hat{\sigma}_x \rangle = \langle \psi | \hat{\sigma}_x | \psi \rangle = (\cos(\theta/2) \quad \sin(\theta/2)e^{-i\phi}) \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \cos(\theta/2) \\ \sin(\theta/2)e^{i\phi} \end{pmatrix} \quad (4)$$

$$= \sin(\theta/2) \cos(\theta/2) (e^{-i\phi} + e^{i\phi}) = \sin(\theta) \cos(\phi), \quad (5)$$

where we have used $e^{-i\phi} + e^{i\phi} = 2\text{Re}(e^{i\phi}) = 2\cos(\phi)$ and $\sin(2\alpha) = 2\sin(\alpha)\cos(\alpha)$.

Similarly, $\langle \hat{\sigma}_y \rangle = \sin(\theta) \sin(\phi)$, and $\langle \hat{\sigma}_z \rangle = \cos(\theta)$. The magnitude of the vector is given by $|\mathbf{r}| = \sqrt{\langle \hat{\sigma}_x \rangle^2 + \langle \hat{\sigma}_y \rangle^2 + \langle \hat{\sigma}_z \rangle^2} = 1$.

The state with $\theta = \pi/4$ and $\phi = \pi/2$, lies in the yz -plane, 45 degrees towards the "south" pole of the Bloch sphere. This can also be seen by calculating $\langle \hat{\sigma}_x \rangle = 0$, $\langle \hat{\sigma}_y \rangle = 1/\sqrt{2}$ and $\langle \hat{\sigma}_z \rangle = 1/\sqrt{2}$.

4. Given a mixed state, the expectation value of an operator \hat{O} on a density matrix $\hat{\rho}$ is given by $\langle \hat{O} \rangle = \text{Tr}(\hat{\rho}\hat{O})$. The we consider is

$$\hat{\rho} = (1 - \varepsilon) |\psi\rangle \langle \psi| + \frac{\varepsilon}{2} \mathbb{1} \quad (6)$$

which is a mixture of the pure state $|\psi\rangle$ of the previous point, for which we have

$$|\mathbf{r}_\psi|^2 = 1 = \text{Tr}(\hat{\sigma}_x |\psi\rangle \langle \psi|)^2 + \text{Tr}(\hat{\sigma}_y |\psi\rangle \langle \psi|)^2 + \text{Tr}(\hat{\sigma}_z |\psi\rangle \langle \psi|)^2, \quad (7)$$

and of the identity matrix. For the latter, it is useful to note that the Pauli matrices have all a null trace $\text{Tr}(\hat{\sigma}_x \mathbb{1}) = \text{Tr}(\hat{\sigma}_y \mathbb{1}) = \text{Tr}(\hat{\sigma}_z \mathbb{1}) = 0$. From the linearity of the trace, we conclude that $\text{Tr}(\hat{\sigma}_j \rho) = (1 - \varepsilon) \text{Tr}(\hat{\sigma}_j |\psi\rangle \langle \psi|) + \frac{\varepsilon}{2} \text{Tr}(\hat{\sigma}_j \mathbb{1}) = (1 - \varepsilon) \text{Tr}(\hat{\sigma}_j |\psi\rangle \langle \psi|)$ for any Pauli operator $\hat{\sigma}_j$ ($j = x, y, z$). It follows that the length of the Bloch vector of that state is given by

$$\begin{aligned} |\mathbf{r}_\rho| &= \sqrt{(1 - \varepsilon)^2 \langle \psi | \hat{\sigma}_x | \psi \rangle^2 + (1 - \varepsilon)^2 \langle \psi | \hat{\sigma}_y | \psi \rangle^2 + (1 - \varepsilon)^2 \langle \psi | \hat{\sigma}_z | \psi \rangle^2} \\ &= (1 - \varepsilon) \sqrt{\langle \psi | \hat{\sigma}_x | \psi \rangle^2 + \langle \psi | \hat{\sigma}_y | \psi \rangle^2 + \langle \psi | \hat{\sigma}_z | \psi \rangle^2} = (1 - \varepsilon) |\mathbf{r}| = (1 - \varepsilon) \in [0, 1]. \end{aligned} \quad (8)$$

Exercise 2 : Dynamics of a two-level system in a magnetic field

In this exercise we consider the dynamics of a two-level system in the presence of an external magnetic field. The Hamiltonian reads

$$\hat{H} = -\frac{\hbar\gamma}{2} \mathbf{B} \cdot \hat{\boldsymbol{\sigma}} = -\frac{\hbar\gamma}{2} (B_x \hat{\sigma}_x + B_y \hat{\sigma}_y + B_z \hat{\sigma}_z), \quad (9)$$

where γ is the gyromagnetic ratio. The system's dynamics is governed by the Schrödinger equation

$$i\hbar \frac{d}{dt} |\psi\rangle = \hat{H} |\psi\rangle, \quad (10)$$

whose general solution is given by

$$|\psi(t)\rangle = e^{-\frac{i}{\hbar} \hat{H} t} |\psi(0)\rangle. \quad (11)$$

1. Consider now the case where we have a constant magnetic field in the z-direction:

$$\mathbf{B} = \begin{pmatrix} 0 \\ 0 \\ B_z \end{pmatrix} \quad (12)$$

(a) If at time $t = 0$ the state is given by $|\psi(0)\rangle = \cos(\theta/2)|0\rangle + \sin(\theta/2)e^{i\phi}|1\rangle$, calculate the state $|\psi(t)\rangle$ after a given time $t = t_1$.

Hint: Use the following identity $e^{i\frac{\theta}{2}(n_x \hat{\sigma}_x + n_y \hat{\sigma}_y + n_z \hat{\sigma}_z)} = \cos(\theta/2)\mathbb{1} + i \sin(\theta/2)(n_x \hat{\sigma}_x + n_y \hat{\sigma}_y + n_z \hat{\sigma}_z)$.

2. Let's assume we have a constant magnetic field in the x-direction:

$$\mathbf{B} = \begin{pmatrix} B_x \\ 0 \\ 0 \end{pmatrix}$$

(a) Calculate the state after a time t assuming that at $t = 0$ the state was in $|\psi(0)\rangle = |0\rangle$. What happens at times $t = \pi/\omega$ and $t = \pi/2\omega$ (where $\omega = \gamma B_x$) ?

(b) Calculate the state after a time t assuming that at $t = 0$ the state was in $|\psi(0)\rangle = |1\rangle$. What happens at times $t = \pi/\omega$ and $t = \pi/2\omega$?

Solution 2 :

1. In order to find $|\psi(t)\rangle$ at a time t_1 , we apply the identity given in the hint.

$$\begin{aligned} e^{-\frac{i}{\hbar} \hat{H} t} &= e^{i\frac{\omega t}{2} \hat{\sigma}_z} = \cos\left(\frac{\omega t}{2}\right) \mathbb{1} + i \sin\left(\frac{\omega t}{2}\right) \hat{\sigma}_z = \begin{pmatrix} \cos\left(\frac{\omega t}{2}\right) + i \sin\left(\frac{\omega t}{2}\right) & 0 \\ 0 & \cos\left(\frac{\omega t}{2}\right) - i \sin\left(\frac{\omega t}{2}\right) \end{pmatrix} \\ &= \begin{pmatrix} e^{i\frac{\omega t}{2}} & 0 \\ 0 & e^{-i\frac{\omega t}{2}} \end{pmatrix} = e^{i\frac{\omega t}{2}} \begin{pmatrix} 1 & 0 \\ 0 & e^{-i\omega t} \end{pmatrix}, \end{aligned} \quad (13)$$

and thus

$$|\psi(t)\rangle = e^{\frac{i\omega t}{2}} \begin{pmatrix} 1 & 0 \\ 0 & e^{-i\omega t} \end{pmatrix} |\psi(0)\rangle. \quad (14)$$

where $\omega = B_z \gamma$. Using the state at time $t = 0$, $|\psi(0)\rangle = \cos \theta/2 |0\rangle + \sin \theta/2 e^{i\phi} |1\rangle$, we have

$$\begin{aligned} |\psi(t)\rangle &= e^{\frac{i\omega t}{2}} \begin{pmatrix} 1 & 0 \\ 0 & e^{-i\omega t} \end{pmatrix} [\cos(\theta/2) |0\rangle + \sin(\theta/2) e^{i\phi} |1\rangle] \\ &= e^{\frac{i\omega t}{2}} [\cos(\theta/2) |0\rangle + \sin(\theta/2) e^{i\phi - i\omega t} |1\rangle]. \end{aligned}$$

$e^{\frac{i\omega t}{2}}$ can be neglected as it is a global phase factor, having no influence on expectation values. Hence we find

$$|\psi(t)\rangle = \cos(\theta/2) |0\rangle + \sin(\theta/2) e^{i\phi - i\omega t} |1\rangle.$$

Applying a \mathbf{B} -field along the z-axis, makes the spin precess along the z axis at the angular frequency ω .

2. For the case with \mathbf{B} along the x direction we can apply the same process.

$$e^{-\frac{i}{\hbar} \hat{H}t} = e^{i\frac{\omega t}{2} \hat{\sigma}_x} = \cos\left(\frac{\omega t}{2}\right) \mathbb{1} + i \sin\left(\frac{\omega t}{2}\right) \hat{\sigma}_x = \begin{pmatrix} \cos\left(\frac{\omega t}{2}\right) & i \sin\left(\frac{\omega t}{2}\right) \\ i \sin\left(\frac{\omega t}{2}\right) & \cos\left(\frac{\omega t}{2}\right) \end{pmatrix}, \quad (15)$$

and thus

$$|\psi(t)\rangle = \begin{pmatrix} \cos\left(\frac{\omega t}{2}\right) & i \sin\left(\frac{\omega t}{2}\right) \\ i \sin\left(\frac{\omega t}{2}\right) & \cos\left(\frac{\omega t}{2}\right) \end{pmatrix} |\psi(0)\rangle. \quad (16)$$

Let's now derive $|\psi(t)\rangle$ for the two cases.

(a) $|\psi(0)\rangle = |0\rangle$; the time-evolved state reads

$$|\psi(t)\rangle = \begin{pmatrix} \cos\left(\frac{\omega t}{2}\right) & i \sin\left(\frac{\omega t}{2}\right) \\ i \sin\left(\frac{\omega t}{2}\right) & \cos\left(\frac{\omega t}{2}\right) \end{pmatrix} |0\rangle = \cos\left(\frac{\omega t}{2}\right) |0\rangle + i \sin\left(\frac{\omega t}{2}\right) |1\rangle,$$

For $t = \pi/\omega$ we have

$$|\psi(t = \pi/\omega)\rangle = i |1\rangle,$$

so the time evolution leads to a population transfer from $|0\rangle$ to $|1\rangle$. For $t = \pi/2\omega$ we have

$$|\psi(t = \pi/2\omega)\rangle = \frac{1}{\sqrt{2}} (|0\rangle + i |1\rangle),$$

so the time evolution brings $|0\rangle$ to a quantum superposition of states.

(b) $|\psi(0)\rangle = |1\rangle$; the time-evolved state reads

$$|\psi(t)\rangle = \begin{pmatrix} \cos\left(\frac{\omega t}{2}\right) & i \sin\left(\frac{\omega t}{2}\right) \\ i \sin\left(\frac{\omega t}{2}\right) & \cos\left(\frac{\omega t}{2}\right) \end{pmatrix} |1\rangle = i \sin\left(\frac{\omega t}{2}\right) |0\rangle + \cos\left(\frac{\omega t}{2}\right) |1\rangle.$$

For $t = \pi/\omega$ we have

$$|\psi(t = \pi/\omega)\rangle = i|0\rangle,$$

so the time evolution leads to a population transfer from $|1\rangle$ to $|0\rangle$. For $t = \pi/2\omega$ we have

$$|\psi(t = \pi/2\omega)\rangle = \frac{1}{\sqrt{2}}(i|0\rangle + |1\rangle),$$

so the time evolution brings $|1\rangle$ to a quantum superposition of states.

Exercise 3 : Driven two-level system

In this exercise we study the dynamics of a driven two-level system. The time-dependent Hamiltonian describing a single two-level system subject to a continuous drive at frequency ω_d is (assuming $\hbar = 1$)

$$\hat{H} = \frac{\omega_0}{2} \hat{\sigma}_z + \Omega \hat{\sigma}_x \cos(\omega_d t). \quad (17)$$

1. Write the Hamiltonian in the frame rotating at the drive frequency ω_d and apply the rotating-wave approximation to eliminate the remaining time-dependence.
2. Diagonalize the time-independent Hamiltonian obtaining the eigenvalues and the eigenvectors.
Hint: express the eigenvectors in terms of the rotation angle θ , where

$$\tan \theta = \frac{\Omega}{\Delta}, \quad \sin \theta = \frac{\Omega}{\sqrt{\Delta^2 + \Omega^2}}, \quad \cos \theta = \frac{\Delta}{\sqrt{\Delta^2 + \Omega^2}},$$

where $\Delta = \omega_0 - \omega_d$ is the qubit-to-pump detuning.

3. Calculate the probability of being in the excited state $|1\rangle$ under the assumption that at time zero $t = 0$ the system is in the state $|\psi(0)\rangle = |0\rangle$

$$P_1(t) = |\langle 1 | \psi(t) \rangle|^2 \quad (18)$$

4. Calculate the time average of the probability of being in the excited state

$$\bar{P}_1 = \lim_{T \rightarrow \infty} \frac{1}{T} \int_0^T P_1(t) dt \quad (19)$$

5. Plot the Rabi frequency [detuning of the oscillation of $P_1(t)$] as a function of time t .

Solution 3 :

1. We consider the Hamiltonian of the driven two-level system given in the text

$$\hat{H} = \frac{\omega_0}{2} \hat{\sigma}_z + \Omega \hat{\sigma}_x \cos(\omega_d t). \quad (20)$$

We move to a frame rotating at the drive frequency (ω_d) using the unitary transformation (as explained in class) $\hat{U}(t) = e^{i\omega_d t \frac{\hat{\sigma}_z}{2}}$. The transformed Hamiltonian in the rotating frame is given by the formula

$$\hat{H} \rightarrow \hat{U} \hat{H} \hat{U}^\dagger + i \frac{\partial \hat{U}}{\partial t} \hat{U}^\dagger. \quad (21)$$

We first compute the second term in the above equation, which is

$$i \frac{\partial \hat{U}}{\partial t} \hat{U}^\dagger = -\frac{\omega_d}{2} \hat{\sigma}_z. \quad (22)$$

Now we use the formula from the previous exercise to transform $\hat{\sigma}_x$

$$\hat{U}\hat{\sigma}_x\hat{U}^\dagger = \hat{\sigma}_x \cos(\omega_d t) - \hat{\sigma}_y \sin(\omega_d t). \quad (23)$$

Notice that the same result can be obtained by using the Baker-Campbell-Haussdorff formula. Finally, we notice that \hat{U} commutes with $\hat{\sigma}_z$, and the transformed Hamiltonian reads

$$\hat{H} = \frac{\Delta}{2}\hat{\sigma}_z + \Omega [\hat{\sigma}_x \cos(\omega_d t) - \hat{\sigma}_y \sin(\omega_d t)] \cos(\omega_d t), \quad (24)$$

where $\Delta = \omega_0 - \omega_d$ is the qubit-to-pump detuning. To simplify the above equation, we can use the following trigonometric identities

$$\begin{aligned} \cos(A)\cos(B) &= \frac{1}{2}[\cos(A-B) + \cos(A+B)], \\ \sin(A)\cos(B) &= \frac{1}{2}[\sin(A-B) + \sin(A+B)], \end{aligned} \quad (25)$$

and we finally obtain

$$\hat{H}_R = \frac{\Delta}{2}\hat{\sigma}_z + \frac{\Omega}{2} [\hat{\sigma}_x(\cos 2\omega_d t + 1) - \hat{\sigma}_y \sin 2\omega_d t]. \quad (26)$$

We now apply the rotating wave approximation (RWA). The terms oscillating at $2\omega_d$ are rapidly varying and average to zero over time. Keeping only the time-independent terms, we obtain the effective Hamiltonian:

$$\hat{H} = \frac{\Delta}{2}\hat{\sigma}_z + \frac{\Omega}{2}\hat{\sigma}_x. \quad (27)$$

This describes the effective dynamics of the system within the RWA.

2. We first express the RWA Hamiltonian in matrix form as

$$\mathcal{H} = \frac{1}{2} \begin{bmatrix} \Delta & \Omega \\ \Omega & -\Delta \end{bmatrix}. \quad (28)$$

To find the eigenvalues, it is sufficient to solve the secular equation

$$\det(\mathcal{H} - \varepsilon I) = \begin{vmatrix} \frac{\Delta}{2} - \varepsilon & \frac{\Omega}{2} \\ \frac{\Omega}{2} & -\frac{\Delta}{2} - \varepsilon \end{vmatrix} = 0, \quad (29)$$

which yields the equation

$$\varepsilon^2 - \frac{\Delta^2}{4} - \frac{\Omega^2}{4} = 0, \quad (30)$$

whose solutions read

$$\varepsilon_{\pm} = \pm \frac{\sqrt{\Delta^2 + \Omega^2}}{2}. \quad (31)$$

Now we find the eigenvectors. We detail the procedure for the eigenvector associated to $E_+ = \frac{\sqrt{\Delta^2 + \Omega^2}}{2}$. We need to solve the 2×2 system

$$\begin{bmatrix} \frac{\Delta}{2} - \frac{\sqrt{\Delta^2 + \Omega^2}}{2} & \frac{\Omega}{2} \\ \frac{\Omega}{2} & -\frac{\Delta}{2} - \frac{\sqrt{\Delta^2 + \Omega^2}}{2} \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = 0. \quad (32)$$

If we set the first row to zero we can write down the equation

$$\left(\frac{\Delta}{2} - \frac{\sqrt{\Delta^2 + \Omega^2}}{2} \right) a + \frac{\Omega}{2} b = 0, \quad (33)$$

which gives

$$a = \frac{\Omega}{\sqrt{\Delta^2 + \Omega^2} - \Delta} b. \quad (34)$$

This leads to the eigenvector

$$|+\rangle = \begin{pmatrix} \frac{\Omega}{\sqrt{\Delta^2 + \Omega^2} - \Delta} \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{\sin \theta}{1 - \cos \theta} \\ 1 \end{pmatrix} = \begin{bmatrix} \cos(\theta/2) \\ \sin(\theta/2) \end{bmatrix} = \cos\left(\frac{\theta}{2}\right) |0\rangle + \sin\left(\frac{\theta}{2}\right) |1\rangle, \quad (35)$$

where we used the relations given in the main text

$$\tan \theta = \frac{\Omega}{\Delta}, \quad \cos \theta = \frac{\Delta}{\sqrt{\Delta^2 + \Omega^2}}, \quad \sin \theta = \frac{\Omega}{\sqrt{\Delta^2 + \Omega^2}}, \quad (36)$$

Similarly, one gets for the second eigenvector

$$|-\rangle = -\sin\left(\frac{\theta}{2}\right) |0\rangle + \cos\left(\frac{\theta}{2}\right) |1\rangle. \quad (37)$$

3. We first invert the relation between the $\{|+\rangle, |-\rangle\}$ eigenstates and the $\{|1\rangle, |0\rangle\}$ states and we get the following expression for $|0\rangle$:

$$|0\rangle = \cos\left(\frac{\theta}{2}\right) |+\rangle - \sin\left(\frac{\theta}{2}\right) |-\rangle. \quad (38)$$

At this point is easy to compute the time evolution generated by \hat{H} :

$$\langle \psi(t) \rangle = e^{-i\hat{H}t} |0\rangle = e^{-i\varepsilon_+ t} \cos\left(\frac{\theta}{2}\right) |+\rangle - e^{i\varepsilon_+ t} \sin\left(\frac{\theta}{2}\right) |-\rangle. \quad (39)$$

The overlap with $|1\rangle$ is then given by

$$\langle 1 | \psi(t) \rangle = e^{-i\varepsilon_+ t} \cos\left(\frac{\theta}{2}\right) \langle 1 | + \rangle - e^{i\varepsilon_+ t} \sin\left(\frac{\theta}{2}\right) \langle 1 | - \rangle \quad (40)$$

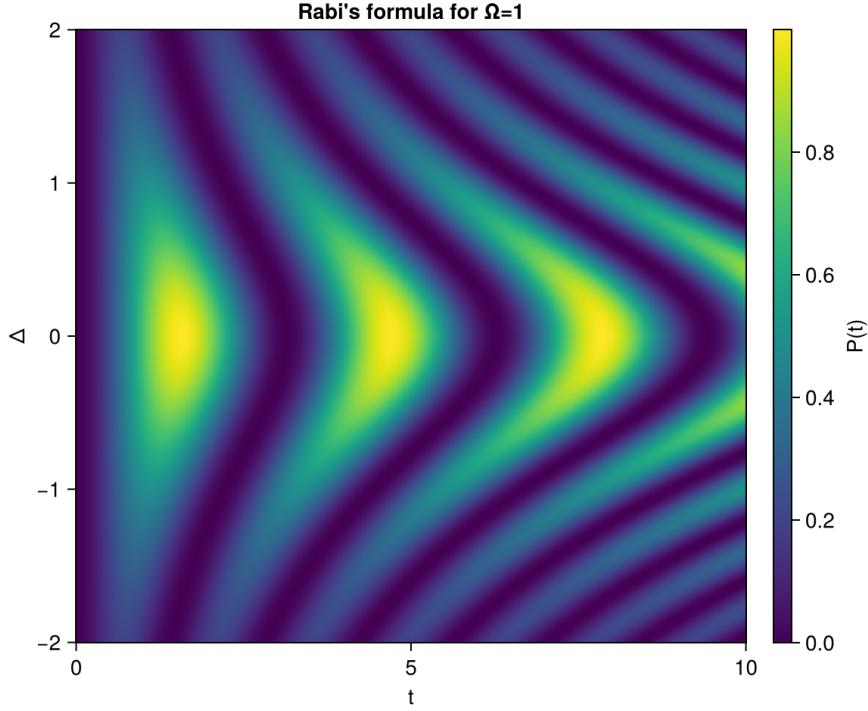
$$= e^{-i\varepsilon_+ t} \cos\left(\frac{\theta}{2}\right) \sin\left(\frac{\theta}{2}\right) - e^{i\varepsilon_+ t} \sin\left(\frac{\theta}{2}\right) \cos\left(\frac{\theta}{2}\right) \quad (41)$$

$$= i \sin(\theta) \sin(\varepsilon_+ t). \quad (42)$$

The probability of the system to be in the state $|1\rangle$ reads

$$|\langle 1 | \psi(t) \rangle|^2 = \sin^2(\theta) \sin^2(\varepsilon_+ t) = \frac{\Omega^2}{\Delta^2 + \Omega^2} \sin^2\left(\sqrt{\Omega^2 + \Delta^2} t\right). \quad (43)$$

This is the famous Rabi's formula.



4. We finally compute the time average of the probability as

$$\bar{P}_1 = \lim_{T \rightarrow \infty} \frac{1}{T} \int_0^T P_1(t) dt = \frac{1}{2} \frac{\Omega^2}{\Delta^2 + \Omega^2}, \quad (44)$$

since the time average of the function $\sin^2(\omega t)$ is $1/2$.

5. We can use Julia to plot the Rabi frequency as a function of time t and detuning Δ for a specific value of the drive amplitude Ω . We provide the code here below:

```

1  using CairoMakie
2
3  Omega = 1
4  t = range(0, 10, 1000)
5  Delta = range(-2, 2, 1000)
6
7  P_rabi = (Omega^2 ./ (Delta.^2 .+ Omega^2)) .* sin.(sqrt.(Omega^2 .+
8    Delta.^2) .* t).^2
9
9  fig = Figure(size = (600, 500))
10 ax1 = Axis(fig[1, 1], title="Rabi's formula for Omega=1", xlabel="t",
11   ylabel="Delta")
11 hm = heatmap!(ax1, t, Delta, P_rabi, colormap=:viridis)
12 cb = Colorbar(fig[1, 2], hm, label="P(t)")
13
14 fig

```