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Exercise 1 : Jaynes-Cumming model: spectrum, entanglement and dynamics

In this exercise we are going to study the fundamental properties of the Jaynes-Cumming model,
whose Hamiltonian in the rotating wave approximation is written as follows (ℏ = 1)

Ĥ =
ωq

2
σ̂z + ωrâ

†â+ g(â†σ̂− + âσ̂+). (1)

The Jaynes-Cumming model describes the interaction between a quantized mode of the electro-
magnetic field and a two-level atom, and it is one of the paradigmatic models in quantum optics.
In Eq. (9), ωq is the qubit frequency, ωr is the resonator frequency, and g is the light-matter cou-
pling. The frequency distance between the two-level system and the resonator is called detuning,
∆ = ωq − ωr. We are going to study this model systematically, from its fundamental symmetries
to the exact spectrum and the dynamics.

1. Determine the symmetries of the Hamiltonian. The eigenvectors of the non-interacting Hamil-
tonian (g = 0) are tensor products between the σ̂z ground and excited states, and the Fock
states, H = span{|g, e⟩ ⊗ |n⟩n∈N}. These states are also called the bare eigenvectors. We
will consider this basis throughout the exercise. Find the symmetry of Ĥ and the Hermitian
operator Ô such that [Ĥ, Ô] = 0 (i.e., Ô is a conserved quantity of the system). Write Ô
in the eigenbasis of the non-interacting problem and in terms of the bosonic creation and
annihilation operators and of σ̂z.

2. Find the exact spectrum of the Jaynes-Cumming model. To do this:

(a) Compute the matrix elements of the interacting term (proportional to g) and show that
Ĥ is block-diagonal with 2× 2 blocks. Interpret this finding in light of what you found
in the previous point.

(b) Diagonalize the 2×2 block finding eigenvalues and eigenvectors of Ĥ. Write the eigenvec-
tors in terms of the bare eigenvectors. These eigenvectors are called dressed eigenvectors.
Hint: To find the eigenvectors, use the rotation matrix (also called Bogoliubov matrix)

U =

(
sin(θn/2) cos(θn/2)
cos(θn/2) − sin(θn/2)

)
(2)

And compute the angle θn.

3. Show that the dressed states are generically entangled. Moreover, show that |∆| = 0 corre-
sponds to maximal entanglement whereas |∆| → ∞ gives back a product state. Provide an
intuitive explanation about this finding.
Hint: To prove that a quantum state |Ψ⟩ of a bipartite system H = HA ⊗HB is entangled in
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some basis which is the tensor product of two single-particle bases, |ϕ⟩ = |a⟩ ⊗ |b⟩, you need
to show that the reduced density matrix describing one of the two subsystem is not pure. To
compute the reduced density matrix, you need to perform the partial trace, which amounts
to tracing out one of the two subsystems:

ρ̂a = Trb(ρ̂) =
∑
b

⟨b|Ψ⟩⟨Ψ |b⟩ . (3)

To asses whether ρ̂a is pure or not, you can compute the purity γa = Tr(ρ̂2a). If γa < 1 then
the state |Ψ⟩ is entangled. If γ = 1/dim(Ha), then the system is maximally entangled.

4. We now analyze the Jaynes-Cumming dynamics. To solve for the dynamics, proceed with the
following steps:

(a) Write a single 2× 2 block of the Hamiltonian Ĥ in terms of the Pauli matrices

(b) Rewrite the time evolution operator in the form exp
[
iΩnt

2
(nxσ̂

x + nzσ̂
z)
]
, with n2

x+n
2
z =

1. Calculate Ωn, nz and nx. How is Ωn called?

(c) Rewrite the above results in terms of a 2× 2 matrix.

(d) Starting with the state |ψ(0)⟩ = |g, n+ 1⟩ calculate the state |ψ(t)⟩ at time t. Why is it
sufficient to consider the time evolution of small blocks, instead of the time evolution of
the full Ĥ?

5. Finally, we study atomic inversion in the Jaynes-Cumming model. Use your results from the
previous question to calculate the atomic inversion, given as w(t) = |Ce(t)|2 − |Cg(t)|2 when
starting in the state |Ψ(0)⟩ = |g, n+ 1⟩ with Cg(t) = ⟨g, n+ 1|Ψ(t)⟩ and Ce(t) = ⟨e, n|Ψ(t)⟩ .
What is the atomic inversion, if the detuning is ∆ = 0?
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Exercise 2 : Schrieffer-Wolff transformation for transmon readout

In this exercise we are going to apply degenerate perturbation theory to describe the trans-
mon qubit readout. The method we adopt is the Schrieffer-Wolff transformation. Consider the
Hamiltonian

Ĥ = Ĥ0 + V̂ , (4)

where Ĥ0 is some unperturbed Hamiltonian of which we know the spectrum, Ĥ0 |Ψn⟩ = En |Ψn⟩,
V̂ is an off-diagonal perturbation. The idea of the Schrieffer-Wolff transformation comes from the
Baker-Campbell-Haussdorff expansion: we perform a unitary transformation on Ĥ with generator
Ŝ. Up to second order, we have

eŜĤe−Ŝ = Ĥ + [Ŝ, Ĥ] +
1

2
[Ŝ, [Ŝ, Ĥ]]. (5)

Now if we write Ĥ = Ĥ0 + V̂ we obtain

eŜĤe−Ŝ = Ĥ0 + V̂ + [Ŝ, Ĥ0] + [Ŝ, V̂ ] +
1

2
[Ŝ, [Ŝ, Ĥ0]] +

1

2
[Ŝ, [Ŝ, V̂ ]]. (6)

We now impose that the generator Ŝ is such that V̂ = −[Ŝ, Ĥ0], i.e., it cancels the contribution of
V̂ at the first order. This leads to the second-order Schrieffer-Wolff formula

Ĥeff = eŜĤe−Ŝ ≃ Ĥ0 +
1

2
[Ŝ, V̂ ]. (7)

The problem is of course finding Ŝ. We state here, without proving it, that the Schrieffer-Wolff
generator at first order is given by

Ŝ =
∑
n,m

⟨Ψn| V̂ |Ψm⟩
En − Em

|Ψn⟩ ⟨Ψm| . (8)

The above two equations provide all the ingredients to compute low-energy effective Hamiltonians.
We apply this formalism to two examples, both relevant for circuit QED.

1. Jaynes-Cumming model. Consider the Hamiltonian

ĤJC =
ωq

2
σ̂z + ωrâ

†â− g(â†σ̂− + âσ̂+). (9)

Suppose g ≪ |∆| = |ωq − ωr|. Compute the effective low-energy Hamiltonian by means of a
second-order Schrieffer-Wolff transformation. Justify the use of perturbation theory in this
context and give a physical interpretation about the terms appearing in the Ĥeff, JC you find.

2. Dispersive readout of a superconducting transmon qubit. In the previous point, we modeled
the transmon qubit as a two-level system. We now want to go beyond this (very) simple
approximation and we want to take into account the multilevel structure of the transmon.
Consider the Hamiltonian

ĤcQED = ωrâ
†â+ ωq b̂

†b̂− Ec

2
b̂†2b̂2 − g(â†b̂+ b̂†â) (10)
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where â and b̂ are the bosonic modes of the resonator and of the transmon, respectively.
Suppose g ≪ |∆| = |ωq − ωr|. Compute the effective low-energy Hamiltonian Heff, cQED by
means of a second-order Schrieffer-Wolff transformation, and neglect possible counter-rotating
terms.

3. Starting from Heff, cQED, truncate all the energy levels but the first two and compute the
dispersive shift χ (half of the resonator’s energy different when the qubit is up or down,
respectively). Compare it to the Hamiltonian Ĥeff, JC you found in the previous point. Why
are they not coinciding?

4


